*SAS and R code. copied from regsas Copy and paste code one problem part at a time. The easiest way to get survpack.txt and survdata.txt is to copy and paste the following two commands into R. source("http://parker.ad.siu.edu/Olive/survpack.txt") source("http://parker.ad.siu.edu/Olive/survdata.txt") If survpack.txt and survdata.txt are on J drive, get lregpack and lregdata with the following commands: source("J:/survpack.txt") source("J:/survdata.txt") #The following command is often used. library(survival) #The following command is sometimes used. library(glmnet) You will sometimes need packages and may need to install packages the first time you use a given computer. install.packages("glmnet") #These commands can fail if your computer has a firewall. #Then an administrator may be needed to install the packages. **SAS Problem 1.20; *Math 473 HW2.2, 16.36, from Allison (1995, p. 49-50); options ls = 70; data heart; input time status number; cards; 25 1 16 25 0 3 75 1 11 75 0 0 150 1 4 150 0 2 300 1 5 300 0 4 550 1 2 550 0 6 850 1 4 850 0 3 1150 1 1 1150 0 2 1450 1 1 1450 0 3 1700 1 0 1700 0 1 ; proc lifetest method = life intervals = 50 100 200 400 700 1000 1300 1600 plots=(s,h) graphics outsurv=a; time time*status(0); freq number; proc print data = a; run; **HW 3: SAS Problem 1.21; *Math 473 16.37, from Allison (1995, p. 31-34); options ls = 70; data myel; input time status; cards; 8 1 180 1 632 1 852 0 52 1 2240 0 220 1 63 1 195 1 76 1 70 1 8 1 13 1 1990 0 1976 0 18 1 700 1 1296 0 1460 0 210 1 63 1 1328 0 1296 1 365 0 23 1 ; proc lifetest method = km plots=(s,h) graphics outsurv=a; time time*status(0); proc print data = a; run; **SAS problem 1.22 *HW 16.38 data from Miller (1981, p. 49-50) and Smith (2002, p. 174); data Leukemia; input Weeks Status Group @@; datalines; 1 1 0 3 1 0 3 1 0 6 1 0 7 1 0 7 1 0 10 1 0 12 1 0 14 1 0 15 1 0 18 1 0 19 1 0 22 1 0 26 1 0 28 0 0 29 1 0 34 1 0 40 1 0 48 0 0 49 0 0 1 1 1 1 1 1 2 1 1 2 1 1 3 1 1 4 1 1 5 1 1 8 1 1 8 1 1 9 1 1 11 1 1 12 1 1 14 1 1 16 1 1 18 1 1 21 1 1 27 0 1 31 1 1 38 0 1 44 1 1 ; proc phreg data=Leukemia; model Weeks*Status(0)=Group; run; #HW 3 R problem 1.23 b #Miller p. 49 time until relapse under maintenance chemotherapy #AML leukemia data library(survival) time <- c(9,13,13,18,23,28,31,34,45,48,161) status <- c(1,1,0,1,1,0,1,1,0,1,0) z <- survfit(Surv(time,status)~1,conf.type="plain") summary(z) #plot KM estimator hat(S)_K(t) and the CIs for S(t) plot(z) #HW 3 R problem 1.24a #type library(survival) if necessary zy <- rexp(20) zz <- rexp(20,rate=.2) zt <- pmin(zy,zz) zdelta <- as.numeric(zz>zy) out <- survfit(Surv(zt, zdelta)~1, conf.type = "plain") st <- exp( - out$time) plot(out) points(out$time,st) #HW 3 R problem 1.24b #type library(survival) if necessary #repeat with n = 200 zy <- rexp(200) zz <- rexp(200,rate=.2) zt <- pmin(zy,zz) zdelta <- as.numeric(zz>zy) out <- survfit(Surv(zt, zdelta)~1, conf.type = "plain") st <- exp( - out$time) plot(out) points(out$time,st) #HW 3 R problem 1.25 #16.45 source("http://parker.ad.siu.edu/Olive/survpack.txt") library(survival) kmsim2(10) *SAS problem 2.11 HW6.1 *www.helsinki.fi/atk/sas/sashtml/stat/chap49/index.htm; *SAS/STAT User's Guide, Version 8, (1999) SAS Institute, Inc. * Cary, NC, 2608-2609.; data Myeloma; input Time VStatus LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc; label