
Chapter 2

Cox Proportional Hazards Regression

This chapter give the first 1D regression model for survival analysis. The
survival 1D regression models differ from the multiple linear regression, ex-
perimental design models, and generalized linear models in that the condi-
tional mean function is no longer of primary interest. Instead, the conditional
survival function and the conditional hazard functions are of interest. For sur-
vival regression, the ith case will often be (Ti = Y ∗

i , δi, x
T
i )T for i = 1, ..., n

where xi = (xi1, ..., xip)
T is a p × 1 vector of predictors. Predictors are also

called independent variables, risk factors, or explanatory variables.

Definition 2.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Definition 2.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (2.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = β
T
x = xT β where ESP = β̂

T
x. This class of models includes several

important survival regression models.

One of the simplest examples of a regression model has x = (x1) = x1 = x
where x = 1 for a new treatment and x = 0 for a standard treatment or for
a placebo = sham treatment. Then Ŝ(t|x = 1) and Ŝ(t|x = 0) are of interest.

Suppose S(t|xj) is of interest. If there was enough data at xj, say
Y ∗

1 (xj), ..., Y
∗
m(xj), then you could make, for example, the Kaplan Meier es-
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timator for various values of xj and plot the survival curves, e.g, Ŝk(t|x1), ...,

Ŝk(t|xJ ).
Often there is only one censored survival time Y ∗

i |xi for each vector of
predictors xi. The training data set is (Y ∗

i , δi, x
T
i )T for i = 1, ..., n. Often

interest is in estimating the conditional hazard function hi(t) = h(t|xi) =
hYi|xi

(t) = h
Yi|β

T xi
(t).

2.1 Proportional Hazards Regression

Definition 2.3. The Cox proportional hazards regression (PH) model
is

hi(t) = hYi|xi
(t) = h

Yi|β
T
xi

(t) = exp(βT xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio. The sufficient predictor SP = βT xi =

∑p
j=1 βjxij.

The Cox PH model (= Cox PH regression model = Cox regression model
= Cox proportional hazards regression model) is a 1D regression model since
the conditional distribution Y |x is completely determined by the hazard func-
tion, and the hazard function only depends on x through βT x. Inference for
the PH model uses computer output that is used almost exactly as the out-
put for generalized linear models such as the logistic and Poisson regression
models. The Cox PH model is semiparametric: the conditional distribution
Y |x depends on the sufficient predictor β

T
x, but the parametric form of

the hazard function hY |x(t) is not specified. The Cox PH model is the most
widely used survival regression model in survival analysis. For the Cox PH
model, often we will use β = βC.

Regression models are used to study the conditional distribution Y |x given
the p × 1 vector of nontrivial predictors x. In survival regression, Y is the
time until an event such as death. Many of the most important survival
regression models are 1D regression models with SP = βT x: the nonnegative
response variable Y is independent of x given β

T
x, written Y x|βT

x. Let
the sufficient predictor SP = β

T
x, and the estimated sufficient predictor

ESP = β̂
T
x. The ESP is sometimes called the estimated risk score. The

sufficient predictor is also called a linear component or linear predictor.
The conditional distribution Y |x is completely determined by the prob-

ability density function fx(t), the distribution function Fx(t), the survival
function

Sx(t) ≡ SY |SP (t) = P (Y > t|SP = β
T
x),

the cumulative hazard function Hx(t) = − log(Sx(t)) for t > 0, or the hazard
function hx(t) = d

dtHx(t) = fx(t)/Sx(t) for t > 0. High hazard implies low
survival times while low hazard implies long survival times.



2.1 Proportional Hazards Regression 45

Survival data is usually right censored so Y is not observed. Instead, the
survival time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time.
Also δi = 0 if Ti = Zi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi, xi) for i = 1, ..., n.

The Cox proportional hazards regression model (Cox 1972) is a semipara-
metric model with SP = βT

Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)

where the baseline hazard function h0(t) is left unspecified. Note that

hY |SP (t)

h0(t)
= eSP , and SP = log

(

hY |SP (t)

h0(t)

)

.

The survival function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(βT

C
x) = [S0(t)]

exp(SP). (2.2)

If x = 0 is within the range of the predictors, then the baseline survival and
hazard functions correspond to the survival and hazard functions of x = 0.
First βC is estimated by the maximum partial likelihood estimator β̂C , then

estimators ĥ0(t) and Ŝ0(t) can be found (see Breslow 1974), and

Ŝx(t) = [Ŝ0(t)]
exp(

ˆβ
T

C
x) = [Ŝ0(t)]

exp(ESP), (2.3)

ĥx(t) = exp(xT β̂)ĥ0(t), and Ĥx(t) = exp(xT β̂)Ĥ0(t).

Let hi(t) = hx(t) = ex
T βh0(t) = exp(x1β1 + · · · + xiβi + · · ·xpβp)h0(t).

Suppose xi changes by r units while the other xj are held fixed. Then SP (xi+
r) = x1β1 + · · ·+ (xi + r)βi + · · ·xpβp = SP + rβi, and

hi|xi+r(t) = exp(rβi) exp(xT β)h0(t) = exp(rβi)hi(t).

Then the hazard ratio

hi|xi+r(t)

h0(t)
= exp(rβi)

hi(t)

h0(t)

changes by a factor of exp(rβi). The log hazard ratio

log

(

hi|xi+r(t)

h0(t)

)

= rβi + log

(

hi(t)

h0(t)

)

= rβi + xT β.

Thus βi is the change in the log hazard ratio when xi is changed by r = 1
unit with all other xj held fixed.
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2.2 Visualizing the Cox PH Regression Model

Grambsch and Therneau (1994) give a useful graphical check for whether the
PH model is a reasonable approximation for the data. Suppose the ith case
had an uncensored survival time ti. Let the scaled Schoenfeld residual for the
ith observation and jth variable xj be r∗P,j(ti). For each variable, plot the

ti versus the r∗P,j(ti) + β̂j and add the loess curve. If the loess curve is ap-
proximately horizontal for each of the p plots, then the proportional hazards
assumption is reasonable. Alternatively, fit a line to each plot and test that
each of the p slopes is equal to 0. The R function cox.zph makes both the
plots and tests. See MathSoft (1999b, p. 267, 275). Hosmer and Lemeshow
(1999, p. 211) suggest also testing whether the interactions xi log(t) are sig-
nificant for i = 1, ..., p.

Definition 2.4. The slice survival plot divides the ESP into J groups
of roughly the same size. For each group j with nj cases, the model estimated

survival function Ŝj(t) is computed using the x corresponding to the “median
ESP” of the group (the kth order statistic of the ESP in group j, where
k = 1 + floor[(nj − 1)/2]). Let ŜKMj(t) be the Kaplan Meier estimator
computed from the survival times (Ti, δi) in the jth group. For each group,
Ŝj(t) is plotted and ŜKMj(ti) is plotted as circles at the uncensored event

times ti. The survival regression model is reasonable if the circles “track Ŝj

well” in each of the J plots.

If the slice widths go to zero, but the number of cases per slice increases
to ∞ as n → ∞, then the Kaplan Meier estimator and the model estimator
converge to SY |SP (t) if the model holds. Simulations suggest that the two
survival functions are “close” for moderate n and nine slices. For small n and
skewed predictors, some slices may be too wide in that the model is correct
but ŜKMj(t) is not a good approximation of SY |SP (t) where SP corresponds

to the x used to compute Ŝj(t).
For the Cox model, if pointwise confidence interval (CI) bands are added

to the plot, then ŜKMj “tracks Ŝj well” if most of the plotted circles do not
fall very far outside the pointwise CI bands since these pointwise bands are
not as wide as simultaneous bands. Collett (2003, p. 241-243) places several
observed Kaplan Meier curves with fitted curves on the same plot.

Survival regression is the study of the conditional survival SY |SP (t), and
the slice survival plot is a useful tool for visualizing SY |SP (t) in the back-
ground of the data. Suppose the jth slice is narrow so that ESP ≈ wj. If
the model is reasonable, ESP ≈ SP , and the number of uncensored cases in
the jth slice is not too small, then SY |SP=wj

(t) ≈ Ŝj(t) ≈ ŜKMj(t). (These

quantities approximate [Ŝ0(t)]
exp(wj) for the Cox model.) Thus the nonpara-

metric Kaplan Meier estimator is used to check the model estimator Ŝj(t) in
each slice.
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Fig. 2.1 Censored Response Plot for R Lung Cancer Data

The slice survival plot tailored to the Cox model is closely related to the
May and Hosmer (1998) test. Also, van Houwelingen et al. (2006) use similar
ideas, but place the J Kaplan Meier curves on one plot and the J Cox survival
curves on another plot. For a 1D regression model, the ESP is a scalar while x

is a p×1 vector. Using the ESP instead of x in plots is an important dimension
reduction technique (and is similar to using a scalar valued minimal sufficient
statistic instead of the p-dimensional sufficient statistic x.) Inferior plots have
been suggested by several authors with x divided into J groups instead of the
ESP. For example, see Miller (1981, p. 168). Hosmer and Lemeshow (1999,
p. 141–145) suggests making plots based on the quartiles of the ith predictor
xi, and note that a problem with Cox survival curves (2.3) is that they may
use inappropriate extrapolation. Using the ESP results in narrow slices with
many cases, and adding Kaplan Meier curves shows if there is extrapolation.
The main use of the next plot is to check for cases with unusual survival
times. Hazard increases and survival decreases as ESP increases if ESP ≈
SP.

Definition 2.5. A censored response plot is a plot of the ESP versus
T with plotting symbol 0 for censored cases and + for uncensored cases. Slices
in this plot correspond to the slices used in the slice survival plot.
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Fig. 2.2 Slice Survival Plots for R Lung Cancer Data

Suppose the ESP is a good estimator of the SP. Consider a narrow vertical
slice taken in the censored response plot about ESP = w. The points in
the slice are a censored sample with SY |SP (t) ≈ SY |w(t). For proportional
hazards models, hY |SP (t) ≈ exp(ESP )h0(t), and the hazard increases while
the survival decreases as the ESP increases.

