Math 402 HW 10 Spring 2023. Due Friday, April 21. Final: Friday, May 12, 10:1512:15

$$
\boldsymbol{P}=\left[\begin{array}{ccccc}
& F & G & H & I \\
F & 0.2 & 0.8 & 0.0 & 0.0 \\
G & 0.5 & 0.0 & 0.5 & 0.0 \\
H & 0.75 & 0.0 & 0.0 & 0.25 \\
I & 1.0 & 0.0 & 0.0 & 0.0
\end{array}\right]
$$

1) A machine is in one of four states (F, G, H, I) and migrates annually among them according to a Markov chain with the above transition matrix. At time 0 , the machine is in state F .
a) Find the probability that the machine is in state F at the end of 3 years.
b) If a salvage company pays 500 at the end of three years if the machine is in state F , then the APV at time 0 for the contract $=500 v^{3}$ [probability from a)]. Calculate the APV if $v=0.9$.
2) Suppose $T_{x} \sim E X P(0.02) \Perp T_{y} \sim E X P(0.03)$ and $\delta=0.01$. Find $\bar{a}_{x \mid y}$.
3) A policy with a gross premium of 1000 and survival model $q_{x+t}=0.05+0.01 t$ for $t=0,1,2,3$ produces profit signature $\Pi=(-300,100,90,80,70)$. The hurdle rate $r=0.1$.
a) Calculate the NPV of the profits at issue.
b) Show that the internal rate of return is 5.54%. Hint: show "NPV $=0$ " acting as if $r=0.0554$. Take $N P V \approx 0$ if $|N P V| \leq 0.05$.
c) Find the DPP (discounted payback period) if it exists. Hint: the DPP does not exist if $N P V(t)<0$ for $t=0,1, \ldots, n$. Otherwise, $D P P=m$ where m is the first time $N P V(t) \geq 0$.
d) Calculate the profit margin.

Hint: $\operatorname{APV}($ gross premium $)=1000\left(1+\frac{p_{x}}{1+r}+\frac{{ }_{2} p_{x}}{(1+r)^{2}}+\frac{{ }_{3} p_{x}}{(1+r)^{3}}\right)=1000 \ddot{a}_{x: \bar{n} \mid}=$ $1000 \sum_{k=0}^{n-1} v_{r}^{k}{ }_{k} p_{x}$ where ${ }_{k} p_{x}=\prod_{t=0}^{k-1}\left(1-q_{x+t}\right)=\prod_{t=0}^{k-1} p_{x+t}$. See 189) of Exam 3 review.

t	$P r_{t}$	${ }_{t} p_{x}$	Π_{t}	$N P V(t)=\sum_{k=0}^{t} \Pi_{k} v_{r}^{k}$
0	-5000.00	1	-5000.00	
1	3838.20	0.98500	3838.20	
2	3018.70	0.96826	2973.42	
3	1635.70	0.94986	1583.78	
4	1684.70	0.92991	1600.23	
5	1503.71	0.90759	1398.32	

4) a) For the above table with $r=0.1$, find $\operatorname{NPV}(\mathrm{t})$, the DPP (if it exists), and NPV (give the last column of the above table).
b) If the gross premium $G=20335$, show the profit margin ≈ 0.05. Hint: APV (gross premium $)=G \sum_{t=0}^{n-1} v_{r}^{t}{ }_{t} p_{x}$ where ${ }_{t} p_{x}$ is given in the above table.
