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ARMA model selection with criterion such as AIC and BIC tends not to select a consistent

ARMA model with high probability. Hence data splitting is not reliable. One technique was fairly
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CHAPTER 1

INTRODUCTION

A time series Y1, ...,Yn consists of observations Yt collected sequentially at times 1, ..., n. We

will use the R software notation and write a moving average parameter θ with a positive sign. Many

references and software will write the model with a negative sign for the moving average parame-

ters. For the time series models described below, we will assume that the errors et are independent

and identically distributed (iid) with zero mean and variance σ2. The backshift operator or lag

operator B satisfies BWt = Wt−1 and B jWt = Wt− j.

A moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · · + θqet−q + et = τ + (1 + θ1B + · · · + θqBq)et = τ + θ(B)et

where θ(B) = 1 + θ1B+ θ2B2 + · · · + θqBq and θq , 0. Note that E(Yt) = µ = τ = θ0 for t ≥ 1. Since

the et are iid, the Yt are identically distributed, and Y j,Y j+q+1,Y j+2(q+1), ... are iid.

An autoregressive AR(p) times series is

Yt = τ + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p + et or (1 − ϕ1B − · · · − ϕpBp)Yt = τ + et,

or ϕ(B)Yt = τ + et where ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp and ϕp , 0. If E(Yt) = µ for t ≥ 1,

write Yt − µ =
∑p

j=1 ϕ j(Yt− j − µ) + et to get τ = ϕ0 = µ(1 −
∑p

j=1 ϕ j).

An autoregressive moving average ARMA(p, q) times series is

Yt = τ + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p + θ1et−1 + θ2et−2 + · · · + θqet−q + et,

or ϕ(B)Yt = τ + θ(B)et where θq , 0 and ϕp , 0. The ARMA(0,q) model is the MA(q) model, and

the ARMA(p,0) model is the AR(p) model. Again τ = µ(1 −
∑p

j=1 ϕ j) if p ≥ 1, and τ = µ if p = 0.

The ARMA(0,0) model is Yt = µ + et, often called the location model.
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The results in this dessertation also apply to a time series Xt that follows an ARIMA(p, d, q)

model with known d if the differenced time series model Yt follows an ARMA(p, q) model. To

describe ARIMA models, let the difference operator ▽ = (1 − B). Let Yt = ▽
dXt = (1 − B)dXt be

the differenced time series. The first difference is Yt = ▽Xt = (1 − B)Xt = Xt − Xt−1. The second

difference is Yt = ▽
2Xt = ▽(▽Xt) = Xt − 2Xt−1 + Xt−2. If Xt follows an ARIMA(p, d, q) model,

want Yt to follow a weakly stationary, causal, and invertible ARMA(p, q) =ARIMA(p, 0, q) model.

Typically d = 0 or 1, but occasionally d = 2. Usually τ = 0 if d > 1. The ARIMA(p, d = 1, q)

model is Xt = τ+(1+ϕ1)Xt−1+(ϕ2−ϕ1)Xt−2+· · ·+(ϕp−ϕp−1)Xt−p−ϕpXt−p−1+θ1et−1+· · ·+θqet−q+et.

The ARIMA(p, d, q) model can be written compactly as ϕ(B) ▽d Xt = τ + θ(B)et. See Box and

Jenkins (1976) for more on these models.

A stochastic process {Yt, t ∈ T} is a collection of random variables where often T = Z, the set

of integers. The observed time series is {Yt} = Y1, ...,Yn. The mean function µt = E(Yt) for t ∈ Z.

The autocovariance function γt,s = Cov(Yt,Ys) = E[(Yt −µt)(Ys−µs)] = E(YtYs)−µtµs for t, s ∈ Z.

The autocorrelation function ρt,s = Corr(Yt,Ys) =
Cov(Yt,Ys)

√
Var(Tt)Var(Ys)

=
γt,s
√
γt,tγs,s

for t, s ∈ Z.

A process {Yt} is weakly stationary if a) E(Yt) = µt ≡ µ is constant over time, and b) γt,t−k =

γ0,k for all times t and lags k. Hence the covariance function γt,s depends only on the absolute

difference |t − s|. For a weakly stationary process {Yt}, write the autocovariance function as γk =

Cov(Yt,Yt−k) and the autocorrelation function as ρk = corr(Yt,Yt−k) = γk/γ0. Note that the mean

function E(Yt) = µ and the variance function V(Yt) = Var(Yt) = γ0 are constant and do not depend

on t. The autocovariance and autocorrelation functions γk and ρk depend on the lag k but not on

the time t.

We usually want the ARMA(p, q) model to be weakly stationary, causal, and invertible. Let

Zt = Yt − µ where µ = E(Yt) if {Yt} is weakly stationary and µ is some origin otherwise. Then

the causal property implies that Zt =
∑∞

j=1 ψ jet− j + et, which is an MA(∞) representation, where

the ψ j → 0 rapidly as j → ∞. Invertibility implies that Zt =
∑∞

j=1 χ jZt− j + et, which is an AR(∞)

representation, where the χ j → 0 rapidly as j → ∞. We will make the usual assumption that the

AR(∞) and MA(∞) parameters are square summable. Thus if the ARMA(p, q) model is weakly
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stationary, causal, and invertible, then Yt depends almost entirely on nearby lags of Yt and et, not

on the distant past. Also, the time series model ≈ AR(py) ≈MA(qy) for some positive integers py

and qy that do not depend on the sample size n.

Consider θ(B) and ϕ(B) as polynomials in B. An ARMA(p, q) model is invertible if all of the

roots of the polynomial θ(B) = 0 have modulus > 1, and weakly stationary if all of the roots of the

polynomial ϕ(B) = 0 have modulus > 1. (Let the complex number W = W1 +W2 i have modulus

|W | = W2
1 +W2

2 .) Hence the roots of both polynomials lie outside the unit circle. An AR(p) model

is always invertible and an MA(q) model is always causal. For the AR(1) model, need |ϕ1| < 1.

For the MA(1) model, need |θ1| < 1. For the ARMA(1,1) model, need |ϕ1| < 1 and |θ1| < 1.

Let τi stand for θi or ϕi. Let k stand for q or p, and let ψ(B) = 1 − τ1B − τ2B2 − · · · − τkBk

stand for ϕ(B) or θ(B). A necessary but not sufficient condition for the roots of ψ(B) = 0 to all be

greater than 1 in modulus is τ1 + · · · + τk < 1 and |τk| < 1.
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CHAPTER 2

MODEL SELECTION

Let I be a time series model. The AIC(I) statistic is used to pick a model from several

ARIMA models. The model Imin with the smallest AIC is always of interest but often overfits: has

too many unnecessary parameters. Imagine fitting an ARIMA(p, d, q) model where d = 0, 1 or 2

is fixed and p and q run from 0 to j for small j. The number of parameters in the model for fixed

d is p + q + 2 where σ =
√

V(et), τ, ϕ1, ..., ϕp, θ1, ..., θq are the parameters. AIC(I) tends to be

large when the model does not have enough terms, to drop as needed terms are added, and then

to rise as unnecessary terms are added. If AIC is scaled correctly (the penalty is 2(p + q) rather

than 2(p + q)/n) and ∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, and models

with 4 ≤ ∆(I) ≤ 7 are borderline. See Brockwell and Davis (1987, p. 269), Duong (1984), and

Burnham and Anderson (2004).

Haile and Olive (2023a) extend regression variable selection notation to ARMA time series

model selection as in the next few paragraphs. Consider regression models where the response

variable Y is independent of the p × 1 vector of predictors x given xTβ, written Y x|xTβ. Many

important regression models satisfy this condition, including multiple linear regression and gener-

alized linear models (GLMs).

Following Olive and Hawkins (2005), a model for variable selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (2.1)

where x = (xT
S , x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS ) × 1 vector. Given that xS is in the

model, βE = 0 and E denotes the subset of terms that can be eliminated given that the subset S is

in the model. Let xI be the vector of a terms from a candidate subset indexed by I, and let xO be

the vector of the remaining predictors (out of the candidate submodel). Suppose that S is a subset
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of I and that model (2.1) holds. Then

xTβ = xT
SβS = xT

SβS + xT
I/SβI/S + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S . Since this is true regardless of the values of

the predictors, βO = 0 if S ⊆ I. The model using xTβ is the full model.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is always in the

model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible subsets of {1, 2, ..., p} that always

contain 1 are I1 = {1}, S = I2 = {1, 2}, I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4},

I7 = {1, 3, 4}, and I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ I j.

Also, β̂I7
= (β̂1, β̂3, β̂4)T is obtained by regressing Y on xI7 = (x1, x3, x4)T .

Let Imin correspond to the set of predictors selected by a variable selection method such as

forward selection or backward elimination. If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by

adding 0s corresponding to the omitted variables. Also use zero padding for the model Imin. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)T , then the observed variable selection estimator β̂VS =

β̂Imin,0 = (β̂1, 0, β̂3, 0)T . As a statistic, β̂VS = β̂Ik ,0 with probabilities πkn = P(Imin = Ik) for k = 1, ..., J

where there are J subsets. For example, if each subset contains at least one variable, then there are

J = 2p − 1 subsets.

For ARMA model selection, let the full model be an ARMA(pmax, qmax) model. For AR

model selection qmax = 0, while for MA model selection pmax = 0. If model selection is restricted

to AR models, Granger and Newbold (1977, p. 178) suggest using pmax = 13 for nonseasonal time

series, quarterly seasonal time series, and short monthly seasonal time series. They recommend

pmax = 25 for longer monthly seasonal time series. We may use pmax = qmax = 5 for ARMA

model selection, and qmax = 13 for MA model selection. For ARMA model selection, there are

J = (pmax + 1)(qmax + 1) ARMA(p, q) submodels where p ranges from 0 to pmax and q ranges from

0 to qmax. For AR and MA model selection there are J = pmax + 1 and J = qmax + 1 submodels,

respectively. See Example 1 where there are 36 submodels.
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Example 2.1. Shown below is the aicmatrix of∆(I) = AIC(I)−AIC(Imin) for the R WWW usage

time series, which gives the number of users connected to the Internet through a server every minute

where n = 100. First differences were used so d = 1. From this output, Imin is the ARIMA(5,1,4)

model. Some interesting models are the ARIMA(3,1,0) model and the ARIMA(1,1,1) model.

aicmat(WWWusage,dd=1,pmax=5)

$aics q

p 0 1 2 3 4 5

0 119.86 38.67 8.74 9.13 8.24 7.72

1 18.10 3.16 5.11 3.44 3.96 5.14

2 11.04 5.15 6.22 4.63 2.10 6.95

3 0.85 2.80 4.48 3.27 3.62 5.29

4 2.79 1.74 5.04 7.94 4.26 6.99

5 4.72 6.50 2.40 10.50 0.00 1.63

Assume the true (optimal) model is an ARMA(pS , qS ) model with pS ≤ pmax and qS ≤ qmax.

Let the selected model I be an ARMA(pI , qI) model. Then the model underfits unless pI ≥ pS and

qI ≥ qS . For AR model selection, the probability of underfitting goes to 0 if the Akaike (1973)

AIC, Schwartz (1978) BIC, or Hurvich and Tsai (1989) AICC criterion are used, at least if the et

are iid N(0, σ2). Also see Claeskens and Hjort (2008, pp. 39, 40, 45, 46), Hannan and Quinn

(1979), and Shibata (1976).

More notation is needed for model selection. Let the full model be the AR(pmax), MA(qmax),

or ARMA(pmax, qmax) model. Let β be a b × 1 vector. For ARMA model selection, let β =

(ϕT , θT )T = (ϕ1, ..., ϕpmax , θ1, ..., θqmax)
T with b = pmax + qmax. For AR model selection, let β =

(ϕ1, ..., ϕpmax)
T with b = pmax, and for MA model selection, let β = (θ1, ..., θqmax)

T with b = qmax.

Hence β = (β1, ..., βpmax , βpmax+1, ..., βpmax+qmax)
T . Let S = {1, ..., pS , pmax + 1, ..., pmax + qS } index

the true ARMA(pS , qS ) model. If S = ∅ is the empty set, then the time series random variables

Y1, ...,Yn are iid. Let I = {1, ..., pI , pmax+1, ..., pmax+qI} index the ARMA(pI , qI) model. Let β̂I,0 be

a b×1 estimator of βwhich is a obtained by padding β̂I with zeroes. If βI = (ϕ1, ..., ϕpI , θ1, ..., θqI )
T ,

6



then β̂I,0 = (ϕ̂1, ..., ϕ̂pI , 0, .., 0, θ̂1, ..., θ̂qI , 0, ..., 0)T . If qI = 0, then β̂I,0 = (ϕ̂1, ..., ϕ̂pI , 0, .., 0)T . If

pI = 0 then β̂I,0 = (0, ..., .., 0, θ̂1, ..., θ̂qI , 0, ..., 0)T . If I = ∅ with pI = qI = 0, then define β̂I,0 = 0, the

b × 1 vector of zeroes. The submodel I underfits unless S ⊆ I. Note that the full model, e.g. the

ARMA(pmax, qmax) model, is a submodel.

For example, if pmax = qmax = 5, then S = {1, 6, 7} corresponds to the ARMA(1,2)

model, and I = {1, 6, 7, 8} corresponds to the ARMA(1,3) model. Then β̂S = (ϕ̂1, θ̂1, θ̂2)T ,

β̂S ,0 = (ϕ̂1, 0, 0, 0, 0, θ̂1, θ̂2, 0, 0, 0)T , and β̂I,0 = (ϕ̂1, 0, 0, 0, 0, θ̂1, θ̂2, θ̂3, 0, 0)T .

The model Imin corresponds to the model that minimizes the AIC, AICC, or BIC criterion.