Example 2.1. R and Splus contain a data set lung where the response
variable Y is the time until death for patients with lung cancer. See MathSoft
(1999b, p. 268). Consider the data set for males with predictors ph.ecog =
Ecog performance score 0-4, ph.karno = a competitor to ph.ecog, pat.karno
= patient’s assessment of their karno score and wt.loss = weight loss in last 6
months. Figure 2.1 shows the censored response plot. Notice that the survival
times decrease rapidly as the ESP increases and that there is one time that is
unusually large for ESP ≈ 1.8. If the Cox regression model is a good approx-
imation to the data, then the response variables corresponding to the cases
in a narrow vertical strip centered at ESP = w are approximately a cen-
sored sample from a distribution with hazard function hx(t) ≈ exp(w)h0(t).
Figure 2.2 shows the slice survival plots. The ESP was divided into 4 groups
and the ESP increases from the upper left, upper right, lower left and lower
right corners of the plot where Ŝ(400) ≈ (0.70, 0.60, 0.55, 0.30). The circles
corresponding to the Kaplan Meier estimator are “close” to the Cox survival
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Fig. 2.3 Grambsch and Therneau Plots for NWTCO Data

curves in that the circles do not fall very far outside the pointwise CI bands.

Example 2.2. R contains a data set nwtco where the response variable Y
is the time until relapse with n = 4028. The model used predictors histol =
tumor histology from central lab, instit = tumor histology from local institu-
tion, age in months, and stage of disease from 1 to 4 (treated as a continuous
variable). In Figure 2.3, the Grambsch and Therneau (1994) plots suggest
that the Cox model is not valid since not all of the loess curves are flat, and
the global test has p-value ≈ 5.66× 10−11. The slice survival plot in Figure
2.4 shows that the Cox survival estimators and Kaplan Meier estimators are
nearly identical in the six slices, suggesting that the Cox model is a reason-
able approximation to the data. The greatest contributors to lack of fit seem
to be the predictors age and stage corresponding to the bottom two plots of
Figure 2.3, and survival for small ESP corresponding to the upper left plot
in Figure 2.4.

Residuals are quantities calculated for each individual or case, and the
residual behavior is roughly known with the fitted model is satisfactory. Let
Ti = ti be the observed death or censoring time of individual i.
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Fig. 2.4 Slice Survival Plot for NWTCO Data: Horizontal Axis is the Estimated
Survival Function S(t)

Definition 2.6. a) The Cox Snell residual rci = exp(xT β̂)Ĥ0(ti) =
Ĥx(ti) for i = 1, ..., n.

b) Let γi = 1 if ti is uncensored and γi = 0 if ti is censored. Then the
Martingale residual rmi = γi − rci.

The Martingale residual has mean 0 for uncensored cases and rmi < 0
if γi = 0 if case i is censored. Also, −∞ < rmi ≤ 1. It can be shown that
− log(S(Y )) ∼ EXP (1). So if Ŝ(t) is a good approximation to S(t), then
− log(Ŝxi

(ti)) = Ĥxi
(ti) = rci should behave like n observations from a

censored EXP (1) distribution.
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2.3 Testing

For regression models, we want to test i) whether the predictors x are needed
in the model: H0 : β = 0 versus H1 : β 6= 0, ii) whether a reduced model
that that does not use predictors xi1, ..., xik is good: H0 : (βi1, ..., βik)

T = 0
versus H1 : (βi1, ..., βik)

T 6= 0, and iii) whether predictor xi is needed in the
model given that the other predictors are needed in the model H0 : βi = 0
versus H1 : βi 6= 0. Note that tests i) and iii) are special cases of test ii). We

also want confidence intervals for βi. We also want to find ESP = β̂
T

Cxi and

ĥi(t) = eESP ĥ0(t) given xi. Often the hypothesis H1 = HA.
Computer output will be needed, and shown below is output in symbols

from SAS and R. The estimated coefficient is β̂j . The Wald chi square = X2
0,j

while p and “pr > chisqu” are both p-values. Sometimes “Std. Err.” replaces
“SE.” Note that z2

0,j = X0,j where z0,j ≈ N(0, 1), a standard normal random
variable.

variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) z0,p = β̂p/se(β̂p) X2
0,p = z2

0,p H0 : βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

The estimated sufficient predictor ESP = β̂
′
xj =

∑p
i=1 β̂ixij. Given β̂

from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
′
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. The hypothesis H0 is
rejected if the p–value < δ. A p–value between 0.07 and 1.0 provides little
evidence that H0 should be rejected, a p–value between 0.01 and 0.07 provides
moderate evidence and a p–value less than 0.01 provides strong statistical
evidence that H0 should be rejected. Statistical evidence is not necessarily
practical evidence, and reporting the p–value along with a statement of the
strength of the evidence is more informative than stating that the p–value is
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less than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

The Wald confidence interval (CI) for βj can also be obtained from the
output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j ).

Investigators often test whether a predictor xj is needed in the model given
that the other p − 1 predictors x1, ..., xi−1, xi+1, ..., xp are in the model with
a 4 step Wald test of hypotheses:
i) State the hypotheses H0 : βj = 0 H1 : βj 6= 0.

ii) Find the test statistic z0,j = β̂j/se(β̂j) or X2
0,j = z2

0,j or obtain it from
output.

iii) The p–value = 2P (Z < −|z0j|) = P (χ2
1 > X2

0,j). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that xj is needed in the PH survival model
given that the other p−1 predictors are in the model. If you fail to reject Ho,
then conclude that xj is not needed in the PH survival model given that the
other p − 1 predictors are in the model. Note that xj could be a very useful
PH survival predictor, but may not be needed if other predictors are added
to the model.

Typically the “p-value” is actually an estimated p-value called pval. When
a normal table is used, if −|z0,j| < −3.9, then take pval = 0.

Example 2.3. Allison (1995, p. 120) considers one of the first heat trans-
plant studies with Y = days from acceptance until death, x1 = trans = 1 if
the patient received a heart transplant with x1 = 0, otherwise, x2 = surg =
1 if the transplant was before the date of acceptance with x2 = 0, otherwise,
and x3 = ageaccept = age at date of acceptance. Using the following output,

a) find ESP β̂
T
x if x = (1, 0, 64)T , b) find ĥi(t), c) find a 95% Wald CI for

β2, d) perform a 4 step test of hypotheses for β2 = 0 without using output to
find the test statistic and p–value, e) perform the 4 step test of hypotheses
of β3 = 0 using output.

variable df estimate SE Wald chisquare pr > chisq risk
X2

0,j = z2
0,j pval ratio

trans 1 −1.70814 0.2786 37.59 0.0001 0.181
surg 1 −0.42140 0.3710 1.29 0.2560 0.656

ageaccpt 1 0.05861 0.0151 15.16 0.0001 1.060

Solution: a) ESP = β̂
T
x = −1.70814(1) − 0.170814(0) + 0.05861(64) =

2.0429
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b) ĥi(t) = e
ˆβ

T

xĥ0(t) = e2.0429ĥ0(t) = 7.7129 ĥ0(t)

c) β̂2 ± 1.96SE(β̂2) = −0.4214 ± 1.96(0.3710) = −0.4214 ± 0.72716 =
[−1.1486, 0.3058]

Note that the 95% CI gives reasonable values for β2 and includes 0. thus
x2 may not be important given that x1 and x2 are in the model.

d) i) H0 : β2 = 0, H1 : β2 6= 0
ii)

z0,2 =
−0.4214

0.3710
= −1.136

iii) Using a normal table and rounding z0,2 to 2 digits, pval = 2P (Z <
−|z0,2|) = 2P (Z < −1.14) = 2(0.1271) = 0.2542. From the t-table near the
back of Chapter 5, line Z and the last line “two tail” gives 0.1 < pval < 1.

iv) Since pval > δ = 0.05, fail to reject H0. Hence surg is not needed in
the survival model given that trans and ageaccpt are in the model.

e) i) H0 : β3 = 0, H1 : β3 6= 0
ii) X2

0,3 = 15.16
iii) pval = 0.001 < δ = 0.05
iv) Since pval < δ, reject H0. Hence ageaccpt is needed in the survival

model given that trans and surg are in the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R, xT
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors. The null model
has hi(t) ≡ h0(t) regardless of the value of xi.

The partial likelihood ratio test (PLRT) is used to test whether β = 0.
If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If H0 : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If H0 is rejected, use the PH model.

Know that the 4 step PLRT is
i) H0 : β = 0 H1 : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject H0 if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value ≥ δ, then fail to
reject H0 and conclude that there is not a PH survival relationship between
Y and the predictors x.

Output in symbols is often given in three ways.

variables in model −2 log L̂

none −2 log L̂(none)
...

...

x1, ..., xp −2 log L̂(full)
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or
Model Fit Statistics
test chisq DF pr > chisq

likelihood ratio X2(N |F ) p pval = P (χ2
p > X2(N |F ))

or
Testing Global Null Hypotheses: BETA = 0
criterion without with model chisq

likelihood ratio covariates covariates

−2 log L −2 log L̂(none) −2 log L̂(full) X2(N |F )

R output for the PLRT uses a line like
Likelihood ratio test=14.3 on 2 df, p=0.000787.
Some SAS output for the PLRT is shown next.

Model Fit Statistics or

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square with

-2 LOG L 596.651 551.1888 45.463 3 DF (p=0.0001)

x1, ..., xp −2 log L̂(full)

none −2 log L̂(none)

Example 2.4.
x1, ..., x5 −2 logL = 162.479

none −2 logL = 177.667

or R output: likelihood ratio test = 15.188 on 5 df p = 0.00959
or

SAS Testing Global Null Hypotheses: BETA = 0

Test chisq DF pr > chisq

likelihood ratio 15.188 5 0.00959

Using the above output, shown in 3 different formats, do a 4 step test for
β = 0.

Solution: i) H0 : β = 0 H1 : β 6= 0
ii) X2(N |F ) = 15.188 = 177.667− 162.479
iii) pval = 0.00959
iv) Reject H0, there is a PH survival relationship between survival times

Y and the predictors x1, ..., x5.