Time='Survival Time' VStatus='0=Alive 1=Dead'; datalines; 1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10 1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18 2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15 2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12 2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9 3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10 5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9 5.00 1 1.6812 6.5 1 74 3.7324 0 1.7324 5 9 6.00 1 1.3617 9.0 1 77 3.5441 0 1.4624 1 8 6.00 1 2.1139 10.2 0 70 3.5441 1 1.3617 1 8 6.00 1 1.1139 9.7 1 60 3.5185 1 1.3979 0 10 6.00 1 1.4150 10.4 1 67 3.9294 1 1.6902 0 8 7.00 1 1.9777 9.5 1 48 3.3617 1 1.5682 5 10 7.00 1 1.0414 5.1 0 61 3.7324 1 2.0000 1 10 7.00 1 1.1761 11.4 1 53 3.7243 1 1.5185 1 13 9.00 1 1.7243 8.2 1 55 3.7993 1 1.7404 0 12 11.00 1 1.1139 14.0 1 61 3.8808 1 1.2788 0 10 11.00 1 1.2304 12.0 1 43 3.7709 1 1.1761 1 9 11.00 1 1.3010 13.2 1 65 3.7993 1 1.8195 1 10 11.00 1 1.5682 7.5 1 70 3.8865 0 1.6721 0 12 11.00 1 1.0792 9.6 1 51 3.5051 1 1.9031 0 9 13.00 1 0.7782 5.5 0 60 3.5798 1 1.3979 2 10 14.00 1 1.3979 14.6 1 66 3.7243 1 1.2553 2 10 15.00 1 1.6021 10.6 1 70 3.6902 1 1.4314 0 11 16.00 1 1.3424 9.0 1 48 3.9345 1 2.0000 0 10 16.00 1 1.3222 8.8 1 62 3.6990 1 0.6990 17 10 17.00 1 1.2304 10.0 1 53 3.8808 1 1.4472 4 9 17.00 1 1.5911 11.2 1 68 3.4314 0 1.6128 1 10 18.00 1 1.4472 7.5 1 65 3.5682 0 0.9031 7 8 19.00 1 1.0792 14.4 1 51 3.9191 1 2.0000 6 15 19.00 1 1.2553 7.5 0 60 3.7924 1 1.9294 5 9 24.00 1 1.3010 14.6 1 56 4.0899 1 0.4771 0 9 25.00 1 1.0000 12.4 1 67 3.8195 1 1.6435 0 10 26.00 1 1.2304 11.2 1 49 3.6021 1 2.0000 27 11 32.00 1 1.3222 10.6 1 46 3.6990 1 1.6335 1 9 35.00 1 1.1139 7.0 0 48 3.6532 1 1.1761 4 10 37.00 1 1.6021 11.0 1 63 3.9542 0 1.2041 7 9 41.00 1 1.0000 10.2 1 69 3.4771 1 1.4771 6 10 41.00 1 1.1461 5.0 1 70 3.5185 1 1.3424 0 9 51.00 1 1.5682 7.7 0 74 3.4150 1 1.0414 4 13 52.00 1 1.0000 10.1 1 60 3.8573 1 1.6532 4 10 54.00 1 1.2553 9.0 1 49 3.7243 1 1.6990 2 10 58.00 1 1.2041 12.1 1 42 3.6990 1 1.5798 22 10 66.00 1 1.4472 6.6 1 59 3.7853 1 1.8195 0 9 67.00 1 1.3222 12.8 1 52 3.6435 1 1.0414 1 10 88.00 1 1.1761 10.6 1 47 3.5563 0 1.7559 21 9 89.00 1 1.3222 14.0 1 63 3.6532 1 1.6232 1 9 92.00 1 1.4314 11.0 1 58 4.0755 1 1.4150 4 11 4.00 0 1.9542 10.2 1 59 4.0453 0 0.7782 12 10 4.00 0 1.9243 10.0 1 49 3.9590 0 1.6232 0 13 7.00 0 1.1139 12.4 1 48 3.7993 1 1.8573 0 10 7.00 0 1.5315 10.2 1 81 3.5911 0 1.8808 0 11 8.00 0 1.0792 9.9 1 57 3.8325 1 1.6532 0 8 12.00 0 1.1461 11.6 1 46 3.6435 0 1.1461 0 7 11.00 0 1.6128 14.0 1 60 3.7324 1 1.8451 3 9 12.00 0 1.3979 8.8 1 66 3.8388 1 1.3617 0 9 13.00 0 1.6628 4.9 0 71 3.6435 0 1.7924 0 9 16.00 0 1.1461 13.0 1 55 3.8573 0 0.9031 0 9 19.00 0 1.3222 13.0 1 59 3.7709 1 2.0000 1 10 19.00 0 1.3222 10.8 1 69 3.8808 1 1.5185 0 10 28.00 0 1.2304 7.3 1 82 3.7482 1 1.6721 0 9 41.00 0 1.7559 12.8 1 72 3.7243 1 1.4472 1 9 53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11 57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11 77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12 ; proc phreg data=Myeloma; model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc / selection=backward slstay=0.15 details; run; proc phreg data=Myeloma; model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc / selection=forward slentry=0.25 details; run; proc phreg data=Myeloma; model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc / selection=stepwise slentry=0.25 slstay=0.15 details; run; proc phreg data=Myeloma; model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc / selection=score best=3; run; *SAS problem 2.12 HW6.2; * Data described in Chapter 3 of P. Allison; *need to save recid.txt on e: drive; data recid; infile "e:recid.txt"; input week arrest fin age race wexp mar paro prio educ emp1-emp52; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio; run; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio / selection=backward slstay=0.15 details; run; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio / selection=forward slentry=0.25 details; run; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio / selection=stepwise slentry=0.25 slstay=0.15 details; run; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio / selection=score best=3; run; *SAS problem 2.13 HW8.2 Collett (2003, p. 344-346); * use model survtime*status(0)=; * to get log L(none) data ovarian; input patient survtime status treat age; datalines; 1 156 1 1 66 2 1040 0 1 38 3 59 1 1 72 4 421 0 2 53 5 329 1 1 43 6 769 0 2 59 7 365 1 2 64 8 770 0 2 57 9 1227 0 2 59 10 268 1 1 74 11 475 1 2 59 12 1129 0 2 53 13 464 1 2 56 14 1206 0 2 44 15 638 1 1 56 16 563 1 2 55 17 1106 0 1 44 18 431 1 1 50 19 855 0 1 43 20 803 0 1 39 21 115 1 1 74 22 744 0 2 50 23 477 0 1 64 24 448 0 1 56 25 353 1 2 63 26 377 0 2 58 ; proc lifereg data = ovarian; class treat; model survtime*status(0)= age treat; run; #SAS problem 2.14 HW10.2 Allison (1995, p. 158); data myel; input id dur status treat renal; cards; 1 8 1 1 1 2 180 1 2 0 3 632 1 2 0 4 852 0 1 0 5 52 1 1 1 6 2240 0 2 0 7 220 1 1 0 8 63 1 1 1 9 195 1 2 0 10 76 1 2 0 11 70 1 2 0 12 8 1 1 0 13 13 1 2 1 14 1990 0 2 0 15 1976 0 1 0 16 18 1 2 1 17 700 1 2 0 18 1296 0 1 0 19 1460 0 1 0 20 210 1 2 0 21 63 1 1 1 22 1328 0 1 0 23 1296 1 2 0 24 365 0 1 0 25 23 1 2 1 ; proc phreg data=myel; model dur*status(0)=treat / ties=exact; strata renal; run; proc phreg data=myel; model dur*status(0)=treat / ties=exact; run; proc phreg data=myel; model dur*status(0)=treat renal / ties=exact; run; #R problem 2.15 a) HW4.1a library(survival) z <- coxph(Surv(futime,fustat)~age + ecog.ps, ovarian) z plot(survfit(z)) #4.1b 2.15 b) new<-data.frame(futime=365,fustat=1,age=66,resid.ds=2,rx=1,ecog.ps=4) plot(survfit(z,newdata=new)) *Smith p. 174; SAS problem HW 4.3; data Leukemia; input Weeks Status Group @@; datalines; 1 1 0 3 1 0 3 1 0 6 1 0 7 1 0 7 1 0 10 1 0 12 1 0 14 1 0 15 1 0 18 1 0 19 1 0 22 1 0 26 1 0 28 0 0 29 1 0 34 1 0 40 1 0 48 0 0 49 0 0 1 1 1 1 1 1 2 1 1 2 1 1 3 1 1 4 1 1 5 1 1 8 1 1 8 1 1 9 1 1 11 1 1 12 1 1 14 1 1 16 1 1 18 1 1 21 1 1 27 0 1 31 1 1 38 0 1 44 1 1 ; proc phreg data=Leukemia; model Weeks*Status(0)=Group; run; #R problem 2.17 HW5.2 library(survival) zfull <- coxph(Surv(time,status)~strata(sex) + age +ph.ecog + ph.karno+pat.karno+wt.loss, data = lung,na.action=na.omit) zred1 <- coxph(Surv(time,status)~strata(sex) + ph.ecog + ph.karno+pat.karno+wt.loss, data = lung,na.action=na.omit) zred2 <- coxph(formula = Surv(time, status) ~ strata(sex) + ph.ecog + +pat.karno + wt.loss, data = lung, na.action = na.omit) zfull zred1 zred2 #R problem 2.18 HW 5.3 need to download bphgfit