Then the model selection estimator β̂MS = β̂Imin,0. Assume β̂MS = β̂Ik ,0 with probabilities πkn =

P(Imin = Ik) for k = 1, ..., J. Haile and Olive (2023a) gave the large sample theory for β̂MS , and

used bootstrap confidence regions for hypothesis testing.

2.1 UNDERFITTING

The following Olive and Hawkins (2005) theorem will be useful. A plot can be very useful if

the OLS line can be compared to a reference line and if the OLS slope is related to some quantity

of interest. Suppose that a plot of w versus z places w on the horizontal axis and z on the vertical

axis. Then denote the OLS line by ẑ = a+bw. The following theorem shows that the plotted points

in the FF, RR, and response plots will cluster about the identity line. Notice that the theorem is a

property of OLS and holds even if the data does not follow an multiple linear regression model.

Let corr(x, y) denote the correlation between x and y. Let H = X(XT X)−1XT be the hat matrix.

Theorem 2.2. Suppose that every submodel contains a constant and that X is a full rank

matrix.

Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity line.

ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI)]2 = R2(I) and intercept

a = Y(1 − R2(I)) where Y =
∑n

i=1 Yi/n and R2(I) is the coefficient of multiple determination from

the candidate model.

FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity line. Note that ES P(I) = ŶI

7



and ES P = Ŷ .

iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]2 = S S R(I)/S S R and

intercept a = Y[1 − (S S R(I)/S S R)] where SSR is the regression sum of squares.

RR Plot: v) If w = r and z = rI then the OLS line is the identity line.

vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]2 and

corr(r, rI) =
√

S S E
S S E(I)

=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Proof: Recall that H and HI are symmetric idempotent matrices and that HHI = HI . The

mean of OLS fitted values is equal to Y and the mean of OLS residuals is equal to 0. If the OLS

line from regressing z on w is ẑ = a + bw, then a = z − bw and

b =
∑

(wi − w)(zi − z)∑
(wi − w)2 =

S D(z)
S D(w)

corr(z,w).

Also recall that the OLS line passes through the means of the two variables (w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if and only if the OLS

slope from regressing w on z is equal to [corr(z,w)]2.

i) The slope b = 1 if
∑

ŶI,iYi =
∑

Ŷ2
I,i. This equality holds since ŶT

I Y = YT HIY =

YT HI HIY = ŶT
I ŶI . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI)]2 = R2(I) =
∑

(ŶI,i − Y)2∑
(Yi − Y)2

= S S R(I)/S S TO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑

ŶI,iŶi =
∑

Ŷ2
I,i. This equality holds since ŶT ŶI = YT HHIY =

YT HIY = ŶT
I ŶI . Since b = 1, a = Y − Y = 0.

8



iv) From iii),

1 =
S D(Ŷ)
S D(ŶI)

[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
S D(ŶI)
S D(Ŷ)

and the slope

b =
S D(ŶI)
S D(Ŷ)

corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]2.

Also the slope

b =
∑

(ŶI,i − Y)2∑
(Ŷi − Y)2

= S S R(I)/S S R.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b = rT rI/rT r. Since

rT rI = YT (I − H)(I − HI)Y and (I − H)(I − HI) = I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
S S E(I)

S S E
[corr(r, rI)].

Hence

corr(r, rI) =
√

S S E
S S E(I)

and the slope

b =

√
S S E

S S E(I)
[corr(r, rI)] = [corr(r, rI)]2.

Algebra shows that

corr(r, rI) =
√

n − p
Cp(I) + n − 2k

=

√
n − p

(p − k)FI + n − p
. □

Next we give an argument, due to Rathnayake and Olive (2023), for the Mallows (1973) Cp

criterion when each submodel contains a constant. Let submodel I have k ≤ p predictors including
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a constant. Then

Cp(I) =
S S E(I)
MS E

+ 2k − n

where MSE is for the full model,and Cp(I) ≥ −p. Assume the full model is one of the submodels

considered with Cp( f ull) = p, e.g. forward selection, backward elimination, stepwise selection,

and all subsets selection. Then −p ≤ Cp(Imin) ≤ p. Let r be the residual vector for the full model

and rI that for the submodel. Then the correlation

corr(r, rI) =
√

n − p
Cp(I) + n − 2k

by Theorem 2. Thus corr(r, rImin)→ 1 as n→ ∞. Suppose S is not a subset of I. Under the model

xTβ = xT
SβS , corr(r, rI) will not converge to 1 as n → ∞, and for large enough n, [corr(r, rI)]2 ≤

γ < 1. Thus Cp(I) → ∞ as n → ∞. Hence P(S ⊆ Imin) → 1 as n → ∞ if the zero mean iid errors

have constant variance σ2.

Write the AR(p) equations Yt = ϕ0 + ϕ1Yt−1 + · · · + ϕpYt−p + et in matrix form Y = Xβ + e or



Yp+1

Yp+2

...

Yn


=



1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...

1 Yn−1 Yn−2 . . . Yn−p





ϕ0

ϕ1

...

ϕp


+



ep+1

ep+2

...

en


(2.2)

where X is of full rank with more rows than columns p + 1 and β = (ϕ0,ϕ
T )T = (ϕ0, ϕ1, ..., ϕp)T .

If the Cp criterion is applied to the AR(1) model, then the AR(2) model, ..., then the AR(p)

model, and if the full AR(p) model is good, then the probability of the Cp criterion underfitting

goes to 0 as n→ ∞.

Heuristically, the underfitting arqument for the MA(q) model is similar. Suppose the MA(q)

model is fitted and the residuals are obtained. Substitute the residuals for the errors to get a working
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model Yt ≈ θ0 + θ1rt−1 + · · · + θqrt−q + et in matrix form Y = Xβ + e



Yq+1

Yq+2

...

Yn


=



1 rq rq−1 . . . r1

1 rq+1 rq . . . r2

...
...

...
. . .

...

1 rn−1 rn−2 . . . rn−q





θ0

θ1

...

θq


+



eq+1

eq+2

...

en


(2.3)

where X is of full rank with more rows than columns q + 1 and β = (θ0, θ1, ..., θq)T . If the true

dimension is qS ≤ q, then for large n, the residuals converge to the errors for MA(k) models

with qS ≤ k ≤ q. If k < qS , then the model does not fit well so the residuals tend to larger in

magnitude than the errors for large n. Hence the Cp criterion should be too large for k < qS due to

both underfitting and the bad approximation of the residuals for the errors. Hence we expect the

probability of underfitting using the working AR(k) models to go to zero.

Heuristically, the AIC and BIC criterion, given by Equation (2.4) below, are a lot like the Cp

criterion for AR(p) and MA(q) models, so we expect the probability of underfitting to go to zero

as n→ ∞. For ARMA(p, q) models, let log(L̂) be the log likelihood for the GMLE. Then the AIC

and BIC criteria have the form −2 log(L̂) + (p + q)c(n) where c(n) = 2 for AIC and c(n) = log(n)

for BIC. From McElroy and Politis (2020, p. 360), −2 log(L̂) ≈ n log(σ̂2
I ) + an where σ̂2

I is the

GMLE of the error variance of model I and an is a constant that depends on n. Hence if I is an

ARMA(p, q) model, take

AIC(I) = n log(σ̂2
I ) + 2(p + q) and BIC(I) = n log(σ̂2

I ) + (p + q) log(n). (2.4)

For AIC given by (2.4), let ∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, and

models with 4 ≤ ∆(I) ≤ 7 are borderline. See Brockwell and Davis (1987, p. 269), Duong (1984),

and Burnham and Anderson (2004). Claeskens and Hjort (2008, pp. 39, 111) use slightly different

formulas for AR(p) models Pötscher and Srinivasan (1994) multiply the Equation (2.4) formulas

by 1/n. In the literature and software, the criterion can take many forms since the criterion can
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be multiplied by a positive constant, such as 1/n, and a constant dn can be added to the criterion

without changing the model that minimizes the criterion. Parameters that are in every model, such

as σ2 and possibly a constant, can be absorbed in a constant dn.

Two tspack functions are useful for illustrating least squares (OLS) applied to AR and MA

time series. The function arp fits an AR(p) model to time series Y using OLS, and makes a

response and residual plot. The function assumes p < n − p, and (n − p) > 10p would be useful.

The function maq fits an MA(q) model to time series Y using OLS and the residuals from the MA

GMLE, and makes a response and residual plot. The function assumes q < n−q, and (n−q) > 10q

would be useful. The output below shows n = 100 sometimes gives useful estimates for MA(2)

models, but n = 1000 works better. The term thetahat give the OLS estimates using Equation (2.3)

while macoef gives the GMLE estimates.

#maq function fits OLS model to MA(q) model using MA(q) residuals

N=100

thet1 = -0.5

thet2 = 0.2

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rnorm(N))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.22283269 0.09356583 -0.01296065

$thetahat

(Intercept) V2 V3

-0.007946074 -0.220555232 0.086028835

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rt(N,5))

maq(Y=y,q=2)

$macoef
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ma1 ma2 intercept

-0.5172023 0.1352083 0.0669141

$thetahat

(Intercept) V2 V3

0.05434624 -0.53197103 0.20387859

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = runif(N,min=-1,max=1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.46512124 0.26736265 -0.00300503

$thetahat

(Intercept) V2 V3

0.004146452 -0.440160622 0.217768087

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = (rexp(N)-1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.5120401 0.0233581 -0.1096992

$thetahat

(Intercept) V2 V3

-0.13061379 -0.49408186 0.04325158

N=1000

thet1 = -0.5

thet2 = 0.2
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y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rnorm(N))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.48106432 0.19112093 0.02784754

$thetahat

(Intercept) V2 V3

0.02789364 -0.47540835 0.17613383

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rt(N,5))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.50790935 0.20230121 -0.01374076

$thetahat

(Intercept) V2 V3

-0.01282107 -0.49810238 0.18459068

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = runif(N,min=-1,max=1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.485228859 0.174623138 0.007440461

$thetahat

(Intercept) V2 V3

0.00732724 -0.47524982 0.15228861
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y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = (rexp(N)-1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.50635001 0.24779131 0.01544221

$thetahat

(Intercept) V2 V3

0.01567763 -0.49909346 0.23753909

N=10000

thet1 = -0.5

thet2 = 0.2

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rnorm(N))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.502345461 0.188665700 -0.002417998

$thetahat

(Intercept) V2 V3

-0.002494226 -0.502138785 0.186856927

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = rt(N,5))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept
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-0.500973647 0.183052482 0.007249818

$thetahat

(Intercept) V2 V3

0.007160961 -0.502497557 0.187213111

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = runif(N,min=-1,max=1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.48664358 0.19871333 0.00688937

$thetahat

(Intercept) V2 V3

0.007045233 -0.485846742 0.196911171

y <- arima.sim(n=N, list(ma=c(thet1,thet2)), innov = (rexp(N)-1))

maq(Y=y,q=2)

$macoef

ma1 ma2 intercept

-0.5210335442 0.2285755363 0.0002545913

$thetahat

(Intercept) V2 V3

0.0002103866 -0.5167212868 0.2197263226
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CHAPTER 3

LARGE SAMPLE THEORY FOR SOME MODEL SELECTION ESTIMATORS

Some notation is needed for the large sample theory. The Gaussian maximum likelihood

estimator (GMLE) will be used. The Yule Walker and least squares estimators will also be used

for AR(p) models. Let the ri be the m (one step ahead) residuals where often m = n or m = n − p.

Under regularity conditions,

σ̃2 =

∑m
i=1 r2

i

m − p − q − c
(3.1)

is a consistent estimator of σ2 where often c = 0 or c = 1. See Granger and Newbold (1977, p. 85)

and Pankratz (1983, p. 206). Let σ̂2 be the estimator of σ2 produced by the time series model. Let

Γn =



γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0


.

The following large sample theorem for the AR(p) model is due to Mann and Wald (1943).

Also see McElroy and Politis (2020, p. 333) and Anderson (1971, pp. 210-217). For large sample

theory for MA and ARMA models, see Hannan (1973), Kreiss (1985), and Yao and Brockwell

(2006). There is a strong regularity condition for the GMLE for the ARMA model. Assume the

ARMA(pS , qS ) model is the true model. If both p > pS and q > qS , then the GMLE is not a

consistent estimator. See Chan, Ling, and Yau (2020) and Hannan (1980). Pötscher (1990) shows

how to estimate max(pS , qS ) consistently.

Theorem 3.1. Let the iid zero mean ei have variance σ2, and let the time series have mean

E(Yt) = µ.

a) Let Y1, ...,Yn be a weakly stationary and invertible AR(p) time series, and let β =
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(ϕ1, ..., ϕp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D
→ Np(0,V) (3.2)

where V = V(β) = σ2Γ−1
p . Equation (3.2) also holds under mild regularity conditions for the least

squares estimator, and the GMLE of β.

b) Let Y1, ...,Yn be a weakly stationary, causal, and invertible MA(q) time series, and let

β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D
→ Nq(0,V). (3.3)

where V = V(β) = σ2Γ−1
q .

c) Let Y1, ...,Yn be a weakly stationary, causal, and invertible ARMA(p, q) time series, and let

β = (ϕ1, ..., ϕp, θ1, ..., θq) with g = p + q. Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D
→ Ng(0,V) (3.4)

where V depends only on the autocorrelation function.

The main point of Theorem 3.1 is that the theory can hold even if the et are not iid N(0, σ2).