Example 2.5. Suppose there are treatments A and B for leukemia pa-
tients in remission. Let x = 0 for treatment A and x = 1 for treatment B.
Then β = β is a scalar since p = 1. Do a 4 step test for β = 0 i n = 40 and
the output is R likelihood ration test = 1.32 on 1 df, p=0.025.

Solution: i) H0 : β = 0 H1 : β 6= 0
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ii) X2(N |F ) = 1.32
iii) pval = 0.25
iv) Fail to reject H0: there is not a PH survival relationship between relapse

times and x (so no difference between treatments A and B for survival times).

Let the full model be

SP = SP (F ) = β1x1 + · · ·+ βpxp = β
T
x = β

T
RxR + β

T
OxO.

let the reduced model

SP = SP (R) = βR1xR1 + · · ·+ βRrxRr = β
T
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test H0: the reduced
model is good (can be used instead of the full model, so xO is not needed in
the model given xR is in the model) versus HA: use the full model (the full
model is significantly better than the reduced model). Fit the full model and
the reduced model to get X2(N |F ) and X2(N |R) where X2(N |F ) is used in
the PLRT to test whether β = 0 and X2(N |R) is used in the PLRT to test
whether βR = 0 (treating the reduced model as the model in the PLRT).

Shown below in symbols is output for the full model and output for the
reduced model. The output shown on can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F )− X2(N |R) =

[−2 logL(none)] − [−2 logL(full)] − ([−2 logL(none)] − [−2 logL(red)]) =

[−2 logL(red)] − [−2 logL(full)] = −2 log

(

L(red)

L(full)

)

.

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) z0,p = β̂p/se(β̂p) X2
0,p = z2

0,p Ho H0 : βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0
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Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for H0 : β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) z0,r = β̂r/se(β̂r) X2
0,r = z2

0,r H0 : βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

Know that the 4 step change in PLR test is
i) H0: the reduced model is good H1: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject H0 if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject H0 and conclude that the reduced
model is good.

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes H0 : βi = 0 versus H1 : βi 6= 0. This change in partial
likelihood ratio test is a competitor of the Wald test. The change in PLRT
is usually better than the Wald test if the sample size n is not large, but the
Wald test is often easier for software to produce. For large n the test statistics
from the two tests tend to be very similar (asymptotically equivalent tests).

Example 2.6. Data is from Smith (2002, pp. 179-180). Aids patients
received low dose or high dose of a drug or a placebo. Let v1 = 1 for low dose
and v1 = 0, else. Let v2 = 1 for high dose and v2 = 0, else. The time until
a blood test was positive was measured, and the bood test was taken each
day for a month. Note that (v1, v2) = (0, 0) means a placebo was given to
the patient. Let the full model output be as below.

R coef se coef z p

SAS parameter standard chisquare Pr > chisq

estimate error

v1 -1.51 0.528 -2.86 8.1796 0.0043

v2 -1.03 0.455 -2.26 5.1076 0.0240
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R: likelihood ratio test = 8.99 on 2 df, p = 0.0111

SAS Test chisq df Pr > chisq

Likelihood ratio 8.99 2 0.0111

Let the reduced model have v1 alone with the following output.

R: likelihood ratio test = 3.88 on 1 df, p =

SAS Test chisq df Pr > chisq

Likelihood ratio 3.88 1

Test whether the reduced model is good.
Solution: i) H0 : the reduced model is good H1 : use the full model
ii) X2(R|F ) = X2(N |F ) − X2(N |F ) = 8.99− 3.88 = 5.11
iii) pval = P (χ2

2−1 > 5.11) with 0.01 < pval < 0.025 using a χ2 table as
below

df | 0.025 0.01

-----------------

1 | 5.02 6.63

iv) Reject H0, use the full model.

Example 2.7. Data is from Collett (2003, p. 79). Test whether the reduced
model is good using the following output.

model variables in model -2 log L

reduced A2, A3, N 165.508

full A2, A3, N, A2N, A3N 162.479

Solution: i) H0: the reduced model is good H1: use the full model
ii) X2(R|F ) = X2(N |F ) − X2(N |F ) = 165.508− 162.479 = 3.029
iii) The df = 5 − 3 = 2 = number of terms left out of full model. Hence

pval = P (χ2
2 > 3.029) with 0.1 < pval < 0.25 using a χ2 table as below

df | 0.25 0.1

-----------------

2 | 2.77 4.61

iv) Fail to reject H0, the reduced model is good.

If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should have plotted points that cluster tightly about

the identity line with unit slope and zero intercept.

In R, there is a useful shortcut for doing the change in PLR test. In the
code below let “fit” be for the full model and “fitR” be for the reduced model.
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The anova command gives the following output in symbols. Values left blank
are not needed for the test.

loglik chisq df P (> |chi|)
1
2 X2(R|F ) for test pval for test

Then for the output below, X2(R|F ) = 2.0469 = 8.08− 6.03 up to round-
ing, the df = 1, and the pval = 0.01525. So fail to reject H0 and conclude
that the reduced model is good.

fit <- coxph(Surv(time,status)˜x1*x2 + x3, data = dat)

fitR <- coxph(Surv(time,status)˜x1 + x2 + x3, data = dat)

full coef exp(coef) SE(coef) Z P

x1 4.236 2.326 1.79 0.073

x2 2.674 2.556 1.05 0.296

x3 0.473 0.592 0.80 0.424

x1:x2 -1.936 1.421 -1.38 0.167

LRT = 8.08 on 4 df p = 0.0888

reduced coef exp(coef) SE(coef) Z P

x1 1.347 0.680 1.98 0.048

x2 -0.749 0.595 -1.26 0.208

x3 0.453 0.590 0.77 0.443

LRT = 6.03 on 3 df p = 0.011

anova(fitR, fit, test = "Chisq")

loglik chisq df P( > |chi|)

1 -31.970

2 -30.494 2.0469 1 0.1525

Remark 2.1. For testing, β = 0 means changing values of x, within the

observed range of x or of β̂
T
x, does not affect survival. For example, suppose

p = 1 and x = 1 for treatment 1 and x = 0 for treatment 0. If treatments
1 and 0 are both very and equally effective, then h1(t) = h0(t) = eβxh0(t)
with β = 0. For this example, x is important for survival times Y , in that
survival could be poor if neither treatment were given, but the value of x 0
or 1 did not affect the value of Y . Hence β = 0 could imply that the survival

relationship between x and Y is the same for all observed values of β̂
T
x.

Hence concluding β = 0 does not necessarily mean that the predictors x are
not important for survival times. Similarly, βi = 0 means changing values
of xi, within the observed range of xi, does not affect the survival times. If
β = (βT

R, βT
O)T , then βO = 0 means changing the values of xO, within the

observed values of xO or β̂
T

OxO , does not affect the survival times. Then the
reduced model is good in that you get the “same survival model” regardless
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of the xO values. So “no survival relationship” between Y and x or xO or xi

means within the observed range of x, or xO, or xi. This remark for testing
applies to the other models in Chapters 2 and 3.

A factor A is a qualitative variable that takes on K categories called
levels. Suppose A has a categories c1, ..., cK. Then the factor is incorporated
into the PH model by using a − 1 indicator variables xjA = 1 if A = cj

and xAj = 0 otherwise, where the 1st indicator variable is omitted, eg, use
x2A, ..., xaA. Each indicator has 1 degree of freedom. Hence the degrees of
freedom of the K − 1 indicator variables associated with the factor is K − 1.

Example 2.8. Let factor A have levels squamous, adeno, and small cell
with respective indicator variables x1A, x2A, and X3A. Then (x2A, x3A) =
(1, 0) corresponds to adeno, (x2A, x3A) = (0, 0) corresponds to squamous,
and (x2A, x3A) = (0, 1) corresponds to small cell.

The xj corresponding to variates (quantitative variables that take on nu-
merical values) or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a fac-
tor include products for the K − 1 indicator variables of the factor. Hence
an interaction between a variate x1 and a factor A with indicator variables
x2A, ..., xKA is incorporated into the model with x1x2A, ..., x1xKA. An inter-
action between factor A and factor B with indicators x2B, ..., xbB is incorpo-
rated into the model with the (K − 1)(b − 1) pairs
x2Ax2B, ..., x2AxbB

...
xKAxKB, ..., xKAxbB.

If an interaction is in the full or reduced model, also include the corre-
sponding main effects in the model. For example, if x1x3 is in the model, also
include the main effects x1 and x2. In Example 2.7, A2N and A3N are interac-
tions. Sometimes an interaction is denoted by x12 = x1x2 and x123 = x1x2x3.

Suppose x1 is quantitative and x2 is qualitative with 2 levels and x2 = 1
for level c2 and x2 = 0 for level c1. Then a first order model with interaction
is SP = β1x1 + β2x2 + β3x1x2. This model yields two unrelated lines in the
sufficient predictor depending on the value of x2: SP = β2 + (β1 + β3)x1 if
x2 = 1 and SP = β1x1 if x2 = 0. If β3 = 0, then there are two parallel lines:
SP = β2 + β1x1 if x2 = 1 and SP = β1x1 if x2 = 0. If β2 = β3 = 0, then
the two lines are coincident: SP = β1x1 for both values of x2. If β2 = 0,
then the two lines both have the intercept at the origin: SP = (β1 + β3)x1 if
x2 = 1 and SP = β1x1 if x2 = 0. In general, as factors have more levels and
interactions have more terms, e.g. x1x2x3x4, the interpretation of the model
rapidly becomes very complex.

A scatterplot is a plot of xi versus xj. A scatterplot matrix is an
array of scatterplots. It is used to examine the marginal relationships of the
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predictors. Variables with outliers, missing values or strong nonlinearities
may be so bad that they should not be included in the full model.

Suppose that all values of the variable x are positive. The log rule says
add log(x) to the full model if max(xi)/ min(xi) > 10.

2.4 Variable Selection

Variable selection, also called subset selection, is the search for a subset of
predictor variables that can be deleted with little loss of information if n/p is
large. Consider the 1D regression model where Y x|SP where SP = xT β.
See Definition 2.2. A model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS (2.4)

where x = (xT
S , xT

E)T is a p × 1 vector of predictors, xS is an aS × 1 vector,
and xE is a (p − aS) × 1 vector. Given that xS is in the model, βE = 0 and
E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (2.4) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β, xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP, ESP (I)) ≥ 0.95.

