Math 404 Exam 1 is Thurs. Feb. 15. You are allowed 7 sheets of notes and a calculator. The exam covers HW1-3, and Q1-3. Numbers refer to types of problems on exam. In this class $\log (t)=\ln (t)=\log _{e}(t)$ while $\exp (t)=e^{t}$.

0) Get familiar with the following distributions. For continuous distributions, assume formulas are given on the support, and the support is $x>0$, unless told otherwise.
a) Exponential $(\theta)=\operatorname{Gamma}(\alpha=1, \theta): f(x)=\frac{1}{\theta} e^{-x / \theta}$ where $\mathrm{x}, \theta>0$.
$F(x)=1-e^{-x / \theta}, \quad E(X)=\theta, \quad V(X)=\theta^{2}, \quad E[X \wedge x]=\theta\left(1-e^{-x / \theta}\right), \quad e_{X}(d)=\theta$.
$E\left(X^{k}\right)=\theta^{k} \Gamma(k+1)$ for $k>-1$. If k is a positive integer, $E\left(X^{k}\right)=\theta^{k} k$!.
$M(t)=(1-\theta t)^{-1}, t<1 / \theta . \quad \operatorname{VaR}_{p}(X)=-\theta \ln (1-p) . \quad T V a R_{p}(X)=-\theta \ln (1-p)+\theta$.
b) Gamma $(\alpha, \theta): f(x)=\frac{1}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \theta}$ where α, θ, and x are positive.
$E(X)=\alpha \theta, \quad V(X)=\alpha \theta^{2}, \quad E\left(X^{k}\right)=\frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)}$ for $k>-\alpha$.
$M(t)=(1-\theta t)^{-\alpha}$ for $t<1 / \theta$.
c) (two parameter) $\operatorname{Pareto}(\alpha, \theta): f(x)=\frac{\alpha \theta^{\alpha}}{(\theta+x)^{\alpha+1}}$ where α, θ, and x are positive. $F(x)=1-\left(\frac{\theta}{x+\theta}\right)^{\alpha}, E(X)=\frac{\theta}{\alpha-1}$ for $\alpha>1, \mathrm{~V}(\mathrm{X})=\frac{\theta^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}$ for $\alpha>2$.
$e_{X}(d)=\frac{\theta+d}{\alpha-1}, E\left(X^{k}\right)=\frac{\theta^{k} \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)}$ for $-1<k<\alpha$.
If $k<\alpha$ is a positive integer, $E\left(X^{k}\right)=\frac{\theta^{k} k!}{(\alpha-1) \cdots(\alpha-k)}$.
$E[X \wedge x]=\frac{\theta}{\alpha-1}\left[1-\left(\frac{\theta}{x+\theta}\right)^{\alpha-1}\right]$, for $\alpha \neq 1$, and $E[X \wedge x]=-\theta \ln \left(\frac{\theta}{x+\theta}\right)$ for $\alpha=1$.
$\operatorname{Va}_{p}(X)=\theta\left[(1-p)^{-1 / \alpha}-1\right], T V a R_{p}(X)=\operatorname{Va}_{p}(X)+\frac{\theta(1-p)^{-1 / \alpha}}{\alpha-1}$ for $\alpha>1$.
d) If $X \sim$ single parameter $\operatorname{Pareto}(\alpha, \theta): f(x)=\frac{\alpha \theta^{\alpha}}{x^{\alpha+1}} I(x>\theta)$ where $\alpha>0$ and θ is real. Note the support is $x>\theta$. $F(x)=1-\left(\frac{\theta}{x}\right)^{\alpha}$ for $x>\theta . E(X)=\frac{\alpha \theta}{\alpha-1}$ for $\alpha>1$. $V(X)=\frac{\alpha \theta^{2}}{\alpha-2}-\left(\frac{\alpha \theta}{\alpha-1}\right)^{2}$ for $\alpha>2 . E\left(X^{k}\right)=\frac{\alpha \theta^{k}}{\alpha-k}$ for $k<\alpha . E(X \wedge x)=$ $\frac{\alpha \theta}{\alpha-1}-\frac{\theta^{\alpha}}{(\alpha-1) x^{\alpha-1}}$ for $x \geq \theta . E(X \wedge x)=x$ for $x<\theta$. Use $\theta \geq 0$ for loss models.