The basic idea for the GMLE is that {Yt} satisfies an AR(∞) model which is approximately an

AR(py) model, and the large sample theory for the AR(py) model depends on the zero mean error

distribution through σ2 by Theorem 3.1a). See Anderson (1971: ch. 5, 1977), Durbin (1959),

Hamilton (1994, pp. 117, 429), Hannan and Rissanen (1982, p. 85), and Whittle (1953). When the

et are iid N(0, σ2
e), V = V(β) = I−1

1 (β), the inverse information matrix. Then for the AR(p) model,

V(ϕ) = σ2Γ−1
p (ϕ) = I−1

1 (ϕ), while for the MA(q) model, V(θ) = σ2Γ−1
q (θ) = I−1

1 (θ). See Box and

Jenkins (1976, p. 241) and McElroy and Politis (2020, pp. 340-344).
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CHAPTER 4

DATA SPLITTING

Data splitting is used to get valid inference. If the model was selected without using the time

series, then the model has an asymptotic normal distribution that can be used for inference. If the

entire time series is used to build or select the model, then the resulting model tends not to have an

asymptotic normal distribution due to selection bias. If the first half of the time series is used to

build or select the model, and that model is fit on the second half of the time series, then inference

is valid (the model for the second half of the time series was selected without using the second

half). See, for example, Hurvich and Tsai (1989). Time series models are often built or selected

using the entire data set with transformations such as the log transformation, model selection with

AIC, BIC, or AICC. Plots such as the ACF and PACF are also used to select the model.

An application of data splitting is to use a model selection method on H to get a model I.

On the validation set V , fit time series model I. Then use the standard time series inference. For

AR model selection and MA model selection, data splitting works if the selected model does not

underfit. For the GMLE and an ARMA model, assume the ARMA(pS , qS ) model is the true model.

Then the selected model I is an ARMA(pI , qI) models. The model I should not underfit (pI ≥ pS

and qI ≥ qS ), and needs pI = pS or qI = qS for valid inference.

4.1 SIMULATIONS

All of the simulations used four error types: etype = 1 for N(0,1) errors, etype = 2 for t

distribution with tdf=degrees of freedom, etype = 3 for U(-1,1) errors, and etype=4 for EXP(1)−1

errors. The data splitting functions used nh = f loor(n/2). Let pmax be the maximum AR order

and qmax the maximum MA order. 1−undfit is the proportion of times a consistent model was

selected.

For data splitting, the amount of underfitting often depended on the parameters in the model

and the model selection method. For AR(p) data splitting, the tspack function dsarsim used
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the built in “AIC” model selection from the R function ar and tended to underfit for n < 20

pmax. The tspack function dsarsim2 used Equation (2.4) for AR(p) model selection with AIC

for n < 14(pmax) and BIC otherwise. AIC tended to overfit while BIC tended to underfit until n

got larger. An AR(1) model with ϕ = 0.5 and an AR(2) model with ϕ = (0.5, 0.33) were used.

For MA(q) data splitting, the tspack function dsmasim used the Hyndman and Khandakar

(2008) forecast package was used for data splitting programs. Also see Hyndman and Athana-

sopoulos (2018). Model selection was done with the auto.arima function using “AIC” model se-

lection. This model selection tended to underfit for n < 20 pmax. The tspack function dsmasim2

used Equation (2.4). This function can use a penalty similar to the second ARMA function de-

scribed below. Neither AIC nor BIC tended to underfit, so the default program used BIC. An

MA(1) model with θ = −0.5 and an MA(2) model with θ = (−0.5, 0.5) were used.
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Table 4.1. AR Simulation Proportion of Underfitting, nH = n/2, p=13, nruns=1000

n dist ϕ R AIC Eq. (2.4)
100 N (0.5) 0.037 0.001
150 N (0.5) 0.006 0.010
200 N (0.5) 0.000 0.000
100 t (0.5) 0.034 0.000
150 t (0.5) 0.006 0.000
200 t (0.5) 0.000 0.000
100 unif (0.5) 0.029 0.001
150 unif (0.5) 0.003 0.000
200 unif (0.5) 0.001 0.000
100 exp (0.5) 0.018 0.002
150 exp (0.5) 0.004 0.001
200 exp (0.5) 0.000 0.000
100 N (0.5,0.33) 0.350 0.031
150 N (0.5,0.33) 0.148 0.005
200 N (0.5,0.33) 0.072 0.029
100 t (0.5,0.33) 0.342 0.011
150 t (0.5,0.33) 0.149 0.021
200 t (0.5,0.33) 0.062 0.021
100 unif (0.5,0.33) 0.358 0.019
150 unif (0.5,0.33) 0.174 0.001
200 unif (0.5,0.33) 0.075 0.041
100 exp (0.5,0.33) 0.350 0.018
150 exp (0.5,0.33) 0.146 0.001
200 exp (0.5,0.33) 0.055 0.041
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Table 4.2. MA Simulation Proportion of Underfitting, nH = n/2, q=13, nruns=1000

n dist θ R AIC Eq. (2.4)
100 N (−0.5) 0.104 0.002
150 N (−0.5) 0.017 0.001
200 N (−0.5) 0.002 0.000
100 t (−0.5) 0.081 0.007
150 t (−0.5) 0.014 0.001
200 t (−0.5) 0.001 0.000
100 unif (−0.5) 0.108 0.005
150 unif (−0.5) 0.019 0.002
200 unif (−0.5) 0.001 0.000
100 exp (−0.5) 0.111 0.007
150 exp (−0.5) 0.023 0.001
200 exp (−0.5) 0.002 0.000
100 N (−0.5,0.5) 0.083 0.011
150 N (−0.5,0.5) 0.012 0.002
200 N (−0.5,0.5) 0.002 0.000
100 t (−0.5,0.5) 0.073 0.014
150 t (−0.5,0.5) 0.009 0.000
200 t (−0.5,0.5) 0.000 0.000
100 unif (−0.5,0.5) 0.092 0.006
150 unif (−0.5,0.5) 0.011 0.009
200 unif (−0.5,0.5) 0.002 0.000
100 exp (−0.5,0.5) 0.058 0.006
150 exp (−0.5,0.5) 0.004 0.002
200 exp (−0.5,0.5) 0.001 0.000

For ARMA(pmax, qmax) model selection, the underfitting using the AIC criterion was often

severe. Using the Pötscher (1990) method to estimate r = max(pS , qs) often worked well. Also

see Chan, Ling, and Yau (2020) and Pötscher and Srinivasan (1994). Let kmax be a positive integer

such as pmax = qmax = kmax = 5. Fit the ARMA(k, k) model for k = 0, 1, ..., kmax. For each of

these kmax+1 models, compute the BIC–type criterion z(k) = log(σ̂2
k)+2k log(n)/n where σ̂2

k is the

GMLE estimator of the error (or innovation) variance σ2. This criterion is Equation (2.4) divided

by n. The estimator r̂ of r is the first local minimum of the series z(0), z(1), ..., z(kmax). Hence r̂ = 0

if z(0) ≤ z(1); r̂ = 1 if z(0) > z(1) and z(1) ≤ z(2); r̂ = 2 if z(0) > z(1), z(1) > z(2), and z(2) ≤ z(3);

r̂ = k if z(r) > z(r + 1) for 0 ≤ r < k and z(k) ≤ z(k + 1) for k = 0, ..., kmax − 1; and r̂ = kmax if
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z(k) is not a local minimum for any k = 0, 1, ..., k − 1. Note that r ≤ kmax is necessary for r̂ to be a

consistent estimator of r.

The simplest ARMA model selection procedure uses the ARMA(r̂, r̂) model as the final

model. This model selection method had roughly 15% underfitting for n = 1000, 5% underfit-

ting for n = 1500, 1% underfitting for n = 2000, while overfitting with r̂ > r = max(pS , qS ) was

rare.

The R function armamsel1 does this model selection while the function armasim1 does the sim-

ulation. The 6 time series types are tstype=1 for an AR(1) model with ϕ = 0.5, tstype=2 for an

AR(2) model with ϕ = (0.5, 0.33), tstype=3 for an MA(1) model with θ = −0.5, tstype=4 for an

MA(2) model with θ = (−0.5, 0.5), tstype=5 for an ARMA(3,1) model with ϕ = (0.7, 0.1,−0.4)

and θ = 0.1. Finally, tstype=6 allows the user to specify ϕ and θ for and ARMA(p, q) model with

p ≥ 1, q ≥ 1, and p, q ≤ kmax where kmax is the largest value of r for the fitted ARMA(r, r)

models, r = 0, 1, ...,kmax. The ARMA models were sensitive to the values of ϕ and θ.

For ARMA(1,1) models, (ϕ, θ) = (0.5, 0.2), (0.2, 0.1), (0.4,−0.1), (0.6,−0.3), (−0.2, 0.6),

(−0.4, 0.8), (−0.6, 1.0), (0.2,−0.5), (0.4,−0.7), (−0.2,−0.1), (−0.4, 0.1), (−0.6, 0.4), (−0.8, 0.6)

worked well with n = 1000, but (ϕ, θ) = (0.5,−0.5) did not. From Tables 4.3-4.8, model selection

could work fairly well for n as low as 80, but often much larger sample sizes were needed.

A new ARMA model selection procedure first finds r̂ as above. AIC and BIC type criteria can

be multiplied by a positive constant, and constants can be added to a criterion without changing

the model that minimizes the criterion. If a parameter is in all of the models, e.g. a constant or σ̂2,

then with respect to the penalty, that parameter acts like adding a constant to the criterion. We used

the Equation (2.4) AIC type criterion AIC(I) = n log(σ̂2
I ) + 2(p + q) where I is an ARMA(p, q)

model and σ̂2
I is the GMLE estimator of the error (or innovation) variance σ2

I . With this scaling, a

decrease of AIC > 2 when one parameter is omitted suggests that the parameter was not needed.

Let pen be a penalty such as pen=2 or pen=0. The algorithm computes the crit = AIC(I)− pen for

the ARMA(r̂, r̂) model, and fits the ARMA(r̂ − i, r̂) and ARMA(r̂, r̂ − i) models for i = 0, ..., r̂ − 1.

If one of the models has AIC(I) < crit, then the set crit = AIC(I) − pen. This process is repeated
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at each step. The value of crit is updated only if a decrease of more than pen from the current

value of crit is observed. The final model I is the model selected by this algorithm. This additional

penalty decreased the amount of underfitting. Note that 2r̂ models are fitted after finding r̂, which

fits kmax + 1 models. This method is faster than computing the AIC for (kmax + 1)2 models.

The R function armasim2 has a default value of pen=2, but using another value, such as

2 + 10/n can be used. Take the ARMA(p, r̂) or ARMA(r̂, q) model that has the smallest value of

crit. Then at least one of p and q will equal r̂. The function armamsel2 does this model selection

while the function armasim2 does the simulation. Again rtrue gives the proportion of runs where

r̂ = r, while cfit gives the proportion of runs where a consistent ARMA(p,q) model is selected.

The selected model is consistent if i) p = pS and q = qS , or if ii) p = pS and q > qS , or if iii)

p > pS and q = qS . See discussion near Theorem 3.1. Underfitting occurs if p < pS or q < qS

while overfitting that causes inconsistency occurs if p > pS and q > qS .
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Table 4.3. ARMA, Proportion Consistent Model is Selected, nruns=1000, tstype=1

n dist ϕ R AIC r̂ I
50 N (0.5) 0.653 0.698 0.698
80 N (0.5) 0.766 0.868 0.859

100 N (0.5) 0.752 0.931 0.931
200 N (0.5) 0.845 0.991 0.999
350 N (0.5) 0.888 0.999 0.999
500 N (0.5) 0.852 0.999 0.999
800 N (0.5) 0.863 1.000 1.000

1000 N (0.5) 0.939 1.000 1.000
1500 N (0.5) 0.924 1.000 1.000
2000 N (0.5) 0.906 1.000 1.000

50 t (0.5) 0.653 0.705 0.699
80 t (0.5) 0.758 0.899 0.899

100 t (0.5) 0.772 0.958 0.949
200 t (0.5) 0.870 0.987 0.987
350 t (0.5) 0.894 0.991 0.991
500 t (0.5) 0.894 1.000 1.000
800 t (0.5) 0.924 0.999 0.999

1000 t (0.5) 0.875 1.000 1.000
1500 t (0.5) 0.883 1.000 1.000
2000 t (0.5) 0.892 1.000 1.000

50 unif (0.5) 0.581 0.754 0.754
80 unif (0.5) 0.752 0.875 0.875

100 unif (0.5) 0.759 0.897 0.897
200 unif (0.5) 0.879 0.999 0.999
350 unif (0.5) 0.859 1.000 1.000
500 unif (0.5) 0.818 1.000 1.000
800 unif (0.5) 0.869 1.000 1.000

1000 unif (0.5) 0.855 1.000 1.000
1500 unif (0.5) 0.866 1.000 1.000
2000 unif (0.5) 0.947 1.000 1.000

50 exp (0.5) 0.739 0.697 0.681
80 exp (0.5) 0.708 0.855 0.855

100 exp (0.5) 0.741 0.956 0.956
200 exp (0.5) 0.891 0.997 0.997
350 exp (0.5) 0.889 0.998 0.998
500 exp (0.5) 0.849 0.999 0.999
800 exp (0.5) 0.887 1.000 1.000

1000 exp (0.5) 0.871 1.000 1.000
1500 exp (0.5) 0.981 1.000 1.000
2000 exp (0.5) 0.939 1.000 1.000
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Table 4.4. ARMA, Proportion Consistent Model is Selected, nruns=1000, tstype=2

n dist ϕ R AIC r̂ I
50 N (0.5, 0.33) 0.410 0.156 0.148
80 N (0.5, 0.33) 0.469 0.065 0.059

100 N (0.5, 0.33) 0.452 0.107 0.107
200 N (0.5, 0.33) 0.507 0.081 0.081
350 N (0.5, 0.33) 0.551 0.236 0.229
500 N (0.5, 0.33) 0.632 0.415 0.415
800 N (0.5, 0.33) 0.673 0.567 0.559

1000 N (0.5, 0.33) 0.677 0.735 0.735
1500 N (0.5, 0.33) 0.766 0.935 0.935
2000 N (0.5, 0.33) 0.824 0.983 0.983
50 t (0.5, 0.33) 0.371 0.141 0.139
80 t (0.5, 0.33) 0.519 0.106 0.107