Definition 2.7. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |x

T
I βI that uses a subset xI of the

predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI . Underfitting occurs if submodel I does not contain S. Fitting
unnecessary predictors is sometimes called fitting noise or overfitting.

Definition 2.8. An EE plot for variable selection is a plot of ESP (I)

versus ESP where ESP (I) = β̂
T

I xI and ESP = β̂
T
x.
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Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selection.
The relaxed lasso or relaxed elastic net estimator fits the regression method,
such as a Cox (1972) proportional hazards regression, to the predictors than
had nonzero lasso or elastic net coefficients. Underfitting occurs if submodel
I does not contain S: a PH model may not hold for submodel I even if the
PH model does hold for the full model.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin with the smallest AIC
(among models considered) are always of interest. Create a full model. The
full model has a −2 log(L) at least as small as that of any submodel.

Backward elimination starts with the full model with p variables and
the predictor that optimizes some criterion is deleted. Then there are p − 1
variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p− 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p− 2 and p − 1 predictors. Both
forward selection and backward elimination result in a sequence of p models
{x∗

1}, {x
∗
1, x

∗
2}, ..., {x

∗
1, x

∗
2, ..., x

∗
p−1}, {x

∗
1, x

∗
2, ..., x

∗
p} = full model.

Consider models I with aI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2aI . For
forward selection and backward elimination, these two criterion generate the
same sequence of models if each variable has 1 degree of freedom (no factors
with more than 2 levels since a factor with K ≥ 2 levels uses K − 1 indica-
tor variables with df = K − 1). To see this, let model Ii have i predictors
{x∗

1, ..., x
∗
i} with aIi

= i. Forward selection moves from Ii−1 to Ii while back-
ward elimination moves from Ii+1 to Ii, but all models I being considered
for Ii have i predictors with aIi

= i a constant.

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4 (if
the predictor has 1 degree of freedom) may be troubling in that a good pre-
dictor may have been deleted. In practice, the backward elimination program
may delete the variable such that the submodel I with i predictors has 1)

the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest p–value
(preferably from a change in PLR test but possibly from a Wald test) in the
test Ho βj = 0 versus HA βj 6= 0 where the current model with i+1 variables
is treated as the full model.
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Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with i predictors has 1) the smallest AIC(I), 2) the

smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 6= 0 where the current model with i − 1 terms plus the predictor xj is
treated as the full model (for all variables xj not yet in the model).

Rule of thumb: a) If an interaction (e.g. x3x7x9) is in the submodel,
then the main effects (x3, x7, and x9) should be in the submodel.

b) If xi+1, xi+2, ..., xi+K−1 are the K − 1 indictor variables corresponding
to factor A, submodel I should either contain none or all of the K−1 indicator
variables.

Given a list of submodels along with the number of predictors and AIC, be
able to find the “initial submodel to examine” II . Let Imin be the minimum
AIC model. Then II is the submodel with the fewest predictors such that
AIC(II) ≤ AIC(Imin)+2. It is possible that II = Imin = Ifull . Also look at
submodels I with fewer predictors than II such that AIC(I) ≤ AIC(Imin)+
7.

Submodels I with more predictors than II should not be used.

Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than II .
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs. ESP cluster tightly about
the identity line.
v) Want p-value ≥ 0.01 for the change in PLR test that uses I as the reduced
model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors aI ≤ n/10.

vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.

But for factors with K − 1 indicators, modify ix) and x) so that the indi-
cator with the smallest p-value is examined.
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Suppose that the full model is good and is stored in M1. Let M2, M3, M4,
and M5 be candidate submodels found after forward selection, backward elim-
ination, etc. Typically one of the submodels is the min(AIC) model. Given a
list of properties of each submodel, be able to pick out “good submodels.”
Tips: i) submodels with more predictors then II have too many predictors.
ii) The initial submodel to look at is II which has AIC(II ) ≤ AIC(Imin)+2.
iii) Submodels I with AIC(I) > AIC(Imin) + 7 are not good submodels.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model Ifull may be the best starting submodel if Ifull = II and
M2–M5 satisfy iii). Similarly, the min(AIC) model Imin may be the best
starting submodel if Imin = II and models with fewer predictors satisfy iii).
vi) Submodels I with fewer predictors than II and AIC(I) ≤ AIC(Imin)+7
are worth considering. For fixed a, take the candidate that minimizes AIC.

Example 2.9. Given a list of variables with their AIC, be able to find II ,
Imin, and candidate submodels. The list below comes from Collett (2003, p.
86). For this list, Imin = II = {size, index} since the model I with the fewest
predictors aI ≤ 2 = aImin

and smallest AIC(I) ≤ AIC(Imin) + 2 = 29.533
is II = Imin. A candidate submodel is I = {size} since AIC(I) = 31.042 ≤
AIC(Imin)+7 = 34.533 and aI = 1 < aImin

. This model also has the smallest
AIC for models with a = 1. Note that there are four models with a = 1, six
with a = 2, four with a = 3 and one with a = 1. For each value of a, the
model with the lowest −2logL is also the one with the lowest AIC. Note that
adding predictors does not increase −2 log L.

variables -2 log L AIC= -2 log L + 2a

none 36.349 36.349

age 36.269 38.269

shb 36.196 38.196

size 29.042 31.042 candidate

index 29.127 31.127

age,shb 36.151 40.151

age,size 28.854 32.854

age,index 28.760 32.760

shb,size 29.019 33.019

shb,index 27.981 31.981

size,index 23.533 27.533 Imin= I_I

age,shb,size 28.852 34.853

age,shb,index 27.893 33.893

age,size,index 23.269 29.269

shb,size,index 23.508 29.508

age,shb,size,index 23.231 31.231

Example 2.10. Given summaries on several models, be able to pick out
the “best starting model” II . In the table below, M1 is the full model and
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M3 is the minimum AIC model Imin. M2 and M2 have more predictors than
the minimum AIC model and the AIC for M4 is to large to be the starting
model. So use M3 as the starting model.

If M4 has −2logL = 27.042, AIC = 29.042 and p-value = 0.283, then M4
would be the starting value. Any model p-value < 0.01 in the last row has a
p-value that is too small.

M1 M2 M3 M4
# of predictors 4 3 2 1

# with 0.01 ≤ p-value ≤ 0.05 1 2 1 0
# with p-value > 0.05 2 1 0 0

−2 log(L) 23.231 23.269 23.533 29.042
AIC(I) 31.231 29.269 27.533 31.042

p-value for change in PLR test 1.0 0.8454 0.8598 0.12‘

If there are important predictors such as treatment that must be in the
submodel, either force the variable selection procedures to contain the im-
portant predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

Suppose the PH model contains x1, ..., xp. Leave out xj, find the martingale
residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If the curve
is linear then xj has the correct functional form. If the curve looks like t(xj)
(e.g. (xj)

2), then replace xj by t(xj), find the martingale residuals, plot t(xj)
vs the residuals and check that the loess curve is linear.

Warning: A common mistake is to act as if the variable selection model
Imin as the reduced model and to use inference for the reduced model. This
type of inference is not valid: the pvalue for the change in PLRT that used
xImin

as the reduced model is too high and the pvalues for H0 : βi = 0 are
too small if xi is a variable in Imin. A reduced model needs to be chosen
before looking at the data. The variable selection model fits the data a bit to
well since many submodels are examined. Chapter 5 will explain how to do
inference after variable selection.

Lasso also does variable selection. Below is R code for backward elimi-
nation, forward selection, and lasso for the Lawless (1982, p. 286) alung
data.

source("http://parker.ad.siu.edu/Olive/survdata.txt")

library(MASS)

library(survival)

alung<-as.data.frame(alung)

zc <- coxph(Surv(alung[,1],alung[,2])˜perf+age+ttoent+

size+type+ttype+trt,data=alung)

outb<-stepAIC(zc) #default is backward



2.5 Stratified Proportional Hazards Regression 65

fit1 <- coxph(Surv(time,status) ˜ ., data=alung)

fit2 <- coxph(Surv(time,status) ˜ 1, data=alung)

#fit1 <- coxph(Surv(alung[,1],alung[,2]) .,data=alung)

#fails because it uses time and status as predictors

outb<-stepAIC(fit1,direction="backward")

#Imin has perf and ttype

outf<-stepAIC(fit2,direction="forward",scope=

list(upper=fit1,lower=fit2))

library(glmnet)

y <- as.matrix(alung[,1:2])

x <- as.matrix(alung[,3:9])

outlasso<-cv.glmnet(x,y,family="cox")

lam <- outlasso$lambda.min

betahat <- as.vector(predict(outlasso,

type="coefficients",s=lam))

betahat

-0.04331 0.0 0.0 -0.09863 0.0 0.43485 0.0

#perf, size, ttype have nonzero lasso coefficients

2.5 Stratified Proportional Hazards Regression

Definition 2.9. The stratified proportional hazards regression (SPH)
model is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′xi
(t) = exp(β′

xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the
J strata. The same β is used for each group = stratum, but the baseline
hazard functions differ. Stratification can be useful if there are clusters of
cases such that the observations within the clusters are not independent. A
common example is the variable study sites and the stratification should be
on site. For example, the sites could be hospitals where the hospitals are
fixed by the design of the study, rather than being a random sample of sites
(hospitals). Sometimes stratification is done on a categorical variable such as
gender. Sometimes stratification is done on a continuous varaible by grouping
the variable and using the groups as strata. For example, use low, medium
and high incomes as the strata for the variable income.

Inference is done almost exactly as done for the PH model. Except the
conclusion is changed slightly: replace “PH” by “SPH”.
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Let A be a categorical variable with the J levels corresponding to the
J groups for the SPH model. This categorical variable is not included as a
predictor variable for the SPH model. A Cox PH regression model would
use J − 1 indicator variables as predictor variable for a categorical variable
included in the Cox PH regression.