function, Smith (2002, p. 174) Lawless (1982) #leukemia data lweeks <- c(1, 3, 3, 6, 7, 7, 10, 12, 14, 15, 18, 19, 22, 26, 28, 29, 34, 40, 48, 49, 1, 1, 2, 2, 3, 4, 5, 8, 8, 9, 11, 12, 14, 16, 18, 21, 27, 31, 38, 44 ) lstatus <- 1 + 0*1:40 lstatus[c(15,19,20,37,39)] <- 0 lg <- 0*1:20 lg2 <- lg + 1 lgroup <- c(lg,lg2) leuk <- cbind(lweeks,lstatus,lgroup) rm(lweeks,lstatus,lg,lg2,lgroup) zout <- coxph(Surv(leuk[,1], leuk[,2]) ~ leuk[,3]) zout source("http://parker.ad.siu.edu/Olive/survpack.txt") bphgfit(leuk[,1],leuk[,2],leuk[,3]) #R problem 2.19 a) HW 5.4 a) status = 1 + usual status variable flung<-lung[lung$sex==1,] nflung<-na.omit(flung[,c("time","status","ph.ecog","ph.karno", "pat.karno","wt.loss")]) out <- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss,data = nflung) x <- as.matrix(nflung[,c(3,4,5,6)]) ESP <- x %*% out$coef Time <- as.vector(nflung[,1]) status <- as.vector(nflung[,2]) plot(ESP,Time,pch = ' ') points(ESP[status == 2], Time[status == 2], pch = 3) points(ESP[status == 1], Time[status == 1], pch = 1) title("ESSP for males") #2.19 b) flung<-lung[lung$sex==2,] nflung<-na.omit(flung[,c("time","status","ph.ecog","ph.karno", "pat.karno","wt.loss")]) out <- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss,data = nflung) x <- as.matrix(nflung[,c(3,4,5,6)]) ESP <- x %*% out$coef time <- as.vector(nflung[,1]) status <- as.vector(nflung[,2]) plot(ESP,time,pch = ' ') points(ESP[status == 2], time[status == 2], pch = 3) points(ESP[status == 1], time[status == 1], pch = 1) title("ESSP for Females") #2.19 c) vlung2(1) title("males") #2.19 d) vlung2(2) title("females") #R problem 2.20a) HW7.1a) Splus p. 269-275 library(survival) nlung<-na.omit(lung[,c("time","status","sex","ph.ecog","ph.karno", "pat.karno","wt.loss")]) par(mfrow=c(2,2)) attach(nlung) fit1 <- coxph(Surv(time, status) ~ strata(sex)+ ph.karno + pat.karno + wt.loss,data = nlung) scatter.smooth(ph.ecog,resid(fit1)) fit2 <- coxph(Surv(time, status) ~ strata(sex)+ ph.ecog + pat.karno + wt.loss,data = nlung) scatter.smooth(ph.karno,resid(fit2)) fit3 <- coxph(Surv(time, status) ~ strata(sex)+ ph.ecog + ph.karno + wt.loss,data = nlung) scatter.smooth(pat.karno,resid(fit3)) fit4 <- coxph(Surv(time, status) ~ strata(sex)+ ph.ecog + ph.karno + pat.karno,data = nlung) scatter.smooth(wt.loss,resid(fit4)) # 2.20c) HW7.1 c) lung.fit2 <- coxph(Surv(time, status) ~ strata(sex)+ ph.ecog + ph.karno + pat.karno + wt.loss,data = nlung) plot(cox.zph(lung.fit2)) cox.zph(lung.fit2) par(mfrow=c(1,1)) #R problem 2.21a HW7 2a) source("http://lagrange.math.siu.edu/Olive/survdata.txt") library(MASS) library(survival) alung<-as.data.frame(alung) full <- coxph(Surv(alung[,1],alung[,2])~perf+age+ttoent+size+type+ttype+trt, data=alung) stepAIC(full) #default is backward #R problem 2.21b HW7 2b) fit2 <- coxph(Surv(alung[,1],alung[,2])~ 1,data=alung) #null model outf<-stepAIC(fit2,direction="forward",scope=list(upper=full,lower=fit2)) #R problem 2.22 HW7 3) source("http://parker.ad.siu.edu/Olive/survpack.txt") library(survival) par(mfrow=c(1,1)) #a) phsim(gam=1) phsim(gam=0.5) phsim(gam=5) #b) phsim2(n=100,gam=1) phsim2(n=200,gam=1) #c) bphsim3(n=10,gam=1) #d) phsim5(n=50,gam=1) phsim5(n=60,gam=1) #HW8d3 R problem 3.8 ovarian data Collett (2003, p. 335-6) library(survival) time <- c(156, 1040, 59, 421, 329, 769, 365, 770, 1227, 268, 475, 