100 t (0.5, 0.33) 0.624 0.045 0.045
200 t (0.5, 0.33) 0.532 0.166 0.159
350 t (0.5, 0.33) 0.521 0.186 0.186
500 t (0.5, 0.33) 0.574 0.348 0.348
800 t (0.5, 0.33) 0.729 0.648 0.648

1000 t (0.5, 0.33) 0.781 0.714 0.699
1500 t (0.5, 0.33) 0.769 0.857 0.857
2000 t (0.5, 0.33) 0.809 0.989 0.989
50 unif (0.5, 0.33) 0.379 0.078 0.069
80 unif (0.5, 0.33) 0.389 0.145 0.145

100 unif (0.5, 0.33) 0.459 0.126 0.126
200 unif (0.5, 0.33) 0.590 0.157 0.157
350 unif (0.5, 0.33) 0.619 0.191 0.191
500 unif (0.5, 0.33) 0.588 0.385 0.385
800 unif (0.5, 0.33) 0.587 0.567 0.567

1000 unif (0.5, 0.33) 0.698 0.627 0.619
1500 unif (0.5, 0.33) 0.686 0.896 0.889
2000 unif (0.5, 0.33) 0.857 0.999 0.999
50 exp (0.5, 0.33) 0.289 0.179 0.179
80 exp (0.5, 0.33) 0.509 0.139 0.119

100 exp (0.5, 0.33) 0.491 0.129 0.129
200 exp (0.5, 0.33) 0.423 0.198 0.179
350 exp (0.5, 0.33) 0.639 0.199 0.199
500 exp (0.5, 0.33) 0.593 0.366 0.359
800 exp (0.5, 0.33) 0.609 0.627 0.627

1000 exp (0.5, 0.33) 0.589 0.657 0.657
1500 exp (0.5, 0.33) 0.716 0.936 0.929
2000 exp (0.5, 0.33) 0.768 0.979 0.979
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Table 4.5. ARMA, Proportion Consistent Model is Selected, nruns=1000, tstype=3

n dist θ R AIC r̂ I
50 N (-0.5) 0.788 0.845 0.845
80 N (-0.5) 0.845 0.876 0.876

100 N (-0.5) 0.805 0.925 0.931
200 N (-0.5) 0.816 0.997 0.997
350 N (-0.5) 0.909 0.998 0.998
500 N (-0.5) 0.859 0.999 0.999
800 N (-0.5) 0.831 0.989 0.989

1000 N (-0.5) 0.889 1.000 1.000
1500 N (-0.5) 0.965 1.000 1.000
2000 N (-0.5) 0.915 1.000 1.000
50 t (-0.5) 0.708 0.815 0.815
80 t (-0.5) 0.874 0.891 0.891

100 t (-0.5) 0.851 0.952 0.952
200 t (-0.5) 0.815 0.973 0.973
350 t (-0.5) 0.836 0.999 0.999
500 t (-0.5) 0.893 0.999 0.999
800 t (-0.5) 0.865 0.998 0.998

1000 t (-0.5) 0.916 1.000 1.000
1500 t (-0.5) 0.929 1.000 1.000
2000 t (-0.5) 0.928 1.000 1.000
50 unif (-0.5) 0.788 0.832 0.832
80 unif (-0.5) 0.787 0.925 0.925

100 unif (-0.5) 0.815 0.956 0.956
200 unif (-0.5) 0.863 0.976 0.976
350 unif (-0.5) 0.894 0.986 0.986
500 unif (-0.5) 0.926 1.000 1.000
800 unif (-0.5) 0.881 1.000 1.000

1000 unif (-0.5) 0.892 1.000 1.000
1500 unif (-0.5) 0.919 1.000 1.000
2000 unif (-0.5) 0.889 1.000 1.000
50 exp (-0.5) 0.753 0.804 0.804
80 exp (-0.5) 0.735 0.945 0.945

100 exp (-0.5) 0.916 0.951 0.951
200 exp (-0.5) 0.862 0.976 0.976
350 exp (-0.5) 0.946 0.985 0.985
500 exp (-0.5) 0.926 0.983 0.983
800 exp (-0.5) 0.887 0.987 0.987

1000 exp (-0.5) 0.865 1.000 1.000
1500 exp (-0.5) 0.856 1.000 1.000
2000 exp (-0.5) 0.928 1.000 1.000
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Table 4.6. ARMA, Proportion Consistent Model is Selected, nruns=1000, tstype=4

n dist θ R AIC r̂ I
50 N (-0.5, 0.5) 0.435 0.415 0.489
80 N (-0.5, 0.5) 0.679 0.456 0.447

100 N (-0.5, 0.5) 0.745 0.667 0.675
200 N (-0.5, 0.5) 0.915 0.956 0.956
350 N (-0.5, 0.5) 0.901 0.999 0.999
500 N (-0.5, 0.5) 0.886 0.999 0.999
800 N (-0.5, 0.5) 0.855 1.000 1.000
1000 N (-0.5, 0.5) 0.905 1.000 1.000
1500 N (-0.5, 0.5) 0.886 1.000 1.000
2000 N (-0.5, 0.5) 0.896 1.000 1.000
50 t (-0.5, 0.5) 0.407 0.351 0.352
80 t (-0.5, 0.5) 0.705 0.485 0.485

100 t (-0.5, 0.5) 0.806 0.633 0.633
200 t (-0.5, 0.5) 0.915 0.915 0.916
350 t (-0.5, 0.5) 0.936 0.996 0.996
500 t (-0.5, 0.5) 0.946 0.997 0.997
800 t (-0.5, 0.5) 0.905 0.999 0.999
1000 t (-0.5, 0.5) 0.908 1.000 1.000
1500 t (-0.5, 0.5) 0.937 1.000 1.000
2000 t (-0.5, 0.5) 0.966 1.000 1.000
50 unif (-0.5, 0.5) 0.456 0.409 0.408
80 unif (-0.5, 0.5) 0.737 0.617 0.618

100 unif (-0.5, 0.5) 0.787 0.635 0.636
200 unif (-0.5, 0.5) 0.918 0.908 0.905
350 unif (-0.5, 0.5) 0.908 0.973 0.974
500 unif (-0.5, 0.5) 0.947 0.998 0.998
800 unif (-0.5, 0.5) 0.915 1.000 1.000
1000 unif (-0.5, 0.5) 0.916 1.000 1.000
1500 unif (-0.5, 0.5) 0.916 1.000 1.000
2000 unif (-0.5, 0.5) 0.927 1.000 1.000
50 exp (-0.5, 0.5) 0.322 0.339 0.341
80 exp (-0.5, 0.5) 0.689 0.472 0.472

100 exp (-0.5, 0.5) 0.769 0.661 0.661
200 exp (-0.5, 0.5) 0.911 0.925 0.925
350 exp (-0.5, 0.5) 0.927 0.989 0.989
500 exp (-0.5, 0.5) 0.909 1.000 1.000
800 exp (-0.5, 0.5) 0.965 1.000 1.000
1000 exp (-0.5, 0.5) 0.901 1.000 1.000
1500 exp (-0.5, 0.5) 0.948 1.000 1.000
2000 exp (-0.5, 0.5) 0.889 1.000 1.000
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Table 4.7. ARMA, Proportion Consistent Model is Selected, nruns=1000,tstype=5

n dist ϕ θ R AIC r̂ I
500 N (0.7, 0.1, −0.4) (0.1) 0.246 0.381 0.364
800 N (0.7, 0.1, −0.4) (0.1) 0.294 0.692 0.609

1000 N (0.7, 0.1, −0.4) (0.1) 0.364 0.648 0.619
1500 N (0.7, 0.1, −0.4) (0.1) 0.382 0.943 0.832
2000 N (0.7, 0.1, −0.4) (0.1) 0.378 1.000 0.954
500 t (0.7, 0.1, −0.4) (0.1) 0.213 0.354 0.324
800 t (0.7, 0.1, −0.4) (0.1) 0.418 0.654 0.584

1000 t (0.7, 0.1, −0.4) (0.1) 0.310 0.793 0.739
1500 t (0.7, 0.1, −0.4) (0.1) 0.380 0.939 0.793
2000 t (0.7, 0.1, −0.4) (0.1) 0.415 0.969 0.904
500 unif (0.7, 0.1, −0.4) (0.1) 0.219 0.409 0.339
800 unif (0.7, 0.1, −0.4) (0.1) 0.309 0.713 0.683

1000 unif (0.7, 0.1, −0.4) (0.1) 0.218 0.839 0.761
1500 unif (0.7, 0.1, −0.4) (0.1) 0.351 0.964 0.879
2000 unif (0.7, 0.1, −0.4) (0.1) 0.472 0.983 0.963
500 exp (0.7, 0.1, −0.4) (0.1) 0.279 0.362 0.301
800 exp (0.7, 0.1, −0.4) (0.1) 0.271 0.619 0.519

1000 exp (0.7, 0.1, −0.4) (0.1) 0.301 0.774 0.663
1500 exp (0.7, 0.1, −0.4) (0.1) 0.451 0.939 0.889
2000 exp (0.7, 0.1, −0.4) (0.1) 0.381 0.994 0.909

29



Table 4.8. ARMA, Proportion Consistent Model is Selected, nruns=1000, tstype=6

n dist ϕ θ R AIC r̂ I
50 N (0.4) (−0.7) 0.084 0.561 0.561
80 N (0.4) (−0.7) 0.222 0.732 0.721

100 N (0.4) (−0.7) 0.324 0.779 0.779
200 N (0.4) (−0.7) 0.519 0.979 0.979
350 N (0.4) (−0.7) 0.612 0.999 0.999
500 N (0.4) (−0.7) 0.722 1.000 1.000
800 N (0.4) (−0.7) 0.767 1.000 1.000
1000 N (0.4) (−0.7) 0.768 1.000 1.000
1500 N (0.4) (−0.7) 0.783 1.000 1.000
2000 N (0.4) (−0.7) 0.839 1.000 1.000
50 t (0.4) (−0.7) 0.073 0.609 0.609
80 t (0.4) (−0.7) 0.268 0.709 0.709

100 t (0.4) (−0.7) 0.273 0.771 0.771
200 t (0.4) (−0.7) 0.488 0.944 0.944
350 t (0.4) (−0.7) 0.619 0.999 0.999
500 t (0.4) (−0.7) 0.630 1.000 1.000
800 t (0.4) (−0.7) 0.810 0.991 0.991
1000 t (0.4) (−0.7) 0.811 1.000 1.000
1500 t (0.4) (−0.7) 0.852 1.000 1.000
2000 t (0.4) (−0.7) 0.929 1.000 1.000
50 unif (0.4) (−0.7) 0.069 0.559 0.559
80 unif (0.4) (−0.7) 0.258 0.771 0.782

100 unif (0.4) (−0.7) 0.289 0.709 0.709
200 unif (0.4) (−0.7) 0.399 0.953 0.953
350 unif (0.4) (−0.7) 0.621 0.971 0.971
500 unif (0.4) (−0.7) 0.658 0.982 0.982
800 unif (0.4) (−0.7) 0.841 0.984 0.984
1000 unif (0.4) (−0.7) 0.879 1.000 1.000
1500 unif (0.4) (−0.7) 0.875 1.000 1.000
2000 unif (0.4) (−0.7) 0.901 1.000 1.000
50 exp (0.4) (−0.7) 0.058 0.569 0.569
80 exp (0.4) (−0.7) 0.241 0.641 0.641

100 exp (0.4) (−0.7) 0.301 0.812 0.812
200 exp (0.4) (−0.7) 0.612 0.959 0.959
350 exp (0.4) (−0.7) 0.675 0.998 0.998
500 exp (0.4) (−0.7) 0.701 0.995 0.995
800 exp (0.4) (−0.7) 0.809 1.000 1.000
1000 exp (0.4) (−0.7) 0.879 1.000 1.000
1500 exp (0.4) (−0.7) 0.888 1.000 1.000
2000 exp (0.4) (−0.7) 0.915 1.000 1.000
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CHAPTER 5

OUTLIER DETECTION

Outliers are cases that lie far away from the pattern set by the bulk of the data, and can be

often be detected from the plot of t versus Yt and from the response plot of Ŷt versus Yt with the

identity line that has zero intercept and unit slope added as a visual aid. In both plots Yt is on the

vertical axis, and the vertical deviations of Yt from the identity line are the residuals êt = Yt − Ŷt.

The residual plot of Ŷt versus êt is also useful.

The sample median

MED(n) = Y((n+1)/2) if n is odd, (5.1)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ...,Yn) will also be used. The sample median absolute deviation

is

MAD(n) = MED(|Yi −MED(n)|, i = 1, . . . , n). (5.2)

Assume the time series Yt is weakly stationary with an MA(∞) representation. Let up =

MED(n)+ kMAD(n) and low = MED(n)− kMAD(n) where k = 6 is the default. Make a new time

series Wt where if low ≤ Yt ≤ up, then Wt = Yt. Otherwise, make Wt a missing value: let Wt = NA

if Yt < low or Yt > up. This method is useful since software methods for handling missing values

are widely available. See, for example, Jones (1980). The method may also be useful for handling

heavy tailed time series, where the first or second moment of the Yt does not exist. Since the Wt

do not depend on the ARMA model, plug in W1, ...,Wn into the time series software in place of the

Y1, ...,Yn to to get robust estimators of other quantities, such as the ACF and PACF.

One alternative is to get a robustly Winzorize the time series Wt: if Yt > up, then Wt =

max(Yk ≤ up). If Yt < low, then Wt = min(Yk ≥ low). If low ≤ Yt ≤ up, then Wt = Yt. Then fit

the time series to Wt. A second alternative would set Wt = MED(n) instead of NA. Variants would

use the fitted time series to predict the Wt that were changed, fit the time series again, and perhaps
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repeat this step. These methods impute the potential outliers, but the existing methods for handling

missing values likely impute better.