$\operatorname{VaR}_{p}(X)=\theta\left[(1-p)^{-1 / \alpha}\right], \operatorname{TVaR}_{p}(X)=\frac{\alpha \theta(1-p)^{-1 / \alpha}}{\alpha-1}=\operatorname{VaR}_{p}(X)+\frac{1}{\alpha-1} \operatorname{VaR}_{p}(X)$ for $\alpha>1$.
e) Uniform (a, b). This distribution has support on $a \leq x \leq b, f(x)=\frac{1}{b-a}, \quad F(x)=$ $(x-a) /(b-a), \quad E(X)=(a+b) / 2, \quad V(X)=(b-a)^{2} / 12, \quad e_{X}(d)=\frac{b-d}{2}, 0 \leq a \leq d \leq b$.
f) $\operatorname{Weibull}(\theta, \tau): f(x)=\frac{\tau(x / \theta)^{\tau} e^{-(x / \theta)^{\tau}}}{x}$ where $\theta>0$ and $\tau>0$.
$F(x)=1-e^{-(x / \theta)^{\tau}}, \quad E\left(X^{k}\right)=\theta^{k} \Gamma(1+k / \tau)$ for $k>-\tau$. Here $\theta, \tau>0$ and the $\operatorname{Weibull}(\theta, \tau=1) \mathrm{RV}$ is the Exponential $(\theta) \mathrm{RV} . \operatorname{Va} R_{p}(X)=\theta[-\ln (1-p)]^{1 / \tau}$.
$\mathrm{g})$ Inverse $\operatorname{Weibull}(\theta, \tau): f(x)=\frac{\tau(\theta / x)^{\tau} e^{-(\theta / x)^{\tau}}}{x}$. $F(x)=e^{-(\theta / x)^{\tau}}, \quad E\left(X^{k}\right)=\theta^{k} \Gamma(1-k / \tau)$ for $k<\tau$. Here $\theta, \tau>0$ and the Inverse $\operatorname{Weibull}(\theta, \tau=1) \mathrm{RV}$ is the $\operatorname{Inverse} \operatorname{Exponential}(\theta) \mathrm{RV} . V a R_{p}(X)=\theta[-\ln (p)]^{-1 / \tau}$.
h) $\operatorname{normal}(\mu, \sigma): E(X)=\mu, V(X)=\sigma^{2}$. The support is $(-\infty, \infty)$. If $Z \sim N(0,1)$, then the cdf of Z is $\Phi(x)$ and the pdf of Z is $\phi(x)$. If $X \sim N\left(\mu, \sigma^{2}\right)$, then the cdf of X is $F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$. If $X \sim N\left(\mu, \sigma^{2}\right)$, then the $\operatorname{cdf} F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$, and the pdf $f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-1}{2 \sigma^{2}}(x-\mu)^{2}\right] . T V a R_{p}(X)=\mu+\sigma \frac{\phi\left(z_{p}\right)}{1-p}$ where $P\left(Z \leq z_{p}\right)=p$ if $Z \sim N(0,1) . V a R_{p}(X)=\mu+\sigma z_{p}$. Here $\sigma>0$ and μ is real.
i) $\operatorname{lognormal}(\mu, \sigma): E(X)=\exp \left(\mu+\frac{1}{2} \sigma^{2}\right), V(X)=\exp \left(\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right) \exp (2 \mu)$, $F(x)=\Phi\left(\frac{\ln (x)-\mu}{\sigma}\right), E(X \wedge x)=\exp \left(\mu+\frac{1}{2} \sigma^{2}\right) \Phi\left(\frac{\ln x-\mu-\sigma^{2}}{\sigma}\right)+x\left[1-\Phi\left(\frac{\ln x-\mu}{\sigma}\right)\right]$. If $X \sim L N(\mu, \sigma)$, then $\ln (X) \sim N\left(\mu, \sigma^{2}\right)$. Here $\sigma>0$ and μ is real. $V a R_{p}(X)=\exp \left(\mu+z_{p} \sigma\right)$. For $a>0, a X \sim L N(\mu+\ln (a), \sigma)$.
j) $\operatorname{beta}(a, b)$: The support is $[0,1]$. The pdf $f(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}$ where $a>0$ and $b>0 . E(X)=\frac{a}{a+b} . V(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$.

