Math 404 HW 8 Spring 2024. Due Tuesday, April 2. One page, 4 problems.

1) Following the example done in class, suppose claim sizes follow a single parameter Pareto distribution with $\alpha=3$ and Θ where $\Theta \sim U(1,4)$. An insured selected at random submits 4 claims of sizes $2,3,5$, and 7 . Let $f\left(x_{n+1} \mid \boldsymbol{x}\right)=f(x \mid \boldsymbol{x})$ be the predictive density for $X_{n+1} \mid \boldsymbol{x}$. It was shown in class that

$$
\begin{aligned}
& f(x \mid \boldsymbol{x})=\frac{39}{\left(2^{13}-1\right) 16} \frac{2^{16}-1}{x^{4}} \text { for } \mathrm{x} \geq 2, \text { and } \\
& f(x \mid \boldsymbol{x})=\frac{39}{\left(2^{13}-1\right) 16} \frac{x^{16}-1}{x^{4}} \text { for } 1 \leq \mathrm{x} \leq 2
\end{aligned}
$$

Find the posterior probability that the next claim will be less than 1.5

$$
=P\left(X_{n+1} \leq 1.5 \mid \boldsymbol{x}\right)=\frac{39}{\left(2^{13}-1\right) 16} \int_{1}^{1.5} x^{12}-x^{-4} d x .
$$

2) C5: The annual number of claims for a policyholder has a binomial distribution with probability function:

$$
p(x \mid q)=\binom{2}{x} q^{x}(1-q)^{2-x}
$$

for $x=0,1,2$. The prior distribution is $\pi(q)=4 q^{3}$ where $0<q<1$. This policyholder had one claim in each of Years 1 and 2. Determine the Bayesian estimate of the number of claims in Year 3

Hint: $p(x \mid q)$ is the likelihood when $n=1$. Recognize that the posterior is a beta distribution. The expected number of claims is $E(X \mid q)=2 q$, so the Bayesian estimate $E(2 q \mid 1,1)$.
3) C11: Losses on a companys insurance policies follow a Pareto distribution with probability density function:

$$
f(x \mid \theta)=\frac{\theta}{(x+\theta)^{2}}
$$

for $0<x<\infty$. For half of the company's policies $\theta=1$, while for the other half $\theta=3$. For a randomly selected policy, losses in Year 1 were 5 . Determine the posterior probability that losses for this policy in Year 2 will exceed 8.

Hint: since the prior takes on 2 values, it is a pmf. Use Bayes' theorem for a pmf. Then " $P\left(X_{2}>8 \mid X_{1}=5\right)$ " $=P\left(X_{2}>8 \mid \theta=1\right) P\left(\theta=1 \mid X_{1}=5\right)+P\left(X_{2}>8 \mid \theta=3\right) P(\theta=$ $\left.3 \mid X_{1}=5\right)$ where $P\left(X_{2}>8 \mid \theta\right)=1-F_{W}(8)$ if $W \sim \operatorname{Pareto}(\alpha=1, \theta)$.
4) C24: The probability that an insured will have exactly one claim is θ. The prior distribution of θ has pdf

$$
\pi(\theta)=\frac{3}{2} \sqrt{\theta}
$$

for $0<\theta<1$. A randomly chosen insured is observed to have exactly one claim. Determine the posterior probability that θ is greater than 0.6.

Hint: You are given $f(1 \mid \theta)=\theta$ which is what is needed to compute the posterior.
Exam C Bayesian problems: 5, 11, 15, 24, 29, 43, 45, 55, 58, 60, 64, 76, 136, 142, 157, 184, 191, 203, 226, 242, 247, 253, 254, 260,