1129, 464, 1206, 638, 563, 1106, 431, 855, 803, 115, 744, 477, 448, 353, 377) status <- c(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0) treat <- c(1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0) age <- c(66, 38, 72, 53, 43, 59, 64, 57, 59, 74, 59, 53, 56, 44, 56, 55, 44, 50, 43, 39, 74, 50, 64, 56, 63, 58) ovar <- cbind(time,status,treat,age) rm(time,status,treat,age) z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="weibull") summary(z) zfit <- 11.548 -.561*ovar[,3] -.079*ovar[,4] plot(zfit,log(ovar[,1]),pch = ' ') points(zfit[ovar[,2]==0],log(ovar[ovar[,2]==0,1]),pch=1) points(zfit[ovar[,2]==1],log(ovar[ovar[,2]==1,1]),pch=3) abline(0,1) abline( lsfit( zfit[ovar[,2]==1],log(ovar[ovar[,2]==1,1]) )$coef) #HW8d4 R problem 3.9 wregsim(gam=1) wregsim(gam=5) wregsim(gam=0.5) #3.10a HW9d1 HW 16.55a ovarian data Collett (2003, p. 335-6) library(survival) time <- c(156, 1040, 59, 421, 329, 769, 365, 770, 1227, 268, 475, 1129, 464, 1206, 638, 563, 1106, 431, 855, 803, 115, 744, 477, 448, 353, 377) status <- c(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0) treat <- c(1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0) age <- c(66, 38, 72, 53, 43, 59, 64, 57, 59, 74, 59, 53, 56, 44, 56, 55, 44, 50, 43, 39, 74, 50, 64, 56, 63, 58) ovar <- cbind(time,status,treat,age) rm(time,status,treat,age) z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="weibull") zx <- cbind(ovar[,3],ovar[,4]) zc <- coxph(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4]) ESPC <- zx%*%zc$coef ESPW <- zx%*%z$coef[-1] sighat<-z$scale plot( - ESPW/sighat, ESPC) abline(0,1) title("a) Weibull") cor( - ESPW/sighat, ESPC) #3.10b z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="exponential") ESPE <- zx%*%z$coef[-1] shat<-z$scale plot( - ESPE, ESPC) abline(0,1) title("b) Exponential") #3.11 HW9 2) wregsim2(n=10, gam=1) wregsim2(n =10, gam=5) wregsim2(n=10, gam=0.5) #3.14 HW10 1) 16.59 lung data, Splus p. 269-275 library(survival) sfit <- coxph(Surv(time, status)~ strata(sex)+ ph.ecog + pat.karno + wt.loss,data = lung,na.action=na.omit) summary(sfit) plot(survfit(sfit), lty = 2:3) title("F Survival is Top Curve, Ave. Covariates") * HW 3.15 16.41 Collett (2003, p. 344-346); * use model survtime*status(0)=; * to get log L(none) data ovarian; input patient survtime status treat age; datalines; 1 156 1 1 66 2 1040 0 1 38 3 59 1 1 72 4 421 0 2 53 5 329 1 1 43 6 769 0 2 59 7 365 1 2 64 8 770 0 2 57 9 1227 0 2 59 10 268 1 1 74 11 475 1 2 59 12 1129 0 2 53 13 464 1 2 56 14 1206 0 2 44 15 638 1 1 56 16 563 1 2 55 17 1106 0 1 44 18 431 1 1 50 19 855 0 1 43 20 803 0 1 39 21 115 1 1 74 22 744 0 2 50 23 477 0 1 64 24 448 0 1 56 25 353 1 2 63 26 377 0 2 58 ; proc lifereg data = ovarian; class treat; model survtime*status(0)= age treat; run; #HW8.3 ovarian data Collett (2003, p. 335-6) library(survival) time <- c(156, 1040, 59, 421, 329, 769, 365, 770, 1227, 268, 475, 1129, 464, 1206, 638, 563, 1106, 431, 855, 803, 115, 744, 477, 448, 353, 377) status <- c(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0) treat <- c(1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0) age <- c(66, 38, 72, 53, 43, 59, 64, 57, 59, 74, 59, 53, 56, 44, 56, 55, 44, 50, 43, 39, 74, 50, 64, 56, 63, 58) ovar <- cbind(time,status,treat,age) rm(time,status,treat,age) z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="weibull") summary(z) zfit <- 11.548 -.561*ovar[,3] -.079*ovar[,4] plot(zfit,log(ovar[,1]),pch = ' ') points(zfit[ovar[,2]==0],log(ovar[ovar[,2]==0,1]),pch=1) points(zfit[ovar[,2]==1],log(ovar[ovar[,2]==1,1]),pch=3) abline(0,1) abline( lsfit( zfit[ovar[,2]==1],log(ovar[ovar[,2]==1,1]) )$coef) # HW9.1 problem 3.10 ovarian data Collett (2003, p. 335-6) library(survival) time <- c(156, 1040, 59, 421, 329, 769, 365, 770, 1227, 268, 475, 1129, 464, 1206, 638, 563, 1106, 431, 855, 803, 115, 744, 477, 448, 353, 377) status <- c(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0) treat <- c(1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0) age <- c(66, 38, 72, 53, 43, 59, 64, 57, 59, 74, 59, 53, 56, 44, 56, 55, 44, 50, 43, 39, 74, 50, 64, 56, 63, 58) ovar <- cbind(time,status,treat,age) rm(time,status,treat,age) z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="weibull") zx <- cbind(ovar[,3],ovar[,4]) zc <- coxph(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4]) ESPC <- zx%*%zc$coef ESPW <- zx%*%z$coef[-1] sighat<-z$scale plot( - ESPW/sighat, ESPC) abline(0,1) title("a) Weibull") cor( - ESPW/sighat, ESPC) #HW 9.1b z <- survreg(Surv(ovar[,1],ovar[,2])~ovar[,3]+ovar[,4],dist="exponential") ESPE <- zx%*%z$coef[-1] shat<-z$scale plot( - ESPE, ESPC) abline(0,1) title("b) Exponential") #HW 9.2 problem 3.11 #HW 9.2 3.11 a) wregsim2(n=10, gam=1) #use uparrow 4 times #HW 9.2 3.11 b) wregsim2(n =10, gam=5) #use uparrow 4 times #HW 9.2 3.11 c) wregsim2(n=10, gam=0.5) #HW9.3 problem 3.12a) wregsim3(n=20, gam=1) wregsim3(n=100, gam=1) wregsim3(n=200, gam=1) wregsim3(n=20, gam=5) wregsim3(n=100, gam=5) wregsim3(n=200, gam=5) wregsim3(n=20, gam=0.5) wregsim3(n=100, gam=0.5) wregsim3(n=200, gam=0.5) #HW9.4 problem 3.13) wphsim(n=999) #HW10.1 lung data, Splus p. 269-275 library(survival) sfit <- coxph(Surv(time, status)~ strata(sex)+ ph.ecog + pat.karno + wt.loss,data = lung,na.action=na.omit) summary(sfit) plot(survfit(sfit), lty = 2:3) title("F Survival is Top Curve, Ave. Covariates") *HW11.1 See Allison (1995, p. 156); data recid; infile "e:recid.txt"; input week arrest fin age race wexp mar paro prio educ emp1-emp52; proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio finlt agelt racelt wexplt marlt parolt priolt / ties =efron; finlt = fin*log(week); agelt = age*log(week); racelt = race*log(week); wexplt = wexp*log(week); marlt = mar*log(week); parolt = paro*log(week); priolt = prio*log(week); proc phreg data = recid; model week*arrest(0)=fin age race wexp mar paro prio / ties =efron; run; *HW11.2 Allison (1995, ch 5); * add *options yearcutoff=1900; * to get output that agrees with Allison, its a Y2K problem * with newer versions of SAS options yearcutoff=1900; data stan; input dob mmddyy9. doa mmddyy9. dot mmddyy9. dls mmddyy9. id age dead dur surg trans wtime m1 m2 m3 reject; surv1=dls-doa; surv2=dls-dot; wait=dot-doa; agetrans=(dot-dob)/365.25; ageaccpt=(doa-dob)/365.25; if wait = . then wait = 10000; agels=(dls-dob)/365.25; cards; 01/10/37 11/15/67 . 01/03/68 1 30 1 50 0 0 . . . . . 03/02/16 01/02/68 . 01/07/68 2 51 1 6 0 0 . . . . . 09/19/13 01/06/68 01/06/68 01/21/68 3 54 1 16 0 1 1 2 0 1.110 0 12/23/27 03/28/68 05/02/68 05/05/68 4 40 1 39 0 1 36 3 0 1.660 0 07/28/47 05/10/68 . 05/27/68 5 20 1 18 0 0 . . . . . 11/08/13 06/13/68 . 06/15/68 6 54 1 3 0 0 . . . . . 