For an MA(q) model, the Y j,Y j+q+1,Y j+2(q+1), ... are iid. Hence there are q + 1 iid sequences

starting at j = 1, ..., (q+1). Since the sample percentiles of the iid sequences converge in probability

to the population percentiles for fixed h, so do the sample percentiles of all of the data. Hence the

sample median and sample median absolute deviation converge to the corresponding population

quantities, and similar results hold for MA(∞) models. Haile and Olive (2023b) used similar

results to justify a time series prediction interval. Lee and Scholtes (2014) also examine when

percentiles of forecast errors of ARMA models are consistent.

To see why k = 6 is recommended, examine the approximate proportion of cases not changed

to NA for several distributions when no outliers are present. See Table 5.1. Let MED(X) and

MAD(X) be the population median and median absolute deviation. Notation for the random vari-

ables is as in Olive (2008, ch. 10; 2014, ch. 10). For uniform and discrete uniform data, k = 2

asymptotically covers 100% of the data, so k = 6 can have trouble detecting moderate outliers. For

the data used in Figure 5.1, the value k = 6 only caused one outlier to be changed to NA. The main

differences between this procedure and other time series methods in the literature, are a) potential

outliers are replaced by missing values rather than the median of time series values close to the

outlier, and b) some theory is given for why the robust estimators estimate percentiles of the time

series.

Table 5.1. Probability X ∈ [MED(X) − 6MAD(X),MED(X) + 6MAD(X)]

distribution of X MED(X) MAD(X) prob
Cauchy(µ, σ) µ σ 0.8949

double exponential(θ, λ) θ log(2)λ 0.9844
exponential(θ, λ) θ + log(2)λ λ/2.0781 0.9721

logistic(µ, σ) µ log(3)σ 0.9973
N(µ, σ2) µ σ 0.9999

uniform(θ1, θ2) (θ1 + θ2)/2 (θ2 − θ1)/4 1

The time series outlier literature is large. See, for example, Agnieszka and Magdalena (2018),
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Basu and Meckesheimer (2007), Bhatia, et al. (2016), Chakhchoukh (2010), Chang, Tiao, and

Chen (1988), Chen and Liu (1993), Choy (2001), de Luna and Genton (2001), Deutsch, Richards,

and Swain (1990), Fox (1972), Justel, Peña, and Tsay (2001), Lawrence (2014), Ledolter (1989),

Liu, Kumar, and Palomar (2019), Lucas, Franses, and Van Dijk (2009), Stockinger and Dutter

(1987), Tsay (1986, 1988). Blázquez-Garcı̈a, et al. (2020) give a review, but omit “robust statis-

tics” contributions like Allende and Heiler (1992), Bustos and Yohai (1986), Denby and Martin

(1979), Kreiss (1985), Ma and Genton (2000), and Muler, Peña, and Yohai (2009). The robust

statistics contributions attempt to robustify the time series estimating equations. For example,

AR(p) models can be fit with OLS, and the OLS estimator can be replaced by a robust regression

estimator.

Most of the literature has been for additive outliers, but there are other types of outliers in

the literature. See, for example, Chan (1995). Zt = Yt +Wt is an additive outlier if Yt follows the

time series model and Wt does not affect future values of the time series Y − t + k. Zt = Yt is an

innovative outlier (or innovation outlier or innovational outlier) if Zt = Yt is far from the bulk of

the data, and future values depend on Zt according to the true time series model. The effects of

an innovative outlier can take a long time to diminish. Thus an additive outlier only affects the

value of the given observation while an innovational or innovative outlier affects all observations

beyond the given time through the memory of the underlying ARMA process. Zt is a temporary

change outlier if its effects on future data diminish very quickly, perhaps at an exp(−δt) rate. The

short sequence Zt,Zt+1, ...,Zt+k−1 has a distribution shift if Zt+ j = Wt+ j + M for some constant M

and j = 0, 1, ..., k − 1. A level shift is an event that affects a time series at a particular time point

whose effect becomes permanent. The following R code, modified from some code of Iturria, et

al. (2019), is used to demonstrate two types of outliers shown in Figure 5.1. The bulk of the data

are iid from a discrete uniform (1, ..., 100) distribution.

set.seed(100)

n <- 500

x <- sample(1:100,n,replace=TRUE)
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x[70:90] <- sample(110:115,21,replace=TRUE) #distribution shift

x[25] <- 200 #abrupt transient anomaly, additve outlier

x[320] <- 170 #abrupt transient anomaly, additve outlier

plot(x,type="l",xlab="Time")

Figure 5.1. Artificial Time Series Has Outliers at t=25, 70-90, 320

The AR(p) model is useful for illustrating problems outliers cause. Repeat Equation (2.2) to

write the AR(p) equations Yt = ϕ0 + ϕ1Yt−1 + · · · + ϕpYt−p + et in matrix form Y = Xβ + e or



Yp+1

Yp+2

...

Yn


=



1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...

1 Yn−1 Yn−2 . . . Yn−p





ϕ0

ϕ1

...

ϕp


+



ep+1

ep+2

...

en


where X is of full rank with more rows than columns p + 1 and β = (ϕ0,ϕ

T )T = (ϕ0, ϕ1, ..., ϕp)T .

Note that if Yp+1 is an outlier, then Yp+1 is an outlier in the kth row and kth column of X for

34



k = 2, ..., p + 1. Differencing can cause even more outliers in the data.

“Robust” multiple linear regression estimators can be applied to ARIMA(p, d, 0) data or data

from the dynamic linear model to create a “robust estimator.” These estimators tend to work poorly

for several reasons. First, the “high breakdown robust” multiple linear regression estimators that

are practical to compute tend to be inconsistent with poor outlier resistance. See Hawkins and

Olive (2002), Huber and Ronchetti (2009), and Olive (2017b, 2023b). M and GM estimators do

not work well for multiple linear regression, and perform even worse for time series.

The Olive (2017b) rmreg2 estimator will be used as the robust multiple linear regression

estimator. The (ordinary) least squares estimator β̂OLS = (XT X)−1XT Y, ϕ̂0,OLS = Y − ϕ̂
T
OLS x, and

ϕ̂OLS = Σ̂
−1
x Σ̂x,Y where β = (ϕ

O
,ϕT

OLS
)T

Here Σ̂x and Σ̂x,Y are the usual estimated covariance matrices used when wi = (xi,Yi)T are

iid from some population. The rmreg2 estimator plugs in robust covariance estimators in place of

the classical estimators. More details follow. Let

w =

 x

Y

 , E(w) = µw =

 E(x)

E(Y)

 =
 µx

µY

 , and Cov(w) = Σw =

 Σx,x Σx,Y

ΣY,x ΣY,Y

 .
Let (T,C) = (µ̃w, Σ̃w) be a robust estimator of multivariate location and dispersion. Then the

robust plug in estimator ϕ̃0 = µ̃Y − ϕ̃
T
µ̃x and ϕ̃ = Σ̃−1

x Σ̃x,Y . The robust estimator (T,C) used will

be the RMVN estimator of Olive (2017b), Olive and Hawkins (2010), and Zhang, Olive, and Ye

(2012) that has been used to make robust estimators of multiple linear regression and multivariate

linear regression. See Olive (2017b). The robust estimator has not yet been shown to be consistent

for AR(p) data, but the robust estimator can be used as an outlier diagnostic.

Example 5.1. Here we examine outliers for the AR(p) model and use the Cryer and Chan

(2008) R package TSA data set deere1 which gives 82 consecutive values for the amount of de-
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viation from a specified target value in an industrial machining process at Deere & Co. If there

is an outlier at Yk where k is not too close to 1 or n, then fitted values will use the outlier for

t = k + 1, ..., k + p. So the outlier appears p + 1 times in the equations for the AR(p) model.

An AR(2) model will be used for the Deere time series, and the plot of the time series in

Figure 5.2 shows that there is one large outlier, corresponding to case 27. Figure 5.3 shows the

response and residual plots for the AR(2) model. Only one outlier, instead of two, appears in the

fitted values since ϕ̂1 = 0.027 is quite small. The plots for the robust fit are similar and are not

shown.

Figure 5.2. The Deere Time Series has One Outlier

The outlier Y27 is changed from 30 to a more reasonable value 8 to create “cleaned data.” The

clean fit Ẑ = Y − r where r are the residuals corresponding to an AR(2) model using the cleaned

data. The clean fit fits all of the data, including the outlier, fairly well. Figure 5.3 shows the robust

fit, using rmreg2, versus the clean fit. The identity line is tilted slightly away from the bulk of the

data. Figure 5.4 shows the robust fit, using the AR(2) model with potential outliers replaced by
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Figure 5.3. Response and Residual Plots for the AR(2) Model

missing values, versus clean fit. The missing values were replaced by median(Y) to get the fitted

values. Now the identity line is not tilted away from the bulk of the data.

Next we added 2 more outliers to the data set: in the original data, cases Y7 and Y76 were

changed to 25 and 26. Figure 5.6 shows the robust fit, using rmreg2, versus the clean fit. The

identity line fits the bulk of the data, but several large fitted values occur because of the outliers.

Figure 5.7 shows the robust fit, using the AR(2) model with potential outliers replaced by missing

values, versus clean fit. The missing values were replaced by median(Y) to get the fitted values.

Now the identity line is not tilted away from the bulk of the data.
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Figure 5.4. Robust Fitted Values from the Data with 1 Outlier Versus Fitted
Values from the Cleaned Data
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Figure 5.5. Fitted Values Using NA from the Data with 1 Outlier Versus Fitted
Values from the Cleaned Data
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Figure 5.6. Robust Fitted Values from the Data with 3 Outliers Versus Fitted
Values from the Cleaned Data
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Figure 5.7. Fitted Values Using NA from the Data with 3 Outliers Versus
Fitted Values from the Cleaned Data

Next cases Y7 and Y76 were changed to 250 and 260. Figure 5.8 shows the robust fit, using

rmreg2, versus the clean fit. The identity line fits the bulk of the data, but several large fitted

values occur because of the outliers. Figure 5.9 shows the robust fit, using the AR(2) model with

potential outliers replaced by missing values, versus clean fit. The missing values were replaced

by median(Y) to get the fitted values. Now the identity line is not tilted away from the bulk of the

data.

For this example, the fitted values from the AR(2) model, produced by replacing times se-

ries values outside of [MED(Y) − 6MAD(Y),MED(Y) + 6MAD(Y)] by missing values NA, was

effective. The cleaned fitted values, produced by fitting the AR(2) model to the data where the

outlier was replaced by a more reasonable value, were made such that the single outlier was also
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fit well. Ignoring the outlier, the fitted values using NA estimated the cleaned fitted values much

better than the fitted values obtained using the rmreg2 estimator. Using missing values also gives

robust estimators of other quantities produced by the software, such as the ACF, PACF, and some

tests.

Figure 5.8. Robust Fitted Values from the Data with 3 Large Outliers Versus
Fitted Values from the Cleaned Data

The R code below corresponds to the following.

a) Gives the plot of the time series. See Figure 5.2.

b) Gives the output table for the AR(2) model as well as the response and residual plots. See

Figure 5.3.

c) The commands for this part fit a robust AR(2) model and gives the coefficient values and

the response and residual plots.
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Figure 5.9. Fitted Values Using NA from the Data with 3 Large Outliers
Versus Fitted Values from the Cleaned Data
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d) The command for this part change the outlier from 30 to a more reasonable value 8 and

refits the AR(2) model producing the output table for the AR(2) model, and the response and

residual plots.

e) The commands for this part fit a robust AR(2) model on the cleaned data, giving the coef-

ficient values for the AR(2) model, and the response and residual plots.

f) The commands for this part plot the fitted values from the robust AR(2) model fit to the

data with the outlier versus the fitted values from the classical AR(2) model fit to the clean data.

The fitted values are similar except for the outlier in Yt and one of the outliers in Ŷt. See Figure

5.4.

g) The commands for this part change the values of two cases (7 and 76) to 25 and 26, and

fits the robust estimator. Then the commands plot the fitted values versus the fitted values of the

robust estimator to the cleaned data. The fitted values are tilted some.

h) Now the values of the two cases (7 and 76) are changed to 250 and 260. Then the com-

mands plot the fitted values versus the fitted values of the robust estimator to the cleaned data. The

fitted values for the bulk of the data are similar since big outliers are easier to detect. See Figure

5.8.

i) These commands change the potential outliers to NA. For the deere1 data set, case 27 is

changed to NA. The output table and response and residual plots are given.

j) These commands take the data set from g) and change the potential outliers to NA. The

three outliers got NA. The output table and response and residual plots are given.

k) These commands take the data set from h) and change the potential outliers to NA. The

three outliers got NA. The output table and response and residual plots are given.

source("http://parker.ad.siu.edu/Olive/tspack.txt")

#library("TSA")

#data(deere1)

#plot(deere1)
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deere1 <- c(3,0,-1,-4,7,3,7,3,3,-1,-1,5,-4,1,-3,2,-3,1,-2,-3,

-4,-2,3,3,3,3,30,2,7,-7,3,2,3,0,3,0,3,-1,3,3,3,2,3,3,-1,3,3,

2,3,2,3,8,0,-1,0,0,1,2,2,0,8,0,1,-2,-3,4,0,4,-1,-1,1,-7,3,1,

3,1,0,-1,-4,-1,-1,3)

#a)

plot(deere1,type="l",xlab="Time") #Figure 5.2

#b)

out2 <- arima(deere1,c(2,0,0))

resplots(deere1,out2) #Figure 5.3

#c)

outr1 <- robar(deere1,2)

outr1$phihat

#right click Stop on the plot twice

#For each Y outlier in an AR(p) model,

#there will be p outliers in the X matrix

#which could cause up to p outliers in the fitted values.