Since J Cox PH regression models are fit for SPH , one for each group,
check each Cox PH model with graphs. Another useful method is to divide

the ESP β̂
T
x into k groups where 4 ≤ k ≤ 9. Choose an xi from near the

center of each group. Then plot t versus Ŝxi,j(t) for j = 1, ..., J on the same
graph for xi. Make such graphs for x1, ..., xk.

2.6 Generalized Cox Regression

In the Cox PH regression model, the predictors xj are not allowed to depend
on time.

Definition 2.10. In the generalized Cox regression (GCR) model, the
predictors xj(t) do depend on time for at least one j. These predictors are
called time dependent variables. Let xi(t) = (xi1(t), ..., xip(t))

T . If xj is not
a time dependent variable, then interpret xj(t) ≡ xj(0) = xj. Then xij(t) ≡
xij(0). Then the generalized Cox regression model has

h
Y |β

T
xi(t)

= hi(t) = hx(t)(t) = exp(βT xi(t))h0(t).

The GCR model is not a PH model, but h0(t) is still the baseline function.
Note that β does not depend on t. If subjects can have xi(t) ≡ xi(0) = 0
∀t > 0, so that the subject’s predictor variables are 0 at the time of the origin
and remain at 0 regardless of the time t > 0, then h0(t) is the hazard function
for such subjects.

Note that
hi(t)

h0(t)
= exp(βT xi(t))

depends on time. Also hi(t) 6= c h0(t) for some constant c that does not
depend on time. These results again show that the GCR model is not a PH
model.

Often patients are monitored for the duration of the study, and some
variables are recorded on a regular basis. Some examples are size of tumor,
PSA levels for prostate cancel, white blood cell count, and weight. If xj(t)
is the value of xj measured at time t, the time t is the study time, not the
calendar time. Hence if subject 1 began on May 1 and subject 2 on July 1,
and both are measured weekly, then the time in days will be 7, 14, 21, ... .

There are two types of time dependent variables. An internal time depen-
dent variable is suject specific and requires the subject to be under periodic
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observation. An external time dependent variable does not require the subject
to be under direct observation, and often only needs one initial measurement.
For example, if the patient’s birthdate is known, then the patient’s age can
be computed at any time after the patient enters the study.

Example 2.11.

presence of side effect internal
xj ∗ log(time) interaction external

age measured yearly external
environmental variables such as pollen count internal
serum cholesterol level measured monthly internal
white blood cell count measured monthly internal

Know: Inference is almost the same as that for the Cox PH regression
model, but in the conclusions, replace “PH” by “GCR.”

Data management and computing the GCR model is much more difficult
than that for the Cox PH model. For the GCR model, xj(t) needs to be
known for “all individuals” who are in the risk set at time ti for i = 1, ..., m
if there are m distinct death times, or there are missing values.

One type of time dependent covariate that is easy to work with is an
interaction like xj ∗ time or xj ∗ log(time). As an application, suppose a
Cox PH model is fit with predictor variables x1, ..., xp. To test the Cox PH
assumption, add the variables x1∗ log(time), ..., xp∗ log(time), and fit a GCR
model. Want the pvalues for the interactions to be larger than 0.05. This
procedure uses multiple testing. So if p = 20, βp+i = 0 is the coefficient for
xi ∗ log(time) for i = 1, ..., 20, then about 1 in 20 will have pvalue < 0.05.

2.7 Summary

1) The Cox proportional hazards regression (PH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βT
xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT
xi) is the haz-

ard ratio.

For now, assume that the PH model is appropriate, although
this assumption should be checked before performing inference.

2) The sufficient predictor SP = βT xj =
∑p

i=1 βixij.
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variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

Shown above is output in symbols from and SAS and R. The estimated
coefficient is β̂j . The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

3) The estimated sufficient predictor ESP = β̂
T
xj =

∑p
i=1 β̂ixij. Given β̂

from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
T
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. Recall that Ho is rejected if
the p–value < δ. A p–value between 0.07 and 1.0 provides little evidence that
Ho should be rejected, a p–value between 0.01 and 0.07 provides moderate
evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

4) The Wald confidence interval (CI) for βj can also be obtained from the
output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j ).

5) Investigators also sometimes test whether a predictor Xj is needed in
the model given that the other k − 1 nontrivial predictors are in the model
with a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.
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ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj |) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the PH survival model
given that the other p−1 predictors are in the model. If you fail to reject Ho,
then conclude that Xj is not needed in the PH survival model given that the
other p− 1 predictors are in the model. Note that Xj could be a very useful
PH survival predictor, but may not be needed if other predictors are added
to the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R, xT
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors.
The partial likelihood ratio test (PLRT) is used to test whether β = 0.

If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If Ho : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If Ho is rejected, use the PH model.

6) The 4 step PLRT is
i) Ho : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value ≥ δ, then fail to
reject Ho and conclude that there is not a PH survival relationship between
Y and the predictors x.

Some SAS output for the PLRT is shown next. R output is above 20).

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square

-2 LOG L 596.651 551.1888 45.463 with 3 DF (p=0.0001)

Let the full model be

SP = β1x1 + · · ·+ βpxp = β
T
x = α + β

T
RxR + β

T
OxO .

let the reduced model

SP = βR1xR1 + · · ·+ βRrxRr = βT
RxR
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where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test Ho: the reduced
model is good (can be used instead of the full model, so xO is not needed in
the model given xR is in the model) versus HA: use the full model (the full
model is significantly better than the reduced model). Fit the full model and
the reduced model to get X2(N |F ) and X2(N |R) where X2(N |F ) is used in
the PLRT to test whether β = 0 and X2(N |R) is used in the PLRT to test
whether βR = 0 (treating the reduced model as the model in the PLRT).

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for Ho: β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) X2
o,r = z2

o,r Ho: βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

The output shown above in symbols, can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F )− X2(N |R) =

[−2 logL(none)] − [−2 logL(full)] − ([−2 logL(none)] − [−2 logL(red)]) =
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[−2 logL(red)] − [−2 logL(full)] = −2 log

(

L(red)

L(full)

)

.

7) The 4 step change in PLR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes Ho : βi = 0 versus HA : βi 6= 0. This change in partial
likelihood ratio test is a competitor of the Wald test. The change in PLRT
is usually better than the Wald test if the sample size n is not large, but
the Wald test is currently easier for software to produce. For large n the test
statistics from the two tests tend to be very similar (asymptotically equivalent
tests).

8) If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should be highly correlated with the identity line with

unit slope and zero intercept.

A factor A is a variable that takes on a categories called levels. Suppose
A has a categories c1, ..., ca. Then the factor is incorporated into the PH
model by using a − 1 indicator variables xjA = 1 if A = cj and xAj = 0
otherwise, where the 1st indicator variable is omitted, eg, use x2A, ..., xaA.
Each indicator has 1 degree of freedom. Hence the degrees of freedom of the
a − 1 indicator variables associated with the factor is a − 1.

The xj corresponding to variates (variables that take on numerical values)
or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a factor
include products for all indicator variables of the factor.

If an interaction is in the model, also include the corresponding main
effects. For example, if x1x3 is in the model, also include the main effects x1

and x2.
A scatterplot is a plot of xi vs. xj. A scatterplot matrix is an array of

scatterplots. It is used to examine the marginal relationships of the predictors.
Variables with outliers, missing values or strong nonlinearities may be so bad
that they should not be included in the full model.
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9) Suppose that all values of the variable x are positive. The log rule says
add log(x) to the full model if max(xi)/ min(xi) > 10.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model with the smallest AIC are
always of interest. Create a full model. The full model has a −2 log(L) at
least as small as that of any submodel. The full model is a submodel.

Backward elimination starts with the full model with p variables and
the predictor that optimizes some criterion is deleted. Then there are p − 1
variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p− 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p− 2 and p − 1 predictors. Both
forward selection and backward elimination result in a sequence of p models
{x∗

1}, {x
∗
1, x

∗
2}, ..., {x

∗
1, x

∗
2, ..., x

∗
p−1}, {x

∗
1, x

∗
2, ..., x

∗
p} = full model.

Consider models I with rI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2rI .

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4 (if
the predictor has 1 degree of freedom) may be troubling in that a good pre-
dictor may have been deleted. In practice, the backward elimination program
may delete the variable such that the submodel I with k predictors has 1)

the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest p–value
(preferably from a change in PLR test but possibly from a Wald test) in the
test Ho βi = 0 versus HA βi 6= 0 where the current model with k+1 variables
is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with k predictors has 1) the smallest AIC(I), 2) the

smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 6= 0 where the current model with k − 1 terms plus the predictor xi is
treated as the full model (for all variables xi not yet in the model).

10) If an interaction (e.g. x3x7x9) is in the submodel, then the main effects
(x3, x7, and x9) should be in the submodel.
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11) If xi+1, xi+2, ..., xi+a−1 are the a − 1 indictor variables corresponding
to factor A, submodel I should either contain none or all of the a−1 indictor
variables.

12) Given a list of submodels along with the number of predictors and
AIC, be able to find the “initial submodel to examine” II . Let Imin be the
minimum AIC model. Then II is the submodel with the fewest predictors
such that AIC(II ) ≤ AIC(Imin) + 2. It is possible that II = Imin = Ifull .
Also look at submodels I with fewer predictors than II such that AIC(I) ≤
AIC(Imin) + 7.

13) Submodels I with more predictors than II should not be used.

14) Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

15) Let the survival times Ti = min(Yi, Zi), and let γi = 1 if Ti = Yi

(uncensored) and γi = 0 if Ti = Zi (censored). For PH models, an censored
response plot is a plot of the ESP vs T with plotting symbol 0 for censored
cases and + for uncensored cases. If the ESP is a good estimator of the SP
and hSP (t) = exp(SP )h0(t), then the hazard increases and survival decreases
as the ESP increases.

16) The slice survival plot divides the ESP into J groups of roughly the
same size. For each group j, ŜPHj(t) is computed using the x corresponding

to the “median ESP” of the group. The Kaplan Meier estimator ŜKMj(t) is

computed from the survival times in the jth group. For each group, ŜPHj (t)

is plotted and ŜKMj(ti) as circles at the deaths ti. The proportional hazards
assumption is reasonable if the circles track the curve well in each of the J
plots. If pointwise CI bands are added to the plot, then ŜKMj tracks ŜPHj

well if most of the plotted circles do not fall very far outside the pointwise
CI bands.

17) Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than II .
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs ESP cluster tightly about
the identity line.
v) Want pvalue ≥ 0.01 for the change in PLR test that uses I as the reduced
model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors rI ≤ n/10.

vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
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ix) Want hardly any predictors with pvalues > 0.05.
x) Want few predictors with pvalues between 0.01 and 0.05.

But for factors with a−1 indicators, modify ix) and x) so that the indicator
with the smallest pvalue is examined.

18) Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Typically one of the submodels is the min(AIC) model.
Given a list of properties of each submodel, be able to pick out “good sub-
models.”
Tips: i) submodels with more predictors then II have too many predictors.
ii) The initial submodel to look at is II which has AIC(II ) ≤ AIC(Imin)+2.
iii) Submodels I with AIC(I) > AIC(Imin) + 7 are not good submodels.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model Ifull may be the best starting submodel if Ifull = II and
M2–M5 satisfy iii). Similarly, the min(AIC) model Imin may be the best
starting submodel if Imin = II and models with fewer predictors satisfy iii).
vi) Submodels I with fewer predictors than II and AIC(I) ≤ AIC(Imin)+7
are worth considering.

19) If there are important predictors such as treatment that must be in
the submodel, either force the variable selection procedures to contain the
important predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

20) Suppose the PH model contains x1, ..., xp. Leave out xj, find the mar-
tingale residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If
the curve is linear then xj has the correct functional form. If the curve looks
like t(xj) (eg (xj)

2), then replace xj by t(xj), find the martingale residuals,
plot t(xj) vs the residuals and check that the loess curve is linear.

21) Let the scaled Schoenfeld residual for the jth variable xj be r∗pj + β̂j .
Plot the death times ti vs the scaled residuals and add the loess curve. If the
loess curve is approximately horizontal for each of the p plots, then the PH
assumption is reasonable. Alternatively, fit a line to each plot and test that
each of the p slopes is equal to 0. The R function cox.zph makes both the
plots and tests.

22) The stratified proportional hazards regression (SPH) model
is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′xi
(t) = exp(β′

xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.
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A SPH model is not a PH model, but a PH model is fit to each of the J
strata. The same β is used for each group = stratum, but the baseline hazard
functions differ. Stratification can be useful if there are clusters of cases such
that the observations within the clusters are not independent. A common
example is the variable study sites and the stratification should be on site.
Sometimes stratification is done on a categorical variable such as gender.

23) Inference is done exactly as for the PH model. See points 3), 4), 5), 6),
and 7). Except the conclusion is changed slightly: in 5) and 6) replace “PH”
by “SPH”.

2.8 Complements

Sometimes the Cox PH regression model does not fit the data set, but there
is a categorical variable A with J levels such that a Cox PH regression model
fits each group corresponding to the levels of A. Then each group has a βj for
j = 1, ..., J . For example, men and women could follow a different Cox PH
regression model. The stratified proportional hazards regression model is a
special case where βg ≡ β for j = 1, ..., J , but the baseline hazard functions
h0j(t) differ.

For multiple linear regression, the ANOVA F test is like the PLRT and
the partial F test is like the change in PLR test.

Oakes (2000) notes that the proportional hazards model is not preserved
when variables are added or deleted from the model, eg by variable selection.
Any 1D regression model can be invalidated by adding or deleting variables
with nonzero coefficients. Variable selection is a search for variables xO where
x = (xT

I , xT
O)T and β = (βT

I , βT
O). If variable selection is successful to a

useful approximation, so that βO = 0, then the 1D regression model and
proportional hazards is preserved.

From the CRAN website, e.g. (https://cran.r-project.org/), click on pack-
ages, then survival, then survival.pdf to obtain the R reference manual on
the survival package. Much of this material is also in MathSoft (1999b, Ch.
8–13).

For SAS, see the SAS Institute (1999). The chapters on PHREG, LIF-
EREG and LIFETEST procedures are useful. These chapters can be found
online at (www.google.com) with a search of the keywords SAS/STAT User’s
Guide.

The most used survival regression models satisfy Y x|SP , and the slice
survival plot is useful for visualizing SY |SP (t) in the background of the data.
Simultaneous or pointwise CI bands are needed to determine whether the
nonparametric Kaplan Meier estimator is close to the model estimator. If
the two estimators are close for each slice, then the graph suggests that the
model is giving a useful approximation to SY |SP (t) for the observed data if
the number of uncensored cases is large compared to the number of predictors
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p. The plots are also useful for teaching survival regression to students and
for explaining the models to consulting clients.

The slice survival, censored response, LCR, and EE plots are due to Olive
(2011). Emphasis was on proportional hazards models since pointwise CI
bands are available for the Cox proportional hazards model. Thus the slice
survival plot can be made for the Cox model, and then the estimated sur-
vival function from a parametric proportional hazards model can be added as
crosses for each slice if points in the EE plot cluster tightly about the identity
line. Stratified proportional hazards models can be checked by making one
slice survival plot per stratum. EE plots can be made for parametric mod-
els if software for a semiparametric analog is available. For some parametric
survival models, see Chapter 3, Bennett (1983), Yang and Prentice (1999),
Wei (1992), and Zeng and Lin (2007).

The censored response plot and LCR plot can be regarded as special cases
of the model checking plots of Cook and Weisberg (1997) applied to censored
data.

If pointwise bands are not available for the parametric or semiparametric
model, but the number of cases in each slice is large, then simultaneous or
pointwise CI bands for the Kaplan Meier estimator could be added for each
slice.

Plots were made in R and the function coxph produces the survival
curves for Cox regression. The collection of R functions regpack available
from (www.math.siu.edu/olive/regpack.txt) contains functions for reproduc-
ing simulations and some of the plots. The functions vlung2, vovar,
and vnwtco were used to produce Figures 2.1, 2.2, and 2.4. The function
bphsim3 shows that the Kaplan Meier estimator was close to the Cox sur-
vival curves for 2 groups (a single binary predictor) when censoring was light
and n = 10.

Zhou (2001) shows how to simulate Cox proportional hazards regres-
sion data. Simulated Weibull proportional hazards regression data was made
following Zhou (2001) but with three iid N(0,1) covariates. The function
phsim5 showed that for 9 groups and p = 3, the Kaplan Meier and Cox
curves were close (with respect to the pointwise CI bands) for n ≥ 80. The
function wphsim showed a similar result for Kaplan Meier curves (circles),
and the function wregsim2 shows that for n ≥ 30, the plotted points in an
EE plot cluster tightly about the identity line with correlation greater than
0.99 with high probability.

2.9 Problems

Problems with an asterisk * are especially important.
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2.1. Suppose that a proportional hazards model holds so that hx(t) =
exp(βT

x)h0(t) where h0(t) is the baseline hazard function. Let f0(t), S0(t)
F0(t) and H0(t) denote the baseline pdf, survival function, distribution func-
tion and cumulative hazard function.

a) Show
Hx(t) = exp(βT x)H0(t).

b) Show

Sx(t) = [S0(t)]
exp(βT x).

c) Show

fx(t) = f0(t) exp(βT x)[S0(t)]
exp(βT x) − 1.

2.2. Suppose that h0(t) = 1 for t > 0. This corresponds to the exponential
proportional hazards model hx(t) = exp(βT

x)h0(t) = exp(βT
x).

a) Find H0(t).

b) Find Hx(t).

Data for 2.3

Variables in model -2 log L

none 36.349

size 29.042

size, index 23.533

size, index, treatment 22.572

2.3. The Collett (2003b, p. 86) data studies the time until death from
prostate cancer from the date the patient was randomized to a treatment.
The variable treatment was a 0 for a placebo and a 1 for DES (a drug). The
variable size was tumor size, and index the Gleason index. Let the full model
contain size, index and treatment. Use the table above.

a) If the reduced model uses size and index, test whether the reduced
model is good.

b) If the reduced model uses size, test whether the reduced model is good.

data for 2.4

full model coef exp(coef) se(coef) z p

age 0.00318 1.003 0.0111 0.285 0.78

sex -1.48314 0.227 0.3582 -4.140 0.000035

diseaseGN 0.08796 1.092 0.4064 0.216 0.83

diseaseAN 0.35079 1.420 0.3997 0.878 0.38

diseasePKD -1.43111 0.239 0.6311 -2.268 0.023

Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76

reduced model coef exp(coef) se(coef) z p
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age 0.00203 1.002 0.00925 0.220 0.8300

sex -0.82931 0.436 0.29895 -2.774 0.0055

Likelihood ratio test=7.12 on 2 df, p=0.0285 n= 76

2.4. The R kidney data is on the recurrence times Y to infection, at the
point of insertion of the catheter, for kidney patients. Predictors are age, sex
(M=1,F=2), and the factor disease (0=GN, 1=AN, 2=PKD, 3=Other).

a) For the reduced model, test β = 0.

b) For the reduced model, test β = 0 using δ = 0.01.

c) Test whether the reduced model is good.

Output for 2.5

coef exp(coef) se(coef) z p

rxLev -0.0423 0.959 0.1103 -0.384 0.70000

rxLev+5FU -0.3787 0.685 0.1189 -3.186 0.00140

extent 0.4930 1.637 0.1117 4.412 0.00001

node4 0.9154 2.498 0.0968

Likelihood ratio test=122 on 4 df, p=0 n= 929

2.5. The R colon data from one of the first successful trials of adjuvant
chemotherapy for colon cancer. Levamisole is a low-toxicity compound, 5-
FU is a moderately toxic chemotherapy agent. The treatment was nothing,
levamisole, or levamisole and 5-FU. Y is time until death. The 4 predictors are
x1 = 1 if treatment was levamisole, x2 = 1 if the treatment was levamisole
and 5-FU, extent of local spread (treated as a variate with 1=submucosa,
2=muscle, 3=serosa, 4=contiguous structures), and node4 = 1 for more than
4 positive lymph nodes.

a) Find the ESP and ĥi(t) if x = (0, 1, 2, 1).

b) Find a 95% CI for β1.

c) Do a 4 step test for Ho : β1 = 0.

d) Do a 4 step test for Ho : β4 = 0.

