Chapter 5 Stuff for Students

$5.1 \mathrm{R}$

R is available from the **CRAN** website (https://cran.

r-project.org/). As of January 2020, the author's personal computer has Version 3.3.1 (June 21, 2016) of R. R is similar to *Splus*, but is free. R is very versatile since many people have contributed useful code, often as packages.

Downloading the book's files into R

Many of the homework problems use R functions contained in the book's website (http://parker.ad.siu.edu/Olive/survbk.htm) under the file name survpack.txt. The following two R commands can be copied and pasted into R from near the top of the file (http://parker.ad.siu.edu/Olive/survhw.txt).

Downloading the book's R functions survpack.txt and data files lin-moddata.txt into R: the commands

```
source("http://parker.ad.siu.edu/Olive/survpack.txt")
source("http://parker.ad.siu.edu/Olive/survdata.txt")
```

can be used to download the R functions and data sets into R. Type ls(). Nearly 10 R functions from linmodpack.txt should appear. In R, enter the command q(). A window asking "Save workspace image?" will appear. Click on No to remove the functions from the computer (clicking on Yes saves the functions in R, but the functions and data are easily obtained with the source commands).

Citing packages

We will use R packages often in this book. The following R command is useful for citing the Friedman et al. (2015) glmnet package. Another packages cited in this book is MASS from Venables and Ripley (2010).

citation("glmnet")

This section gives tips on using R, but is no replacement for books such as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website (www.google.com) to search for useful websites. For example enter the search words R documentation.

The command q() gets you out of R.

Least squares regression can be done with the function *lsfit* or *lm*.

The commands help(fn) and args(fn) give information about the function fn, e.g. if fn = lsfit.

Type the following commands.

```
x <- matrix(rnorm(300),nrow=100,ncol=3)
y <- x%*%1:3 + rnorm(100)
out<- lsfit(x,y)
out$coef
ls.print(out)</pre>
```

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second line makes y[i] = 0 + 1 * x[i, 1] + 2 * x[i, 2] + 3 * x[i, 2] + e where e is N(0,1). The term 1:3 creates the vector $(1, 2, 3)^T$ and the matrix multiplication operator is % *%. The function lsfit will automatically add the constant to the model. Typing "out" will give you a lot of irrelevant information, but *out\$coef* and *out\$resid* give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

```
fit <- y - out$resid
plot(fit,out$resid)
title("residual plot")</pre>
```

The first term in the plot command is always the horizontal axis while the second is on the vertical axis.

To put a graph in *Word*, hold down the Ctrl and c buttons simultaneously. Then select "Paste" from the *Word* menu, or hit Ctrl and v at the same time.

To enter data, open a data set in *Notepad* or *Word*. You need to know the number of rows and the number of columns. Assume that each case is entered in a row. For example, assuming that the file cyp.lsp has been saved on your flash drive from the webpage for this book, open cyp.lsp in *Word*. It has 76 rows and 8 columns. In R, write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)</pre>

A data frame is a two-dimensional array in which the values of different variables are stored in different named columns.

Then copy the data lines from *Word* and paste them in R. If a cursor does not appear, hit *enter*. The command dim(cyp) will show if you have entered the data correctly.

182

 $5.1 \ R$

Enter the following commands

```
cypy <- cyp[,2]
cypx<- cyp[,-c(1,2)]
lsfit(cypx,cypy)$coef
```

to produce the output below.

ХЗ	X2	X1	Intercept
0.23415181	0.17514405	0.94653718	205.40825985
	Х6	X5	X4
	-0.30944144	-0.05318671	0.75927197

Making functions in R is easy.

For example, type the following commands.

```
mysquare <- function(x){
# this function squares x
r <- x^2
r }</pre>
```

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.

fix(mysquare)

This will open an editor such as *Notepad* and allow you to make changes. (In *Splus*, the command Edit(mysquare) may also be used to modify the function mysquare.)

To save data or a function in R, when you exit, click on Yes when the "Save worksheet image?" window appears. When you reenter R, type ls(). This will show you what is saved. You should rarely need to save anything for this book. To remove unwanted items from the worksheet, e.g. x, type rm(x),

pairs(x) makes a scatterplot matrix of the columns of x, hist(y) makes a histogram of y,

max(y) maxes a mistogram of y,

boxplot(y) makes a boxplot of y,

stem(y) makes a stem and leaf plot of y,

scan(), source(), and sink() are useful on a Unix workstation.

To type a simple list, use y < -c(1,2,3.5).

The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the command plot(x,y). lines(x,y), lines(lowess(x,y,f=.2)) identify(x,y)
abline(out\$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 - 7, 8 * 4, 8/4, and

 2^{10} .

The *i*th element of vector y is y[i] while the ij element of matrix x is x[i, j]. The second row of x is x[2,] while the 4th column of x is x[, 4]. The transpose of x is t(x).

The command apply(x, 1, fn) will compute the row means if fn = mean. The command apply(x, 2, fn) will compute the column variances if fn = var. The commands *cbind* and *rbind* combine column vectors or row vectors with an existing matrix or vector of the appropriate dimension.

Getting information about a library in R

In R, a *library* is an add-on package of R code. The command *library()* lists all available libraries, and information about a specific library, such as leaps for variable selection, can be found, e.g., with the command *library(help=leaps)*.