08/29/17 07/12/68 08/31/68 05/17/70 7 50 1 675 0 1 51 4 0 1.320 1 03/27/23 08/01/68 . 09/09/68 8 45 1 40 0 0 . . . . . 06/11/21 08/09/68 . 11/01/68 9 47 1 85 0 0 . . . . . 02/09/26 08/11/68 08/22/68 10/07/68 10 42 1 58 0 1 12 2 0 0.610 1 08/22/20 08/15/68 09/09/68 01/14/69 11 47 1 153 0 1 26 1 0 0.360 0 07/09/15 09/17/68 . 09/24/68 12 53 1 8 0 0 . . . . . 02/22/14 09/19/68 10/05/68 12/08/68 13 54 1 81 0 1 17 3 0 1.890 1 09/16/14 09/20/68 10/26/68 07/07/72 14 53 1 1386 0 1 37 1 0 0.870 1 12/04/14 09/27/68 . 09/27/68 15 53 1 1 1 0 . . . . . 05/16/19 10/26/68 11/22/68 08/29/69 16 49 1 308 0 1 28 2 0 1.120 1 06/29/48 10/28/68 . 12/02/68 17 20 1 36 0 0 . . . . . 12/27/11 11/01/68 11/20/68 12/13/68 18 56 1 43 0 1 20 3 0 2.050 0 10/04/09 11/18/68 . 12/24/68 19 59 1 37 0 0 . . . . . 10/19/13 01/29/69 02/15/69 02/25/69 20 55 1 28 0 1 18 3 1 2.760 1 09/29/25 02/01/69 02/08/69 11/29/71 21 43 1 1032 0 1 8 2 0 1.130 1 06/05/26 03/18/69 03/29/69 05/07/69 22 42 1 51 0 1 12 3 0 1.380 1 12/02/10 04/11/69 04/13/69 04/13/71 23 58 1 733 0 1 3 3 0 0.960 1 07/07/17 04/25/69 07/16/69 11/29/69 24 51 1 219 0 1 83 3 1 1.620 1 02/06/36 04/28/69 05/22/69 04/01/74 25 33 0 1799 0 1 25 2 0 1.060 0 10/18/38 05/01/69 . 03/01/73 26 30 0 1400 0 0 . . . . . 07/21/60 05/04/69 . 01/21/70 27 8 1 263 0 0 . . . . . 05/30/15 06/07/69 08/16/69 08/17/69 28 53 1 72 0 1 71 2 0 0.470 0 02/06/19 07/14/69 . 08/17/69 29 50 1 35 0 0 . . . . . 09/20/24 08/19/69 09/03/69 12/18/71 30 44 1 852 0 1 16 4 0 1.580 1 10/04/14 08/23/69 . 09/07/69 31 54 1 16 0 0 . . . . . 04/02/05 08/29/69 09/14/69 11/13/69 32 64 1 77 0 1 17 4 0 0.690 1 01/01/21 11/27/69 01/16/70 04/01/74 33 48 0 1586 0 1 51 3 0 0.910 0 05/24/29 12/12/69 01/03/70 04/01/74 34 40 0 1571 0 1 23 2 0 0.380 0 08/04/26 01/21/70 . 02/01/70 35 43 1 12 0 0 . . . . . 05/01/21 04/04/70 05/19/70 07/12/70 36 48 1 100 0 1 46 2 0 2.090 1 10/24/08 04/25/70 05/13/70 06/29/70 37 61 1 66 0 1 19 3 1 0.870 1 11/14/28 05/05/70 05/08/70 05/09/70 38 41 1 5 0 1 5 3 0 0.870 0 11/12/19 05/20/70 05/21/70 07/11/70 39 50 1 53 0 1 2 . . . . 11/30/21 05/25/70 07/04/70 04/01/74 40 48 0 1407 1 1 41 4 0 0.750 0 04/30/25 08/19/70 10/15/70 04/01/74 41 45 0 1321 1 1 58 2 0 0.980 0 03/13/34 08/21/70 . 08/23/70 42 36 1 3 0 0 . . . . . 06/01/27 10/22/70 . 10/23/70 43 43 1 2 1 0 . . . . . 05/02/28 11/30/70 . 01/08/71 44 42 1 40 1 0 . . . . . 10/30/34 01/05/71 01/05/71 02/18/71 45 36 1 45 0 1 1 1 0 0.000 0 06/01/22 01/10/71 01/11/71 10/01/73 46 48 1 995 1 1 2 2 0 0.810 1 12/28/23 02/02/71 02/22/71 04/14/71 47 47 1 72 0 1 21 3 0 1.380 1 01/23/15 02/05/71 . 02/13/71 48 56 1 9 0 0 . . . . . 06/21/34 02/15/71 03/22/71 04/01/74 49 36 0 1141 1 1 36 4 0 1.350 0 03/28/25 02/15/71 05/08/71 10/21/73 50 45 1 979 1 1 83 . . . . 06/29/22 03/24/71 04/24/71 01/02/72 51 48 1 285 0 1 32 4 1 1.080 1 01/24/30 04/25/71 . 08/04/71 52 41 1 102 0 0 . . . . . 02/27/24 07/02/71 08/11/71 01/05/72 53 47 1 188 0 1 41 . . . . 09/16/23 07/02/71 . 07/04/71 54 47 1 3 0 0 . . . . . 02/24/19 08/09/71 08/18/71 10/08/71 55 52 1 61 0 1 10 2 0 1.510 1 12/05/32 09/03/71 11/08/71 04/01/74 56 38 0 941 0 1 67 4 0 0.980 0 06/08/30 09/13/71 . 02/08/72 57 41 1 149 0 0 . . . . . 09/17/23 09/23/71 10/13/71 08/30/72 58 47 1 342 1 1 21 2 1 1.820 1 05/12/30 09/29/71 12/15/71 04/01/74 59 41 0 915 1 1 78 2 0 0.190 0 10/29/22 11/18/71 11/20/71 01/24/72 60 49 1 68 0 1 3 3 0 0.660 1 05/12/19 12/04/71 . 