#So p+1 outliers in the XY matrix used to compute the robust estimator.

#d)

deerem2 <- deere1

deerem2[27] <- 8

out2m <- arima(deerem2,c(2,0,0))

resplots(deerem2,out2m)
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#e)

outr2 <- robar(deerem2,2)

outr2$phihat #robust fit to cleaned data

#f)

cleanfit <- as.vector(deere1) - as.vector(out2m$resid)

plot(as.vector(outr1$fit,),cleanfit) #figure 5.4

abline(0,1) #cleanfit fits all cases, including the outlier, fairly well

#plot(as.vector(outr2$fit,),cleanfit)

#abline(0,1)

#g)

deerem3 <- deere1

deerem3[c(7,76)] <- c(25,26)

outr3 <- robar(deerem3,2)

plot(as.vector(outr3$fit),outr2$fit) #right click Stop 2 times, hit Enter

abline(0,1)

plot(as.vector(outr3$fit),cleanfit)

abline(0,1) #Figure 6

#identify(as.vector(outr3$fit),outr2$fit)

#NAs mean the identified points are off by 2

#74, 25, 5 instead of 76,27,7

#h)

deerem4 <- deere1

deerem4[c(7,76)] <- c(250,260)
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outr4 <- robar(deerem4,2)

plot(as.vector(outr4$fit),outr2$fit) #right click Stop 2 times, hit Enter

abline(0,1) #FFplot.eps

#identify(as.vector(outr4$fit),outr2$fit

#works better with massive outliers

#outliers are easy to spot with response plot

#since there Y values are outlying

plot(as.vector(outr4$fit),cleanfit)

abline(0,1) #Figure 5.8

##plot(as.vector(outr4$fit),cleanfit) #right click Stop 2 times, hit Enter

##abline(0,1)

#i)

YNA <- tsNA(deere1)$W

out5 <- arima(YNA,c(2,0,0))

resplots(YNA,out5)

rfit <- YNA-out5$res

rfit[is.na(rfit)]<-median(deere1)

rfit<-as.vector(rfit)

#plot(rfit,deere1)

plot(rfit,cleanfit)

abline(0,1) #Figure 5.5

#j)

W2 <- tsNA(deerem3)$W

out6 <- arima(W2,c(2,0,0))
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resplots(W2,out6)

YNA2 <- W2

rfit2 <- YNA2-out6$res

rfit2[is.na(rfit2)]<-median(deere1)

rfit2<-as.vector(rfit2)

plot(rfit2,cleanfit)

abline(0,1) #Figure 5.7

#k)

W3 <- tsNA(deerem4)$W

out7 <- arima(W3,c(2,0,0))

resplots(W3,out7)

YNA3 <- W3

rfit3 <- YNA3-out7$res

rfit3[is.na(rfit3)]<-median(deere1)

rfit3<-as.vector(rfit3)

plot(rfit3,cleanfit)

abline(0,1) #Figure 5.9
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CHAPTER 6

REAL DATA EXAMPLES

The main factors effecting the gasoline prices are global crude oil cost, refining costs, distri-

bution and marketing costs, federal and state taxes, which are generally reflected in the wholesale

costs that gasoline retailers pay to distributors. In addition to these factors, retail stations have

to consider the local factors that can impact retail fuel prices such as store types (branded or

unbranded), store location and their local competition, fuel delivery method, length of existing

contracts with suppliers, volumes purchased, and specific store considerations and this becomes a

main role in our life. Therefore for the implementation, two data sets will be used obtained;

• monthly Brent crude oil spot price:

https : //github.com/rishabh89007/Time S eries Datasets

• weekly petrol prices:

https : //data.world/makeovermonday/2020w17 − weekly − road − f uel − prices.

Consider the monthly Brent crude oil spot price (dollars per barrel) with 396 observations

collected over the period of 01/1990 - 12/2022. Brent is the leading global price benchmark for

Atlantic basin crude oils. It is used to set the price of two-thirds of the world’s internationally

traded crude oil supplies. As well as weekly petrol prices (pence per litre) with 881 observations

collected over the period of 06/09/2003 - 04/20/2020. Gasoline prices are determined largely by

the laws of supply and demand. The two data sets were downloaded from each platforms as men-

tioned above and saved as ”BSP.csv” and ”fuel.csv” respectively.

For Brent crude oil spot price dataset;

> source("http://parker.ad.siu.edu/Olive/tspack.txt")

> library(forecast)

> d=read.csv("BSP.csv")
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> price1ts=ts(d$price,frequency=12, start=c(1990,1))

> plot.ts(pricets,main="Brent Spot Oil Prices",xlab="Time",ylab="Price")

> d1=diff(log(d$price))

> pricets=ts(d1,frequency=12, start=c(1990,1))

> plot.ts(pricets, main="The Difference Series of the Logs of the Oil Price"

, xlab="Year", ylab="Price",type="o")

> oil<-d1

> acf(oil)

> pacf(oil)

> auto.arima(d1)

Series: d1

ARIMA(1,0,2) with zero mean

Coefficients:

ar1 ma1 ma2

0.8630 -0.5674 -0.3372

s.e. 0.0699 0.0787 0.0478

sigmaˆ2 = 0.008995: log likelihood = 371.34

AIC=-734.69 AICc=-734.58 BIC=-718.77

For petrol prices data set;

> source("http://parker.ad.siu.edu/Olive/tspack.txt")

> library(forecast)

> d=read.csv("fuel.csv")

> price1ts=ts(d$price,frequency=4, start=c(2003,6,9))

> plot.ts(pricets,main="Petrol Prices",xlab="Time",ylab="Price")

> d1=diff(d$price)

> pricets=ts(d1,frequency=4, start=c(2003,6,9))

> plot(d1,main="Differenced Petrol Prices",xlab="Time",ylab="Price",type="o")
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For the analysing, the same methodology was used for both the data sets. Firstly consider the

data set with monthly Brent crude oil spot price. The time series plot for this data is showing that

the raw data is not stationary. To make them stationary, first difference is taken as in Figure 6.2.

Figure 6.1. Time series plot of Brent Crude Oil Spot Price
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Figure 6.2. First Differenced Oil Price

Thought the first difference was taken, still the series not stationary as the variance increase

with the time. Then the difference of logs of the price were taken and plotted the series as in Figure

6.3. Then the ACF and PACF plots are obtained for this new series and it seems AR(2) and MA(2)

models would be a good fitting. But the result using auto.arima, generated the optimal parameter

values in the model as ARMA(1,2) with AIC= -734.69.
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Figure 6.3. Difference Series of Logs of Oil Price

Figure 6.4. ACF plot for Difference Series of Logs of Oil Price
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Figure 6.5. PACF plot for Difference Series of Logs of Oil Price

> auto.arima(d1)

Series: d1

ARIMA(1,0,2) with zero mean

Coefficients:

ar1 ma1 ma2

0.8630 -0.5674 -0.3372

s.e. 0.0699 0.0787 0.0478

sigmaˆ2 = 0.008995: log likelihood = 371.34

AIC=-734.69 AICc=-734.58 BIC=-718.77

According to the difference of logs of the price plot, it shows 6 visible outliers and then those

potential outliers were replaced by missing values and the new series plot, ACF and PACF plots

were obtained and followed the same analysing as above.
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> identify(d1)

[1] 7 8 362 363 364 365

> y1<-d1

> y1[c(7,8,362,363,364,365)]<-NA

Figure 6.6. Difference Series of Logs of Oil Price using NA
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Figure 6.7. ACF plot for Difference Series of Logs of Oil Price using NA

Figure 6.8. PACF plot for Difference Series of Logs of Oil Price using NA
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> auto.arima(y2)

Series: y2

ARIMA(1,0,0) with zero mean

Coefficients:

ar1

0.2321

s.e. 0.0495

sigmaˆ2 = 0.00668: log likelihood = 422.62

AIC=-841.24 AICc=-841.21 BIC=-833.28

By the result using auto.arima, we obtained the model as AR(1) with AIC= -841.24 which

is better than the ARMA(1,2) model due to the AIC, AICc and BIC criteria. This analysing implies

that there is an effect from outliers to the model selection and making them missing values, we have

the opportunity to get a consistent model for the data.

Then we will apply the algorithm armamsel2 for doing the model selection and then will

compare the results obtained from above.

> armamsel2(y1)

$rhat

[1] 1

$pI

[1] 1

$qI

[1] 1
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> arima(y1,c(1,0,1))

Call:

arima(x = y2, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.2052 0.0282 0.0017

s.e. 0.2298 0.2359 0.0053

sigmaˆ2 estimated as 0.006661: log likelihood = 422.68, aic = -837.36

This gives that the model as ARMA(1,1) since pI=qI=1 for this data set while the classical

method with NA gives AR(1) as the model. Since q=qI , this selected model from the algorithm is

consistent. Since r̂=1, only 8 models were fitted.

Similarly, the weekly Petrol price data showing the non-stationary behavior and then the first

difference was taken as in Figure 6.8.

Figure 6.9. Time series plot of Weekly Petrol Price

Then the ACF and PACF plots are obtained for this differenced data and it seems a AR(1)
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Figure 6.10. First Differenced Petrol Price
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model would be a good fitting. But the result using auto.arima, generated the optimal parameter

values in the model as ARMA(1,1) with AIC=1765.98.

Figure 6.11. ACF plot for first differenced data

Figure 6.12. PACF plot for first differenced data
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> auto.arima(d1f)

Series: d1

ARIMA(1,0,1) with zero mean

Coefficients:

ar1 ma1

0.6892 -0.0980

s.e. 0.0390 0.0541

sigmaˆ2 = 0.4334: log likelihood = -879.99

AIC=1765.98 AICc=1766.01 BIC=1780.32

According to the first differenced data plot, it shows 3 visible outliers and then those potential

outliers were replaced by missing values and the new differenced plot, ACF and PACF plots were

obtained and followed the same analysing as above.

> identify(d1f)

[1] 280 281 877

> y1f<-d1f

> y1f[c(280,281,877)]<-NA
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Figure 6.13. First Differenced Oil Price using NA

Figure 6.14. ACF plot for first differenced data using NA
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Figure 6.15. PACF plot for first differenced data using NA

> auto.arima(y1f)

Series: y1

ARIMA(1,0,0) with zero mean

Coefficients:

ar1

0.6454

s.e. 0.0258

sigmaˆ2 = 0.3678: log likelihood = -805.96

AIC=1615.91 AICc=1615.93 BIC=1625.47

By the result using auto.arima, we obtained the model as AR(1) with AIC=1615.91 which

is better than the ARMA(1,1) model due to the AIC, AICc and BIC criteria. This analysing implies

that there is an effect from outliers to the model selection and making them missing values, we have

the opportunity to get an optimal model for the data.

Then we will apply the algorithm armamsel2 for doing the model selection and then will

compare the results obtained from above.
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> armamsel2(y1f)

$rhat

[1] 1

$pI

[1] 1

$qI

[1] 1

> arima(y1,c(1,0,1))

Call:

arima(x = y1, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.6812 -0.0642 0.0494

s.e. 0.0391 0.0541 0.0598

sigmaˆ2 estimated as 0.3665: log likelihood = -804.88, aic = 1617.76

This gives that the model as ARMA(1,1) since pI=qI=1 for this data set while the classical

method with NA gives AR(1) as the model. Since p=pI , this selected model from the algorithm is

consistent. Since r̂=1, only 8 models were fitted instead of 36 models.
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CHAPTER 7

VISUALIZING SOME BOOTSTRAP CONFIDENCE REGIONS

A confidence interval is the likely range for the true score of your entire population and a

confidence region in a single dimension is also called a confidence interval. The DD plot is a plot

of the classical Mahalanobis distances MDi versus robust Mahalanobis distances RDi which uses

to visualize prediction regions. Several bootstrap confidence intervals and regions are obtained by

applying prediction intervals and regions to the bootstrap sample.

Notation: P(An) is “eventually bounded below” by 1 − δ if P(An) gets arbitrarily close to or

higher than 1 − δ as n → ∞. Hence P(An) > 1 − δ − ϵ for any ϵ > 0 if n is large enough. If

P(An) → 1 − δ as n → ∞, then P(An) is eventually bounded below by 1 − δ. The actual coverage

is 1 − γn = P(Y f ∈ [Ln,Un]), the nominal coverage is 1 − δ where 0 < δ < 1. The 90% and 95%

large sample prediction intervals and prediction regions are common.

7.1 PREDICTION INTERVALS AND REGIONS

Consider predicting a future test value Y f given training data Y1, ...,Yn. A large sample 100(1−

δ)% prediction interval (PI) for Y f has the form [L̂n, Ûn] where P(L̂n ≤ Y f ≤ Ûn) is eventually

bounded below by 1−δ as the sample size n→ ∞.A large sample 100(1−δ)% PI is asymptotically

optimal if it has the shortest asymptotic length: the length of [L̂n, Ûn] converges to Us−Ls as n→ ∞

where [Ls,Us] is the population shorth: the shortest interval covering at least 100(1 − δ)% of the

mass.

Let the data Y = (Y1, ...,Yn)T have joint pdf or pmf f (y|θ) with parameter space Θ and support

Y. Let Ln(Y) and Un(Y) be statistics such that Ln(y) ≤ Un(y), ∀y ∈ Y. Then [Ln(y),Un(y)] is a 100

(1 − δ) % confidence interval (CI) for θ if

Pθ(Ln(Y) ≤ θ ≤ Un(Y)) = 1 − δ

65



for all θ ∈ Θ. The interval [Ln(y),Un(y)] is a large sample 100(1 − δ) % CI for θ if

Pθ(Ln(Y) ≤ θ ≤ Un(Y))

is eventually bounded below by 1 − δ for all θ ∈ Θ as the sample size n→ ∞.