Downloading a library into R

Many researchers have contributed a *library* or *package* of R code that can be downloaded for use. To see what is available, go to the website (http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to "Run as administrator" before you can install packages (right click on the R icon to find this). Then use the following command to install the *glmnet* package.

install.packages("glmnet")

Open R and type the following command.

library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R and want to download a library, you may need to update your version of R. The libraries for robust statistics may be useful for outlier detection, but the methods have not been shown to be consistent or high breakdown. All software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R had a random generator for the Poisson distribution that produced variates with too small of a mean θ for $\theta \geq 10$. Hence simulated 95% confidence intervals might contain $\theta \ 0\%$ of the time. This bug seems to have been fixed in Versions 2.4.1 and later. Also, some functions in *survpack* may no longer work in new versions of R.

184

5.2 SAS

Allison (1995, 2010) is very useful for using SAS for Survival Analysis. Also see SAS Institute (1999). SAS (www.sas.com) has a free SAS University Edition and free tutorials for SAS programming. You can request materials from the SAS institute as well. They make these available for free for professors to use in teaching. They have some nice examples and data sets. See SAS Global Academic Program (http://support.sas.com/learn/ap/prof/index.html) for information.

There are some nice examples in SAS Statistics 1, this is also now available free as an e-course now for anyone.

```
(https://support.sas.com/edu/elearning.html?ctry=us&productType=library)
```

SAS Training in the United States – e-Learning This includes a SAS programming course. Google SAS>Ad (www.sas.com) >How to buy>academic

http://www.sas.com/en_us/software/trials-demos.html

5.3 Hints for Selected Problems

Chapter 1

5.4 Tables

Tabled values are F(k,d, 0.95) where P(F < F(k, d, 0.95)) = 0.95. 00 stands for ∞ . Entries were produced with the qf(.95,k,d) command in *R*. The numerator degrees of freedom are *k* while the denominator degrees of freedom are *d*.

k	1	2	3	4	5	6	7	8	9	00
d										
1	161	200	216	225	230	234	237	239	241	254
2	18.5	19.0	19.2	19.3	19.3	19.3	19.4	19.4	19.4	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	1.84
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	1.71
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	1.62
00	3.84	3.00	2.61	2.37	2.21	2.10	2.01	1.94	1.88	1.00

5.4 Tables

Tabled values are $t_{\alpha,d}$ where $P(t < t_{\alpha,d}) = \alpha$ where t has a t distribution with d degrees of freedom. If d > 29 use the N(0,1) cutoffs $d = Z = \infty$.

	alpha								pvalue	
d	0.005	0.01	0.025	0.05	0.5	0.95	0.975	0.99	0.995	left tail
1	-63.66	-31.82	-12.71	-6.314	0	6.314	12.71	31.82	63.66	
2	-9.925	-6.965	-4.303	-2.920	0	2.920	4.303	6.965	9.925	
3	-5.841	-4.541	-3.182	-2.353	0	2.353	3.182	4.541	5.841	
4	-4.604	-3.747	-2.776	-2.132	0	2.132	2.776	3.747	4.604	
5	-4.032	-3.365	-2.571	-2.015	0	2.015	2.571	3.365	4.032	
6	-3.707	-3.143	-2.447	-1.943	0	1.943	2.447	3.143	3.707	
7	-3.499	-2.998	-2.365	-1.895	0	1.895	2.365	2.998	3.499	
8	-3.355	-2.896	-2.306	-1.860	0	1.860	2.306	2.896	3.355	
9	-3.250	-2.821	-2.262	-1.833	0	1.833	2.262	2.821	3.250	
10	-3.169	-2.764	-2.228	-1.812	0	1.812	2.228	2.764	3.169	
11	-3.106	-2.718	-2.201	-1.796	0	1.796	2.201	2.718	3.106	
12	-3.055	-2.681	-2.179	-1.782	0	1.782	2.179	2.681	3.055	
13	-3.012	-2.650	-2.160	-1.771	0	1.771	2.160	2.650	3.012	
14	-2.977	-2.624	-2.145	-1.761	0	1.761	2.145	2.624	2.977	
15	-2.947	-2.602	-2.131	-1.753	0	1.753	2.131	2.602	2.947	
16	-2.921	-2.583	-2.120	-1.746	0	1.746	2.120	2.583	2.921	
17	-2.898	-2.567	-2.110	-1.740	0	1.740	2.110	2.567	2.898	
18	-2.878	-2.552	-2.101	-1.734	0	1.734	2.101	2.552	2.878	
19	-2.861	-2.539	-2.093	-1.729	0	1.729	2.093	2.539	2.861	
20	-2.845	-2.528	-2.086	-1.725	0	1.725	2.086	2.528	2.845	
21	-2.831	-2.518	-2.080	-1.721	0	1.721	2.080	2.518	2.831	
22	-2.819	-2.508	-2.074	-1.717	0	1.717	2.074	2.508	2.819	
23	-2.807	-2.500	-2.069	-1.714	0	1.714	2.069	2.500	2.807	
24	-2.797	-2.492	-2.064	-1.711	0	1.711	2.064	2.492	2.797	
25	-2.787	-2.485	-2.060	-1.708	0	1.708	2.060	2.485	2.787	
26	-2.779	-2.479	-2.056	-1.706	0	1.706	2.056	2.479	2.779	
27	-2.771	-2.473	-2.052	-1.703	0	1.703	2.052	2.473	2.771	
28	-2.763	-2.467	-2.048	-1.701	0	1.701	2.048	2.467	2.763	
29	-2.756	-2.462	-2.045	-1.699	0	1.699	2.045	2.462	2.756	
Ζ	-2.576	-2.326	-1.960	-1.645	0	1.645	1.960	2.326	2.576	
CI						90%	95%		998	
	0.995	0.99	0.975	0.95	0.5	0.05	0.025	0.01	0.005	right tail
	0.01	0.02	0.05	0.10	T	0.10	0.05	0.02	0.01	two tail