Output for 2.6.

full model coef exp(coef) se(coef) z p

trt 0.295 1.343 0.20755 1.4194 0.16

celltypesmallcell 0.862 2.367 0.27528 3.1297 0.017

celltypeadeno 1.20 3.307 0.30092 3.9747 0.000

celltypelarge 0.401 1.494 0.28269 1.4196 0.16

karno -0.0328 0.968 0.00551 -5.9580 0.000

diagtime 0.000081 1.000 0.00914 0.0089 0.99

age -0.00871 0.991 0.00930 -0.9361 0.35

prior 0.00716 1.007 0.02323 0.3082 0.76
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Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137

reduced model coef exp(coef) se(coef) z p

trt 0.2617 1.30 0.20092 1.30 0.19

celltypesmallcell 0.8250 2.28 0.26891 3.07 0.022

celltypeadeno 1.1540 3.17 0.29504 3.91 0.0009

celltypelarge 0.3946 1.48 0.28224 1.40 0.16

karno -0.0313 0.97 0.00517 -6.05 0.000

Likelihood ratio test=61.1 on 5 df, p=7.3e-12 n= 137

2.6. The R veteran lung cancer data has Y = survival time. The predic-
tors are trt (1=standard, 2=test), the factor celltype (1=squamous, 2=small-
cell, 3=adeno, 4=large), karno = Karnofsky performance score
(100=good), diagtime = months from diagnosis to randomization, age in
years, and prior = prior therapy (0=no, 1=yes).

a) For the full model, test Ho β = 0.

b) Test whether the reduced model is good.

Full model Output for 2.7

variable coef std._err. z pval

age -0.029 0.008 -3.53 0.000

bectota 0.008 0.005 1.68 0.094

ndrugtx 0.028 0.008 3.42 0.001

herco_2 0.065 0.150 0.44 0.663

herco_3 -0.094 0.166 -0.57 0.572

herco_4 0.028 0.160 0.18 0.861

ivhx_2 0.174 0.139 1.26 0.208

ivhx_3 0.281 0.147 1.91 0.056

race -0.203 0.117 -1.74 0.082

treat -0.240 0.094 -2.54 0.011

site -0.102 0.109 -0.94 0.348

Likelihood ratio test = 24.436 on 11 df, p = 0.011

Reduced model

variable coef std._err. z pval

age -0.026 0.008 -3.25 0.001

bectota 0.008 0.005 1.70 0.090

ndrugtx 0.029 0.008 3.54 0.000

ivhx_3 0.256 0.106 2.41 0.016

race -0.224 0.115 -1.95 0.051

treat -0.232 0.093 -2.48 0.013

site -0.087 0.108 -0.80 0.422

Likelihood ratio test = 21.038 on 7 df, p = 0.004
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2.7. The Hosmer and Lemeshow (1999, p. 165 - 170) data studies time
until illegal drug use relapse. Variables were age, becktota, ndrugtx, herco2 =
1 if heroin user and 0 else, herco3 = 1 if cocaine user and 0 else, herco4 = 1
if used neither heroin nor cocaine and 0 else, ivhx2 = 1 if previous but not
recent IV drug use and 0 else, ivhx3 = 1 if recent IV drug use and 0 else, race
= 1 for white and 0 else, treat = 1 for short treatment and 0 for long and
site.

Using the output for the full and reduced model above, test whether the
reduced model is good.

output for 2.8 variables AIC

trt sex race pburn bhd bbut btor bupleg blowleg bresp 439.470

trt sex race pburn bhd bbut btor bupleg blowleg 437.479

trt sex race pburn bbut btor bupleg blowleg 435.540

trt sex race pburn bbut bupleg blowleg 433.677

trt sex race bbut bupleg blowleg 431.952

trt sex race bbut bupleg 430.281

trt sex race bbut 429.617

trt sex race 428.708

trt race 429.704

race 431.795

2.8. Data from Klein and Moeschberger (1997, p. 7) is on severely burned
patients. The response variable is time until infection. Predictors include
treatment (0-routine bathing 1-Body cleansing), sex (0=male 1=female), race
(0=nonwhite 1=white), pburn = percent of body burned. The remaining
variables are burn cite indicators. For example, bhd is head (1 yes 0 no).
Results from backward elimination are shown.

a) What is the minimum AIC submodel Imin?

b) What is the submodel II?

c) Are there any other good candidate submodels? Explain briefly.

M1 M2 M3 M4

# of predictors 10 3 2 1
# with 0.01 ≤ p-value ≤ 0.05 2 2 1 1

# with p-value > 0.05 8 1 0 0
−2 log(L) 419.470 422.708 425.704 429.795
AIC(I) 439.470 428.708 429.704 431.795

p-value for change in PLR test 1.0 0.862 0.304 0.325

2.9. Data from Klein and Moeschberger (1997, p. 7) is on severely burned
patients. The above table gives summary statistics for 4 PH regression models
considered as final submodels after performing variable selection. Assume
that the PH assumptions hold for all 4 models. The full model was M1, and
M2 was the minimum AIC model found. Which submodel is the initial model
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to examine II? Explain briefly why each of the other 3 submodels should not
be used as the starting submodel.

2.10. Suppose that the survival times are plotted versus the scaled Schoen-
feld residuals for variable x1. Sketch the loess curve if the PH assumption is
reasonable.

SAS Problems

2.11. Data is from SAS Institute (1999) and is from a study on mul-
tiple myeloma (bone cancer) in which researchers treated 65 patients with
alkylating agents. The variable Time is the survival time in months from di-
agnosis. The predictor variables are LogBUN (blood urea nitrogen), HGB
(hemoglobin at diagnosis), Platelet (platelets at diagnosis: 0=abnormal,
1=normal), Age at diagnosis in years, LogWBC, Frac (fractures at diagno-
sis: 0=none, 1=present), LogPBM (log percentage of plasma cells in bone
marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at
diagnosis).

a) Obtain the SAS program for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt).

b) First backward elimination is considered. From the SAS output window,
copy and paste the output for the full model that uses all 9 variables into
Word. That is, scroll to the top of the output and copy and paste the following
output.

Step 0. The model contains the following variables:

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

.

.

.

SCalc 1 0.12595 0.10340 1.4837 0.2232 1.134

c) At step 7 of backward elimination, the final model considered uses
LogBUN and HGB. Copy and paste the output for this model (similar to the
output for b) into Word.

d) Backward elimination will consider 8 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc 310.588

LogBUN HGB Age LogWBC Frac LogPBM Protein SCalc 308.827

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 4 models considered by stepwise selection.

g) For all subsets selection, complete the following table.
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variables chisq

2 LogBUN HGB

9 full

h) Perform a change in PLR test if the full model uses 9 variables and the
reduced model uses LogBUN and HGB. (Use the output from b) and c).)

i) Are there any other good candidate models?
SAS forward selection, backward elimination, and stepwise se-

lection produces too much output. Only submit some of the produced
output. The AIC line in the With Covariates column is important.

2.12. Data is from Allison (1995, p. 270). The response variable week is
time in weeks until arrest after release from prison (right censored if week =
52). The 7 variables are Fin (1 for those who received financial aid, 0 else),
Age at time of release, Race (1 if black, 0 else), Wexp(1 if inmate had full
time work experience prior to conviction, 0 else), Mar (1 if married at time
of release, 0 else), Paro (1 if released on parole, 0 else), Prio (the number of
prior convictions).

a) Obtain the SAS program for this problem from (http://parker.ad.siu.
edu/Olive/survhw.txt). To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful. Warning: if
you do not have the recid.txt file on e drive, then you need to
change the infile command in the SAS code to the drive that you are using,
e.g. change infile “e:redic.txt”; to infile “f:recid.txt”; if you are using the f
drive.

b) Obtain the SAS program for this problem from (http://parker.ad.siu.
edu/Olive/survhw.txt). To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful. Warning: if
you do not have the recid.txt file on e drive, then you need to
change the infile command in the SAS code to the drive that you are using,
eg change infile “e:redic.txt”; to infile “f:recid.txt”; if you are using the f drive.

c) First backward elimination is considered. Scroll to the top of the copy
and paste the 1st 2 pages of output for the full model into Word.

d) Backward elimination will consider 5 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

fin age race wexp mar paro prio 1332.241

fin age race wexp mar prio 1330.429

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 5 models considered by stepwise selection.

g) For all subsets selection, complete the following table (get the 2 chisq
entries).
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variables chisq

3 fin age prio

7 full

2.13. This problem considers the ovarian data from Collett (2003b, p.
344-346).

a) Obtain the SAS program for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt). Print the output.

b) Find the ESP if age = 40 and treat 1 = 1. (Comment: treatment takes on
2 levels so only one indicator is needed. SAS output includes a 2nd indicator
treat 2 but its coefficient is β̂3 = 0 and hence can be ignored. In general if the
category takes on J levels, SAS will give nonzero output for the first J − 1
levels and a line of 0s for the Jth level. This means level J was omitted and
the line of 0s should be ignored.)

c) Give a 95% CI for β1 corresponding to age from output and the CI
using the formula.

d) Give a 95% CI for β2 corresponding to treat 1 from output and the CI
using the formula.

e) If the model statement in the SAS program is changed to
model survtime*status(0)=;
then the null model is fit and the SAS output says
Log Likelihood −29.76723997.

Test β = 0 with the LR test.
(Hint: The full model log likelihood log(L) = −20.56313339. Want −2 log(L)
for both the full and null models for the LR test.)

f) Suppose the reduced model does not include treat. Then SAS output
says Log Likelihood −21.7830. Test whether the reduced model is good.
(Hint: The log likelihood for the full model is log(L) = −20.56313339. Want
−2 log(L) for the full and reduced models for the change in LR test.)

2.14. Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) for this problem into SAS. The
myelomatosis data is from Allison (1995, p. 31, 158-161, 269). The 25 patients
have tumours in the bone marrow. The patients were randomly assigned 2
drug treatments treat. The variable renal is 1 if renal (kidney) functioning is
normal and 0 otherwise.