A large sample 100(1 − δ)% prediction region is a setAn such that P(x f ∈ An) is eventually

bounded below by 1 − δ as n → ∞. A prediction region is asymptotically optimal if its volume

converges in probability to the volume of the minimum volume covering region or the highest

density region of the distribution of x f .

A large sample 100(1 − δ)% confidence region for a vector of parameters θ is a set An such

that P(θ ∈ An) is eventually bounded below by 1 − δ as n→ ∞.
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Figure 7.1. The 36.8% Highest Density Region is [0,1]

For a random variable Y , the 100(1 − δ)% highest density region is a union of k ≥ 1 disjoint

intervals such that the mass within the intervals ≥ 1 − δ and the sum of the k interval lengths is as

small as possible. Suppose that f (z) is a unimodal pdf that has interval support, and that the pdf
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f (z) of Y decreases rapidly as z moves away from the mode. Let [a, b] be the shortest interval such

that FY(b)−FY(a) = 1−δ where the cdf FY(z) = P(Y ≤ z). Then the interval [a, b] is the 100(1−δ)

highest density region. To find the 100(1 − δ)% highest density region of a pdf, move a horizontal

line down from the top of the pdf. The line will intersect the pdf or the boundaries of the support

of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the line when the areas under the pdf

corresponding to the intervals is equal to 1 − δ. As an example, let f (z) = e−z for z > 0. See Figure

7.1 where the area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest density

region. Often the highest density region is an interval [a, b] where f (a) = f (b), especially if the

support where f (z) > 0 is (−∞,∞).

The interpretation of a 100 (1 − δ)% PI for a random variable Y f is similar to that of a con-

fidence interval (CI). Collect data, then form the PI, and repeat for a total of k times where the k

trials are independent from the same population. If Y f i is the ith random variable and PIi is the ith

PI, then the probability that Y f i ∈ PIi for j of the PIs approximately follows a binomial(k, ρ = 1−δ)

distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Y f i ∈ PIi happens about 95 times. If Y f

has a pdf, we often want P(L̂n ≤ Y f ≤ Ûn)→ 1 − δ as n→ ∞.

There are two big differences between CIs and PIs. First, the length of the CI goes to 0

as the sample size n goes to ∞ while the length of the PI converges to some nonzero number

J, say. Secondly, many confidence intervals work well for large classes of distributions while

many prediction intervals assume that the distribution of the data is known up to some unknown

parameters. Usually the N(µ, σ2) distribution is assumed, and the parametric PI may not perform

well if the normality assumption is violated.

In the following theorem, if the open interval (Y(k1),Y(k2)) was used, we would need to add the

regularity condition that Yδ/2 and Y1−δ/2 are continuity points of FY(y).

Definition 7.1. Let Y1, ...,Yn,Y f be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statistics of

the training data. Let k1 = ⌈nδ/2⌉ and k2 = ⌈n(1 − δ/2)⌉ where 0 < δ < 1. The large sample
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100(1 − δ)% percentile prediction interval for Y f is

[Y(k1),Y(k2)]. (7.1)

The bootstrap percentile confidence interval given by Equation (7.2) is obtained by applying

the percentile prediction interval to the bootstrap sample T1, ...,TB.

Definition 7.2. The large sample 100(1−δ)% bootstrap percentile confidence interval for θ is

an interval [T ∗(kL),T
∗
(KU )] containing ≈ ⌈B(1 − δ)⌉ of the T ∗i . Let k1 = ⌈Bδ/2⌉ and k2 = ⌈B(1 − δ/2)⌉.

A common choice is

[T ∗(k1),T
∗
(k2)]. (7.2)

Consider predicting a p × 1 future test value x f , given past training data x1, ..., xn where

x1, ..., xn, x f are iid. Much as confidence regions and intervals give a measure of precision for the

point estimator θ̂ of the parameter θ, prediction regions and intervals give a measure of precision

of the point estimator T = x̂ f of the future random vector x f .

For multivariate data, sample Mahalanobis distances play a role similar to that of residuals in

multiple linear regression. Let the observed training data be collected in an n× p matrix W. Let the

p × 1 column vector Tn = Tn(W) be a multivariate location estimator, and let the p × p symmetric

positive definite matrix Cn = Cn(W) be a dispersion estimator.

Definition 7.3. Let x1 j, ..., xn j be measurements on the jth random variable X j corresponding

to the jth column of the data matrix W. The jth sample mean is x j =
1
n

n∑
k=1

xk j. The sample

covariance S i j estimates Cov(Xi, X j) = σi j = E[(Xi − E(Xi))(X j − E(X j))], and

S i j =
1

n − 1

n∑
k=1

(xki − xi)(xk j − x j).

S ii = S 2
i is the sample variance that estimates the population variance σii = σ

2
i .

Definition 7.4. Let x1, ..., xn be the data where xi is a p×1 vector. The sample mean or sample

68



mean vector

x =
1
n

n∑
i=1

xi = (x1, ..., xp)T .

The sample covariance matrix

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T = (S i j).

That is, the i j entry of S is the sample covariance S i j. The classical estimator of multivariate

location and dispersion is (Tn,Cn) = (x,S).

Definition 7.5. The ith Mahalanobis distance Di =

√
D2

i where the ith squared Mahalanobis

distance is

D2
i = D2

i (Tn(W),Cn(W)) = (xi − Tn(W))T C−1
n (W)(xi − Tn(W)) (7.3)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let (Tn,Cn) =

(Tn(W),Cn(W)). Then

D2
x(Tn,Cn) = (x − Tn)T C−1

n (x − Tn).

Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let the p × p dispersion

matrix be Σ, often the population covariance matrix. If x is a random vector, then the population

squared Mahalanobis distance is

D2
x(µ,Σ) = (x − µ)TΣ−1(x − µ) (7.4)

and that the term Σ−1/2(x − µ) is the p−dimensional analog to the z-score used to transform a

univariate N(µ, σ2) random variable into a N(0, 1) random variable. Hence the sample Mahalanobis

distance Di =

√
D2

i is an analog of the absolute value |Zi| of the sample Z-score Zi = (Xi − X)/σ̂.

Also notice that the Euclidean distance of xi from the estimate of center T (W) is Di(T (W), Ip)

where Ip is the p × p identity matrix.
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Next, we derive a prediction region for x f if (Tn,Cn) = (x,S), µ = E(x), and Σx = Cov(x) is

nonsingular. Let D = D(µ,Σx). Then Di
D
→ D and D2

i
D
→ D2. Hence the sample percentiles of the

Di are consistent estimators of the population percentiles of D at continuity points of the cdf of D,

and the sample percentiles of the D2
i are consistent estimators of the population percentiles of D2

at continuity points of the cdf of D2. Let c = kn = ⌈n(1 − δ)⌉. Then Olive (2013) showed that the

hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)} (7.5)

is a large sample 100(1 − δ)% prediction region under mild conditions, although regions with

smaller volumes may exist.

To improve performance, we will use a correction factor c = Un where Un decreases to kn. Un

is defined under Equation (7.7). A problem with the prediction regions that cover ≈ 100(1 − δ)%

of the training data cases xi (such as (7.5) for c = kn), is that they have coverage lower than the

nominal coverage of 1 − δ for moderate n. This result is not surprising since empirically statistical

methods perform worse on test data than on training data. Empirically for many distributions, for

n = 20p, the prediction region (7.5) applied to iid data using c = kn = ⌈n(1 − δ)⌉ tended to have

undercoverage as high as min(0.05, δ/2). The undercoverage decreases rapidly as n increases. (Re-

ferring to the next paragraph, taking qn ≡ 1 − δ does not take into account the unknown variability

of (x,S), which is another reason for undercoverage and the need for a correction factor.)

Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (7.6)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = ⌈nqn⌉ (7.7)

in (7.8) decreased the undercoverage. Let D(Un) be the 100qnth sample quantile of the Di.
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The nonparametric prediction region is due to Olive (2013). For the classical prediction re-

gion, see Chew (1966) and Johnson and Wichern (1988, pp. 134, 151). A future observation (ran-

dom vector) x f is in the region (7.8) if Dx f ≤ D2
Un

). If x1, ..., xn and x f are iid, the nonparametric

prediction region (7.8) is asymptotically optimal for a large class of elliptically contoured distribu-

tions since the volume of (8) converges in probability to the volume of the highest density region.

(These distributions have a highest density region which is a hyperellipsoid determined by a pop-

ulation Mahalanobis distance.) Refer to the above paragraph for D(Un). Let P(D2 ≤ D2
1−δ) = 1 − δ

if D2
1−δ is a continuity point of the cdf FD2(y) and D2

x(x,S)
D
→ D2 = (x − µ)TΣ−1

x (x − µ).

Definition 7.6. Assume that x1, ..., xn, x f are iid from a distribution with mean E(x) = µ and

nonsingular covariance matrix Cov(x) = Σx. The large sample

100(1 − δ)% nonparametric prediction region for a future value x f is

{z : D2
z(x,S) ≤ D2

(Un)} (7.8)

if D2
1−δ is a continuity point of the cdf FD2(y).

Highest density regions are usually hard to estimate for p not much larger than four, but many

elliptically contoured distributions with a nonsingular population covariance matrix, including the

multivariate normal distribution, have highest density regions that can be estimated by the non-

parametric prediction region (7.8). For more about highest density regions, see Olive (2017b, pp.

148-155). If x f has a pdf, we often want P(x f ∈ An) → 1 − δ as n → ∞. A PI is a prediction

region where p = 1.

Definition 7.7. Assume that x1, ..., xn, x f are iid Np(µ,Σx). Then the large sample 100(1−δ)%

classical prediction region for multivariate normal data is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (7.9)
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The nonparametric prediction region (7.8) is useful if x1, ..., xn, x f are iid from a distribution

with a nonsingular covariance matrix, and the sample size n is large enough. The distribution

could be continuous, discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf,

although prediction regions with smaller volume may exist. The nonparametric prediction region

(7.8) contains Un of the training data cases xi provided that S is nonsingular, even if the model is

wrong. For many distributions, the coverage started to be close to 1 − δ for n ≥ 10p where the

coverage is the simulated percentage of times that the prediction region contained x f . Olive (2013)

suggests n ≥ 50p may be needed for the prediction region to have a good volume. Of course for

any n there are distributions that will have severe undercoverage.

If X and Z have dispersion matrices Σ and cΣ where c > 0, then the dispersion matrices

have the same shape. The dispersion matrices determine the shape of the hyperellipsoid {x :

(x − µ)TΣ−1(x − µ) ≤ h2}. Figure 7.2 was made with the Arc software of Cook and Weisberg

(1999). The 10%, 30%, 50%, 70%, 90%, and 98% highest density regions are shown for two

multivariate normal (MVN) distributions. Both distributions have µ = 0. In Figure 7.2a),

Σ =

 1 0.9

0.9 4

 .
Note that the ellipsoids are narrow with high positive correlation. In Figure 7.2b),

Σ =

 1 −0.4

−0.4 1

 .
Note that the ellipsoids are wide with negative correlation. The highest density ellipsoids are

superimposed on a scatterplot of a sample of size 100 from each distribution.
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a)

b) 

Figure 7.2. Highest Density Regions for 2 MVN Distributions
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7.2 BOOTSTRAP CONFIDENCE REGIONS

For bootstrap confidence regions, if
√

n(Tn − θ)
D
→ u and

√
n(T ∗n − Tn)

D
→ u, then

the percentiles of n(Tn − θ0)T C−1
n (Tn − θ0) can be estimated with the sample percentiles of

n(T ∗n−Tn)T C−1
n (T ∗n−Tn). Let θ be a g×1 vector. For the correction factor below, and a nominal 95%

confidence region, instead of using D2
(⌈0.95B⌉) as the cutoff where D2

(c) is the cth order statistic of the

D2
i , the 100qBth sample quantile of the D2

i , denoted by D2
(UB), is used where 0.95B ≤ UB ≤ 0.975B

and UB → 0.95B as B increases. Let qB = min(1 − δ + 0.05, 1 − δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δg/B), otherwise. (7.10)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. This correction factor helps reduce

undercoverage when B ≥ 50b.

The following three confidence regions can be used for inference. The Olive (2017ab, 2018)

prediction region method confidence region applies prediction region (7.8) to the bootstrap sample.

Let the bootstrap sample be T ∗1 , ...,T
∗
B. Let T

∗
and S∗T be the sample mean and sample covariance

matrix of the bootstrap sample.

Definition 7.8. The large sample 100(1− δ)% prediction region method confidence region for

θ is {w : (w − T
∗
)T [S∗T ]−1(w − T

∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗T ) ≤ D2

(UB)} (7.11)

where D2
(UB) is computed from D2

i = (T ∗i − T
∗
)T [S∗T ]−1(T ∗i − T

∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = θ0 rejects H0 if (T
∗
− θ0)T [S∗T ]−1(T

∗
− θ0) > D2

(UB).

Olive (2017ab, 2018) also gave the modified Bickel and Ren (2001) confidence region that

uses Σ̂A = nS∗T .

Definition 7.9. The large sample 100(1 − δ)% modified Bickel and Ren confidence region is
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{w : (w − Tn)T [S∗T ]−1(w − Tn) ≤ D2
(UBT )} =

{w : D2
w(Tn,S∗T ) ≤ D2

(UBT )} (7.12)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = (T ∗i −Tn)T [S∗T ]−1(T ∗i −Tn). Note

that the corresponding test for H0 : θ = θ0 rejects H0 if (Tn − θ0)T [S∗T ]−1(Tn − θ0) > D2
(UBT ).

The hybrid confidence region is due to Pelawa Watagoda and Olive (2021).