12/05/71 61 52 1 2 0 0 . . . . . 08/01/32 12/09/71 . 02/15/72 62 39 1 69 0 0 . . . . . 04/15/39 12/12/71 01/07/72 04/01/74 63 32 0 841 0 1 27 3 1 1.930 0 04/09/23 02/01/72 03/04/72 09/06/73 64 48 1 583 1 1 32 1 0 0.120 0 11/19/20 03/06/72 03/17/72 05/22/72 65 51 1 78 0 1 12 2 0 1.120 1 01/02/19 03/20/72 . 04/20/72 66 53 1 32 0 0 . . . . . 09/03/52 03/23/72 05/18/72 01/01/73 67 19 1 285 0 1 57 3 0 1.020 0 01/10/27 04/07/72 04/09/72 06/13/72 68 45 1 68 0 1 3 3 1 1.680 1 06/05/24 06/01/72 06/10/72 04/01/74 69 47 0 670 0 1 10 2 0 1.200 0 06/17/19 06/17/72 06/21/72 07/16/72 70 52 1 30 0 1 5 3 1 1.680 1 02/22/25 07/21/72 08/20/72 04/01/74 71 47 0 620 0 1 31 3 0 0.970 0 11/22/45 08/14/72 08/17/72 04/01/74 72 26 0 596 0 1 4 3 1 1.460 0 05/13/16 09/11/72 10/07/72 12/09/72 73 56 1 90 0 1 27 3 1 2.160 1 07/20/43 09/18/72 09/22/72 10/04/72 74 29 1 17 0 1 5 1 0 0.610 0 07/25/20 09/29/72 . 09/30/72 75 52 1 2 0 0 . . . . . 09/03/20 10/04/72 11/18/72 04/01/74 76 52 0 545 1 1 46 3 1 1.700 0 08/27/31 10/06/72 . 10/26/72 77 41 1 21 0 0 . . . . . 02/20/24 11/03/72 05/31/73 04/01/74 78 48 0 515 0 1 210 3 0 0.810 0 02/18/19 11/30/72 02/04/73 03/05/73 79 53 1 96 0 1 67 2 0 1.080 1 06/27/26 12/06/72 12/31/72 04/01/74 80 46 0 482 1 1 26 3 0 1.410 0 02/21/20 01/12/73 01/17/73 04/01/74 81 52 0 445 0 1 6 4 1 1.940 0 08/19/42 11/01/71 . 01/01/73 82 29 0 427 0 0 . . . . . 10/04/19 01/24/73 02/24/73 04/13/73 83 53 1 80 0 1 32 4 0 3.050 0 05/13/30 01/30/73 03/07/73 12/29/73 84 42 1 334 0 1 37 4 0 0.600 1 02/13/25 02/06/73 . 02/10/73 85 47 1 5 0 0 . . . . . 03/30/24 03/01/73 03/08/73 04/01/74 86 48 0 397 0 1 8 3 1 1.440 0 12/19/26 03/21/73 05/19/73 07/08/73 87 46 1 110 0 1 60 2 0 2.250 1 11/16/18 03/28/73 04/27/73 04/01/74 88 54 0 370 0 1 31 3 0 0.680 0 03/19/22 04/05/73 08/21/73 10/28/73 89 51 1 207 0 1 139 4 1 1.330 1 03/25/21 04/06/73 09/12/73 10/08/73 90 52 1 186 1 1 160 3 1 0.820 0 09/08/25 04/13/73 . 03/18/74 91 47 1 340 0 0 . . . . . 05/03/28 04/27/73 03/02/74 04/01/74 92 44 0 340 0 1 310 1 0 0.160 0 10/10/25 07/11/73 08/07/73 04/01/74 93 47 0 265 0 1 28 2 0 0.330 0 11/11/29 09/14/73 09/17/73 02/25/74 94 43 1 165 1 1 4 3 0 1.200 1 06/11/33 09/22/73 09/23/73 10/07/73 95 40 1 16 0 1 2 . . . . 02/09/47 10/04/73 10/16/73 04/01/74 96 26 0 180 0 1 13 2 0 0.460 0 04/11/50 11/22/73 12/12/73 04/01/74 97 23 0 131 0 1 21 3 1 1.780 0 04/28/45 12/14/73 03/19/74 04/01/74 98 28 0 109 0 1 96 4 1 0.770 0 02/24/24 12/25/73 . 01/14/74 99 49 1 21 0 0 . . . . . 01/31/39 02/22/74 03/31/74 04/01/74 100 35 0 39 1 1 38 3 0 0.670 0 08/25/24 03/02/74 . 04/01/74 101 49 0 31 0 0 . . . . . 10/30/33 03/22/74 . 04/01/74 102 40 0 11 0 0 . . . . . 05/20/28 09/13/67 . 09/18/67 103 39 1 6 0 0 . . . . . ; data stan; infile 'c: stan.dat'; input dob mmddyy9. doa mmddyy9. dot mmddyy9. dls mmddyy9. dead surg m1 m2 m3; surv1=dls-doa; surv2=dls-dot; ageaccpt=(doa-dob)/365.25; agetrans=(dot-dob)/365.25; wait=dot-doa; if dot=. then trans=0; else trans=1; run; proc phreg data=stan; model surv1*dead(0)=plant surg ageaccpt / ties=exact; if wait>surv1 or wait=. then plant=0; else plant=1; run; #HW11.3, R stanford heart data, generalzed Cox regression library(survival) options(contrast=c("contr.treatment","contr.poly")) z <- coxph(Surv(start,stop,event)~transplant + surgery + age,data=heart) z #Problem 4.8 predsim()