A stratified proportional hazards (SPH) model makes sense if the effect of
Renal varies with time since randomization (if there is a time–Renal inter-
action). In this situation the PH model would be inappropriate since time–
variable interactions are not allowed in the PH model. Notice that the results
in a) and b) below are different. The analysis does need to control for the
variable Renal to obtain good estimates of the treatment effect, but both the
SPH model in a) and the PH model in c) may be adequate
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a) The SAS program produces output for 3 models. The first model is a
SPH model with stratification on Renal. Perform a Wald test on β1 corre-
sponding to treat. (In the output, β̂1 = 1.463986.)

b) The 2nd model is a PH model with the predictor treat. Perform a Wald

test on β1 corresponding to treat. (In the output, β̂1 = 0.56103.)

c) The 3rd model is a PH model with the predictors treat and Renal.

Perform a Wald test on β1 corresponding to treat. (In the output, β̂1 =
1.22191.)

R Problems
2.15. This data is from a study on ovarian cancer. There were 26 patients.

The variable futime was the time until death or censoring in days, the variable
fustat was 1 for death and 0 for censored, age is age and ecog.ps is a measure
of status ranging from 0 (fully functional) to 4 (completely disabled). Level
4 subjects are usually considered too ill to enter a study such as this one.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Hit Enter and a plot
should appear. Copy and paste the R output into Word. The output is similar
to that of Problem 2.16 but also contains the variable ecog.ps.

Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.” The plot is the Cox regression
estimated survival function at the average age (56.17) and average ecog.ps
(1.462).

b) Now copy and paste the command for b) and place the plot in Word as
described in a). This plot is for the Cox regression estimated survival function
at the (age,ecog.ps) = (66,4). Is survival better for (56.17,1.462) or (66,4)?

c) Find the ESP and ĥi(t) if x = (56.17, 1.462).

d) Find the ESP and ĥi(t) if x = (66, 4).

e) Find a 95% CI for β1.

f) Find a 95% CI for β2.

g) Do a 4 step test for H0 : β1 = 0.

h) Do a 4 step test for H0 : β2 = 0.

i) Do a 4 step PLRT for H0 : β = 0.

coef exp(coef) se(coef) z p

age 0.162 1.18 0.0497

Likelihood ratio test=14.3 output for 2.16

2.16. Use the output above which is for the same data as in 2.15 but only
the predictor age is used.

a) Find a 95% CI for β.

b) Do a 4 step test for Ho : β = 0.
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c) Do a 4 step PLRT for Ho : β = 0 (for β = 0). (The PLRT is better
than the Wald test in b).)

2.17. The R lung cancer data has the time until death or censoring and
status = 0 for censored and 1 for uncensored. Then the covariates are age,
sex = 1 for M and 2 for F, ph.ecog = Ecog performance score 0-4, ph.karno
= a competitor to ph.ecog, pat.karno = patient’s assessment of their karno
score, meal.cal = calories consumed at meals excluding beverages and snacks
and wt.loss = weight loss in last 6 months. A stratified proportional hazards
model with stratification on sex will be used.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R.

Type zfull, then zred1 then zred2. Copy and paste the resulting output into
Word. The full model uses age, ph.ecog, ph.karno, pat.karno and wt.loss.

b) Test whether the reduced model that omits age can be used.

c) Test whether the reduced model that omits age and ph.karno can be
used.

2.18. Go to (http://parker.ad.siu.edu/Olive/survhw.txt) and copy and
paste the source command source(“http://parker.ad.siu.edu/Olive/
survpack.txt”) near the top of the file into R. This problem will use the pro-
gram bphgfit to check the PH model with the Kaplan Meier KM estimator.

a) Copy and paste commands from (http://parker.ad.siu.edu/Olive/
survhw.txt) for this problem into R. Copy and paste the output into Word.
(You may need to press Enter to get the plot.)

b) Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.”

c) The data is remission time in weeks for leukemia patients receiving
treatments A (x = 0) or B (x = 1). See Smith (2002, p. 174). The indicator
variable x (leuk[,3]) is the single covariate. Do a PLRT to test whether β = 0.
Is there a difference in the effectiveness of the 2 treatments?

d) The solid lines in the plot correspond to the estimated PH survival
function for each treatment group. The plotted points correspond to the
estimated Kaplan Meier estimator for each group. If the PH model is good,
then the plotted points should track the solid lines fairly well. Is the PH
model good? (When β = 0, the PH model for this data is h0(t) = h1(t),
but the PH model could fail, e.g. if the survival function for treatment A is
higher than that of treatment B until time tA and then the survival function
for treatment B is higher: the survival functions cross at exactly one point
tA > 0.)

2.19. An extension of the PH model is the stratified PH model where
hx,j = exp(βT

x)h0,j(t) for j = 1, ..., K where K ≥ 2 is the number of
strata (groups). Testing is done in exactly the same manner as for the PH
model, and the same β is used for each strata, only the baseline function
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changes. The regression in Problem 2.17 used gender, male and female, as
strata. If the model was good, then a PH model should hold for males and a
PH model should hold for females. For the lung cancer data, females had a
higher survival curve than males for x set to the average values.

A censored response plot (ESSP) is a plot of the ESP = β̂
T
x versus T ,

the survival times, where the symbol “0” means the time was censored and
“+” uncensored. If the PH model holds, the variability of the plotted points
should decrease rapidly as ESP increases.

a) Copy and paste commands from (http://parker.ad.siu.edu/Olive/
survhw.txt) for this problem into R. Click on the plot and hold down the Ctrl
and c buttons simultaneously. Then in the Word Edit menu, select “paste.”

b) Repeat a) except use the commands for 2.19b.
How does the variability in the plot for a narrow vertical strip at ESP =

0.5 compare to the variability for a narrow vertical strip at ESP = −1.5?

c) Copy and paste the commands for this part into R, and include the
resulting plot in Word.

d) Copy and paste the commands for this part into R, and include the
resulting plot in Word.

vlung2(2)

title("females")

e) The plots in c) and d) divide the ESP into 4 slices. The estimated PH
survival function is evaluated at the last point in the first 3 slices and at the
first point in the 4th slice. Pointwise confidence intervals are also included
(dashed upper and lower lines). The plotted circles correspond to the Kaplan
Meier estimator for the points in each slice. The 1st slice is in the NW corner,
the 2nd slice in the NE, the 3rd slice in the SW and the 4th slice in the SE.
Confidence bands that would include an entire reasonable survival function
would be much wider. Hence if the plotted circles are not very far outside
the pointwise CI bands, then the PH model is reasonable.

Is the PH model reasonable for males? Is the PH model reasonable for
females?

2.20. The lung cancer data is the same as that described in 2.17, but the
PH model is stratified on sex with variables ph.ecog, ph.karno, pat.karno and
wt.loss.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Click on the left window
and hit Enter. Then 4 plots should appear. Include the plot in Word.

b) The plots are of xj versus the martingale residuals when xj is omitted.
The loess curve should be roughly linear (or at least not taking on some
simple shape such as a quadratic) if xj is the correct functional form. If the
loess curve looks like t(xj) for some simple t (eg t(xj) = x2

j ), then t(xj) should
be used instead of xj . Are the loess curves in the 4 plots roughly linear?
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c) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Click on the left window
and hit Enter. Then 4 plots should appear. Include the plot in Word. Also
include the output from cox.zph(lungfit2) in Word.

d) The plots are of survival times vs scaled Schoenfeld residuals for each
of the 4 variables. The loess curves should be approximately horizontal (0
slope) lines if the PH assumption is reasonable. Alternatively, the pvalue for
Ho slope = 0 from cox.zph should be greater than 0.05 for each of the 4
variables. Is the PH assumption is reasonable? Explain briefly.

2.21. Copy and paste the R commands for this problem into R. This
problem shows how to do backward elimination for the PH model in R using
the Leemis (1995, p. 249-250) and Lawless (1982, p. 286) lung survival data.
List the AIC for the model chosen in each step. Some entries are below.

model AIC

perf, age, ttoent, size, type, ttype, trt 189.22 full model

perf, age, ttoent, size, ttype, trt 187.22

.

.

.

perf, ttype 181.52

perf 183.12

2.22. 16.52: Copy and paste the R command

source("http://parker.ad.siu.edu/Olive/survpack.txt")

from near the top of (http://parker.ad.siu.edu/Olive/survhw.txt) into R.
(Do not give any plots for this problem.)

a) In R, type “library(survival)” if necessary. Then type “phsim(k=1)”.
Hit the up arrow to repeat this command several times. Repeat for “ph-
sim(k=0.5)” and “” to make ET plots. The simulated data follows a PH
Weibull regression model with h0(t) = ktk−1. For k = 1 the data follows a
PH exponential regression model. Did the survival times decrease rapidly as
ESP increases?

b) The function phsim2 slices the ESP into 9 groups and computes the
Kaplan Meier estimator for each group. If the PH model is reasonable and n
is large enough, the 9 plots should have approximately the same shape. Type
“phsim2(n=100,k=1)”, then “phsim2(n=200,k=1)” and keep increasing n by
100 until the nine plots look similar (assuming survival decreases from 1 to 0,
and ignoring the labels on the horizontal axis and the + signs that correspond
to censored times). We will say that the plots look similar if n = 800. What
value of n did you get?

c) The function bphsim3 makes the slice survival plots when the single
covariate is an indicator for 2 groups. The PH assumption is reasonable if
the plotted circles corresponding to the Kaplan Meier estimator track the
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solid line corresponding to the PH estimated survival function. Type “bph-
sim3(n=10,k=1)” and repeat several times (use the up arrow). Do the plotted
circle track the solid line fairly well?

d) The function phsim5 is similar but the ESP takes on many values and is
divided into 9 groups. Type “phsim5(n=50,k=1)”, then “phsim5(n=60,k=1)”
and keep increasing n by 10 until the circles track the solid lines well. We will
say that the circles track the solid lines well if they are within or not very far
outside the pointwise CI bands. What value of n do you get?