Definition 7.10. Shift region (7.11) to have center Tn, or equivalently, change the cutoff

of region (7.12) to D2
(UB) to get the large sample 100(1 − δ)% hybrid confidence region: {w :

(w − Tn)T [S∗T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S∗T ) ≤ D2

(UB)}. (7.13)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if

(Tn − θ0)T [S∗T ]−1(Tn − θ0) > D2
(UB).

Rajapaksha and Olive (2022) gave the following two confidence regions. The names of these

confidence regions were chosen since they are similar to the Bickel and Ren and prediction region

method confidence regions.

Definition 7.11. The large sample 100(1 − δ)% BR confidence region is

{w : n(w − Tn)T C−1
n (w − Tn) ≤ D2

(UBT )} = {w : D2
w(Tn,Cn/n) ≤ D2

(UBT )} (7.14)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = n(T ∗i − Tn)T C−1
n (T ∗i − Tn) where

qB is found from (3) with zi = T ∗i . Note that the corresponding test for H0 : θ = θ0 rejects H0 if

n(Tn − θ0)T C−1
n (Tn − θ0) > D2

(UBT ).

Definition 7.12. The large sample 100(1 − δ)% PR confidence region for θ is

{w : n(w − T
∗
)T C−1

n (w − T
∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,Cn/n) ≤ D2

(UB)} (7.15)
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where D2
(UB) is computed from D2

i = n(T ∗i − T
∗
)T C−1

n (T ∗i − T
∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = θ0 rejects H0 if n(T
∗
− θ0)T C−1

n (T
∗
− θ0) > D2

(UB).

The standard bootstrap confidence region is similar to what would be obtained if the classical

prediction region (7.9) for multivariate normal data was applied to the bootstrap sample.

Definition 7.13. The large sample 100(1 − δ)% standard bootstrap confidence region for θ is

{w : (w − Tn)T [S∗T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S∗T ) ≤ D2

1−δ} (7.16)

where D2
1−δ = χ

2
g,1−δ or D2

1−δ = dnFg,dn,1−δ where dn → ∞ as n→ ∞.

Much of the theory for the above confidence and prediction region appears in Olive (2023d,

ch. 4, 5). If nC−1
n = [S∗T ]−1, then (7.14) and (7.15) are the modified Bickel and Ren (2001) and

Olive (2017ab, 2018) prediction region method large sample 100(1 − δ)% confidence regions for

θ. Under regularity conditions, Bickel and Ren (2001) and Olive (2017b, 2018) proved that (7.11)

and (7.12) are large sample confidence regions. Pelawa Watagoda and Olive (2021) gave simpler

proofs. Pelawa Watagoda and Olive (2021) showed that under reasonable regularity conditions, i)
√

n(Tn − θ)
D
→ u, ii)

√
n(T ∗i − Tn)

D
→ u, iii)

√
n(T

∗
− θ)

D
→ u, and iv)

√
n(T ∗i − T

∗
)

D
→ u. Usually i)

and ii) are proven using large sample theory. If u ∼ Ng(0,Σu) with Σu nonsingular, then Pelawa

Watagoda and Olive (2021) showed
√

n(Tn−T
∗
)

P
→ 0. Thus iii) and iv) hold if i) and ii) hold. If Tn

is the sample mean or sample coordinatewise median, then see Bickel and Freedman (1981) and

Rupasinghe Arachchige Don and Olive (2019). Then

D2
1 = D2

T ∗i
(T
∗
,Cn/n) =

√
n(T ∗i − T

∗
)T C−1

n

√
n(T ∗i − T

∗
),

D2
2 = D2

θ(Tn,Cn/n) =
√

n(Tn − θ)T C−1
n

√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,Cn/n) =

√
n(T

∗
− θ)T C−1

n

√
n(T

∗
− θ), and

D2
4 = D2

T ∗i
(Tn,Cn/n) =

√
n(T ∗i − Tn)T C−1

n

√
n(T ∗i − Tn),
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are well behaved. If C−1
n

P
→ C−1, then D2

j
D
→ D2 = uT C−1u, and (7.14) and (7.15) are large sample

confidence regions. If C−1
n is “not too ill conditioned,” then D2

j ≈ uT C−1
n u for large n, and the

confidence regions (7.14) and (7.15) will have coverage near 1 − δ.

7.3 VISUALIZING THE NONPARAMETRIC PREDICTION REGION

Olive (2013) showed how to visualize the nonparametric prediction region (7.8) with the

Rousseeuw and Van Driessen (1999) DD plot of classical distances versus robust distances on the

vertical axis. See Section 7.5 where the exact same method will be used to visualize the bootstrap

confidence region (7.11).

7.4 THE BOOTSTRAP

This section illustrates the nonparametric bootstrap with some examples. Suppose a statistic

Tn is computed from a data set of n cases. The nonparametric bootstrap draws n cases with re-

placement from that data set. Then T ∗1 is the statistic Tn computed from the sample. This process

is repeated B times to produce the bootstrap sample T ∗1 , ...,T
∗
B. Sampling cases with replacement

uses the empirical distribution.

Definition 7.14. Suppose that data x1, ..., xn has been collected and observed. Often the data

is a random sample (iid) from a distribution with cdf F. The empirical distribution is a discrete

distribution where the xi are the possible values, and each value is equally likely. If w is a random

variable having the empirical distribution, then pi = P(w = xi) = 1/n for i = 1, ..., n. The cdf of the

empirical distribution is denoted by Fn.

Example 7.1. Let w be a random variable having the empirical distribution given by Definition

14. Show that E(w) = x ≡ xn and Cov(w) =
n − 1

n
S ≡

n − 1
n

Sn.

Solution: Recall that for a discrete random vector, the population expected value E(w) =∑
xi pi where xi are the values that w takes with positive probability pi. Similarly, the population
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covariance matrix

Cov(w) = E[(w − E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi − E(w))T pi.

Hence

E(w) =
n∑

i=1

xi
1
n
= x,

and

Cov(w) =
n∑

i=1

(xi − x)(xi − x)T 1
n
=

n − 1
n

S. □

Example 7.2. If W1, ...,Wn are iid from a distribution with cdf FW , then the empirical cdf Fn

corresponding to FW is given by

Fn(y) =
1
n

n∑
i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y. Fix n and y. Then

nFn(y) ∼ binomial (n, FW(y)). Thus E[Fn(y)] = FW(y) and V[Fn(y)] = FW(y)[1− FW(y)]/n. By the

central limit theorem,

√
n(Fn(y) − FW(y))

D
→ N(0, FW(y)[1 − FW(y)]).

Thus Fn(y) − FW(y) = OP(n−1/2), and Fn is a reasonable estimator of FW if the sample size n is

large.

Suppose there is data w1, ...,wn collected into an n × p matrix W. Let the statistic Tn =

t(W) = T (Fn) be computed from the data. Suppose the statistic estimates µ = T (F), and let

t(W∗) = t(F∗n) = T ∗n indicate that t was computed from an iid sample from the empirical distribution

Fn: a sample w∗1, ...,w
∗
n of size n was drawn with replacement from the observed sample w1, ...,wn.

This notation is used for von Mises differentiable statistical functions in large sample theory. See

Serfling (1980, ch. 6). The empirical distribution is also important for the influence function
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(widely used in robust statistics). The nonparametric bootstrap draws B samples of size n from

the rows of W, e.g. from the empirical distribution of w1, ...,wn. Then T ∗jn is computed from the

jth bootstrap sample for j = 1, ..., B.

Example 7.3. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample median Tn is

4. Using R, we drew B = 2 bootstrap samples (samples of size n drawn with replacement from the

original data) and computed the sample median T ∗1,n = 3 and T ∗2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

7.5 VISUALIZING SOME BOOTSTRAP CONFIDENCE REGIONS

As mentioned in previous section, the DD plot will be used to visualize some bootstrap con-

fidence regions. If a good robust estimator is used, Olive (2002) showed that the plotted points in a

DD plot cluster about the identity line with zero intercept and unit slope if the xi are iid from a mul-

tivariate normal distribution with nonsingular covariance matrix, while the plotted points cluster

about some other line through the origin if the xi are iid from a large family of nonnormal ellipti-

cally contoured distributions. For the robust estimator of multivariate location and dispersion, we

recommend the RFCH or RMVE estimator. These two estimators (Tn,Cn) are such that Cn is a
√

n consistent estimator of aCov(x) for a large class of elliptically contoured distributions where

the constant a > 0 depends on the elliptically contoured distribution and the estimator RFCH or
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RMVN, and a = 1 for the multivariate normal distribution with nonsingular covariance matrix. We

will use the RMVN estimator in the software.

Example 7.4. We generated xi ∼ N4(0, I) for i = 1, ..., 250. The coordinatewise median

was the statistic Tn. The nonparametric bootstrap was used with B = 1000. The DD plot of

the bootstrap sample is shown in Figure 7.3. The plotted points cluster about the identity line.

The vertical line MD = 2.9098 is the cutoff for the prediction region method confidence region

(7.11). The long horizonal line RD = 3.0995 is the cutoff using the robust estimator. When
√

n(Tn − θ)
D
→ Np(0,ΣT ), then under mild regularity conditions,

√
n(Tn − T

∗

n)
P
→ 0. The short

horizontal line is RD = 2.8074 and MD = 2.8074 is approximately the cutoff that would be used

by the standard bootstrap confidence region (mentally drop a vertical line from where the short

horizontal line ends at the identity line). Variability in DD plots increases as RD increases. The R

commands for making the plot are shown below.

source("http://parker.ad.siu.edu/Olive/mpack.txt")

x <-matrix(rnorm(1000),nrow=250,ncol=4)

out<-rhotboot(x)

ddplot4(out$mus)

$cuplim

90.4%

2.809824

$ruplim

90.4%

3.095542

$mvnlim

[1] 2.807479
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Figure 7.3. Visualizing the confidence region with a DD plot
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Some R functions for bootstrapping several statistics are shown below.

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(bicboot) #bootstrap min BIC model forward selection regression

#function (x, y, B = 1000)

args(FDAboot) #Bootstraps FDA betahat = first eigenvector.

#function (x, group, B = 1000)

args(fselboot2) #bootstrap min Cp model forward selection regression

#function (x, y, B = 1000, c = 0.01, aug = F)

args(lassoboot2) #bootstrap lasso or ridge regression for MLR

#function (x, y, B = 1000, regtype = 1, c = 0.01, aug = F)

args(LPHboot) #bootstraps the Cox regression lasso, takes a few minutes

#function (x, time, status, B = 1000)

args(LRboot) #bootstrap logistic regression full model

#function (x, y, mv = c(1, 1), B = 1000, bin = T)

args(pcaboot) #Bootstraps PCA. Likely only accurate for positive eigenvalues

#function (x, corr = T, rob = F, B = 1000)

args(PHboot) #bootstraps the Cox PH regression full model

#with the nonparametric bootstrap

#function (x, time, status, B = 1000)

args(PRboot) #bootstraps the Poisson regression full model

#function (x, y, B = 1000)

args(regboot) #residual bootstrap for MLR

function (x, y, B = 1000)

args(rowboot) #nonparametric bootstrap for MLR

#function (x, y, B = 1000)

source("http://parker.ad.siu.edu/Olive/mpack.txt")

args(corboot) #rowwise nonparametric bootstrap of the correlation matrix
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#function (x, B = 1000) #stacks entries above the diagonal into a vector beta

args(rhotboot) #Bootstraps RMVN center (med=F) or coordinatewise median.

#function (x, B = 1000, med = T)

source("http://parker.ad.siu.edu/Olive/tspack.txt")

args(arboot) Bootstraps AR(p) model selection using the parametric bootstrap

#function (Y, B = 100, pmax = 10, c = 0.01)

args(arboot2) #Bootstraps AR(p) model selection using the residual bootstrap.

#function (Y, B = 100, pmax = 10, c = 0.01)

args(maboot) #Bootstraps MA(q) model selection using the parametric bootstrap.

#function(Y,B=100,qmax=10,c=0.05)

args(maboot2) #Bootstraps MA(q) model selection using the residual bootstrap.

#function(Y,B=100,qmax=10,c=0.05)
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CHAPTER 8

DISCUSSION

Plots and simulations were done in R. See R Core Team (2020). Programs are in the collection

of functions tspack.txt. See (http://parker.ad.siu.edu/Olive/tspack.txt).

Two tspack functions are useful for illustrating least squares (OLS) applied to AR and MA

time series. The function arp fits an AR(p) model to time series Y using OLS. The function

assumes p < n − p, and (n − p) > 10p would be useful. The function maq fits an MA(q) model to

time series Y using OLS and the residuals from the MA GMLE. The function assumes q < n − q,

and (n − q) > 10q would be useful. Often n ≥ 1000 was needed for the MA GMLE and OLS

estimators to be close.

For AR(p) data splitting, the tspack function dsarsim used the built in “AIC” model selection

from the R function ar and tended to underfit for n < 20 pmax. The tspack function dsarsim2

used Equation (2.4) for AR(p) model selection with AIC for n < 14(pmax) and BIC otherwise.

For MA(q) data splitting, the function dsmasim used auto.arima while dsmasim2 used

Equatin (2.4).

The function armamsel1 performs Pötscher, B.M. (1990) ARMA model selection method,

while the function armasim1 does the simulation. The function armamsel2 performs the new

ARMA model selection method described in Section 2, while the function armasim2 does the

simulation.

The bootstrap is due to Efron (1979). Also see Efron (1982) and Olive (2017ab, 2023abcd).

Rathnayake and Olive (2021) show how to bootstrap many variable selection estimators. Haile and

Olive (2023a) show how to bootstrap AR, MA, and ARMA time series model selection estimators.

See Haile, Zhang and Olive (2023) for prediction regions if n/p is small.

The rpack function ddplot4 applied to the bootstrap sample can be used to visualize the

bootstrap prediction region method confidence region.
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