Math 402 HW 6 Spring 2023. Due Friday, March 10. Quiz 6 Wed. March 8. Exam 2 Wednesday March 29. Cumulative Final: Friday, May 12, 10:15-12:15.

1) Times (in years) until death are given for 9 people from Dickson, Mary, and Waters (problem 18.1 modified, 2020, p. 690).
$27,30+, 34,58+, 68,68+, 70,77,78+$
a) Compute the Kaplan Meier survival function $\hat{S}_{K}\left(t_{i}\right)$ by making a table of the data with headers as done in class.
b) Use Greenwood's formula to find $S E\left(\hat{S}_{K}(69)\right)$, an estimate of the standard deviation of $\hat{S}_{K}(69)$.
2) Suppose 10000 lives are observed from exact age 50 for 30 years, giving the table below.
$\underline{\text { age last birthday deaths }}$
50-59 170

60-69 465
70-74 552
75-79 968
a) Find $\hat{S}_{50}(t)$ for the four possible values of t using a table with headers as done in class.
b) Find the ogive empirical survival function at $t=28$.
3)

j	t_{j}	d_{j}	r_{j}	$\hat{S}_{K}\left(t_{j}\right)$
1	1	3	15	

$\begin{array}{llll}2 & 2 & 24 & 80\end{array}$
$\begin{array}{llll}3 & 3 & 5 & 25\end{array}$
$\begin{array}{llll}4 & 4 & 6 & 60\end{array}$
$\begin{array}{llll}5 & 5 & 3 & 10\end{array}$
a) Fill in the above table on a separate page, where $\hat{S}_{K}\left(t_{j}\right)$ is the Kaplan Meier product limit estimator.
b) Find $\hat{H}_{N}(5)$.
c) Use b) to find $\hat{S}_{N}(5)$.
d) Find $\hat{S}_{K}(5)$.
e) Determine the Greenwood approximation for the variance of the Kaplan Meier product limit estimator $\hat{S}_{K}(4)$.

Hint: See old quiz 6. Over for more problems.
4) For a discrete whole life insurance of 150,000 on x, you are given ${ }^{2} A_{x}=0.0143$, $A_{x}=0.0653$, and the annual premium is calculated using the equivalence principle. Calculate the standard deviation of the loss variable L.

Hint: For unit payment, say $V\left[L_{x}(1)\right]$,

$$
V\left(L_{x}(1)\right)=\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{\left(1-A_{x}\right)^{2}}
$$

See Exam 2 review 116 i). Then for payment $X=150000, V\left[L_{x}(X)\right]=X^{2} V\left[L_{x}(1)\right]$. Want $V\left[L_{x}(X)\right]$. Here $L_{x}(X)={ }_{0} L_{x}$. (May 2007 SOA exam problem 4.)
5) Get the illustrative life table. Assume mortality follows the illustrative life table and $i=0.06$. Find the premium for a fully discrete whole life insurance of 1000 on (40).

Hint: see MLC 27 and use Exam 2 review 115 i) to get the premium for 1 unit. Then multiply this formula by 1000 . Note that the table gives $1000 A_{x}$.

