Math 402 HW 7 Spring 2023. Due Friday, March 24. Quiz 7 Wed. March 22. Exam 2 Wednesday March 29. Cumulative Final: Friday, May 12, 10:15-12:15.

1) An auto insurance company divides policyholders into 3 states: 1 for no accidents as a policyholder, 2 for exactly one accident as a policyholder and 3 for two or more accidents as a policyholder. Suppose the transition matrix

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.9 & 0.09 & 0.01 \\
0 & 0.8 & 0.2 \\
0 & 0 & 1
\end{array}\right]
$$

Suppose all policyholders are initially in State 1. Find $\boldsymbol{\pi}_{2}$, the state vector at time 2 years.
2) Suppose

$$
\boldsymbol{P}^{(1)}=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.7 & 0.3
\end{array}\right] \quad \text { and } \quad \boldsymbol{P}^{(2)}=\left[\begin{array}{cc}
0.5 & 0.5 \\
0.8 & 0.2
\end{array}\right] .
$$

If the process begins in State 1, what is the probability that the process will be in State 2 after 2 steps?

Hint: see Exam 2 review 137) and 138).
3) For a nonhomogeneous Markov chain with two states, Intact and Failed, the following matrix shows the probability of movement between states, where $t=1,2,3, \ldots$.

$$
\boldsymbol{Q}_{t}=\left[\begin{array}{cc}
0.8^{0.5 t} & 1-0.8^{0.5 t} \\
0 & 1
\end{array}\right]
$$

Calculate the minimum number of time periods so that the expected percentage of entities in state Intact is less than 10%.

Hints: Let $\boldsymbol{\pi}_{n}=\left(p_{n}, q_{n}\right)=\boldsymbol{\pi}_{0} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2} \cdots \boldsymbol{Q}_{n}$. Want the smallest n such that $p_{n}<0.1$. CAS Spring 2009 Exam 3L no. 6.

The following text, along with earlier editions, has a good chapter on Markov chains (ch. 4). The library has several copies including electronic access.

Ross, Sheldon, M. (2007, 2014), Introduction to Probability Models, 7th and 11th ed., Academic Press, San Diego, CA.

Google "Daniel Markov Chains" to find some study notes on Markov chains.
https://www.soa.org/files/edu/m-24-05.pdf
Problems 38, 54, 89, 151, 152, 179, 180, 181, 217, 218, 250, 283 from the SOA MLC practice exam may cover Markov Chains.