The following are discrete distributions. These are used to count the number of claims, so the random variable X is often denoted by N. Note: $p_{k}=P(X=k)=p(k)$.
k) $\operatorname{binomial}(q, m): m$ is a (usually known) positive integer

$$
p_{k}=\binom{m}{k} q^{k}(1-q)^{m-k} \text { for } \mathrm{k}=0,1, \ldots, \mathrm{~m} \text { where } 0<\mathrm{q}<1
$$

$E(N)=m q, \quad V(N)=m q(1-q), \quad P(z)=[1+q(z-1)]^{m}$.
l) $\operatorname{Poisson}(\lambda): p_{k}=\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k=0,1, \ldots$, where $\lambda>0 . E(N)=\lambda=V(N)$, $P(z)=e^{\lambda(z-1)}$.
m) Negative $\operatorname{Binomial}(\beta, r): \beta, r>0$ and $p_{0}=(1+\beta)^{-r}$. For $k=1,2, \ldots$,

$$
p_{k}=\frac{r(r+1) \cdots(r+k-1) \beta^{k}}{k!(1+\beta)^{r+k}} \text { and } \mathrm{p}_{\mathrm{k}}=\frac{(\mathrm{k}+\mathrm{r}-1)!\beta^{\mathrm{k}}}{\mathrm{k}!(\mathrm{r}-1)!(1+\beta)^{\mathrm{r}+\mathrm{k}}} \text { for integer } \mathrm{r} .
$$

$E(N)=r \beta, \quad V(N)=r \beta(1+\beta), \quad P(z)=[1-\beta(z-1)]^{-r}$. The Geometric (β) is the special case with $r=1$ and $p_{k}=\frac{\beta^{k}}{(1+\beta)^{k+1}}$ for $k=0,1, \ldots$.

Some properties of the gamma function follow.
i) $\Gamma(k)=(k-1)$! for integer $k \geq 1$.
ii) $\Gamma(x+1)=x \Gamma(x)$ for $x>0$.
iii) $\Gamma(x)=(x-1) \Gamma(x-1)$ for $x>1$.
iv) $\Gamma(0.5)=\sqrt{\pi}$.

Let $X \geq 0$ be a nonnegative random variable.
Then the cumulative distribution function (cdf) $F(x)=P(X \leq x)$. Since $X \geq 0$, $F(0)=0, F(\infty)=1$, and $F(x)$ is nondecreasing.

The probability density function (pdf) $f(x)=F^{\prime}(x)$.
The survival function $S(x)=P(X>x)$. $S(0)=1, S(\infty)=0$ and $S(x)$ is nonincreasing.

The hazard rate function $=$ force of mortality $=\mu(x)=h(x)=\frac{f(x)}{1-F(x)}=\frac{f(x)}{S(x)}$ for $x>0$ and $F(x)<1$. Note that $h(x) \geq 0$ if $F(x)<1$.

The cumulative hazard function $H(x)=\int_{0}^{x} h(t) d t$ for $x>0$. It is true that $H(0)=0, H(\infty)=\infty$, and $H(x)$ is nondecreasing.

Assume $X \geq 0$ unless told otherwise.

1) Given one of $F(x), f(x), S(x), h(x)$, or $H(x)$, be able to find the other 4 quantities for $x>0$. See HW1.
A) $F(x)=\int_{0}^{x} f(t) d t=1-S(x)=1-\exp [-H(x)]=1-\exp \left[-\int_{0}^{x} h(t) d t\right]$.
B) $f(x)=F^{\prime}(x)=-S^{\prime}(x)=h(x)[1-F(x)]=h(x) S(x)=h(x) \exp [-H(x)]=$ $H^{\prime}(x) \exp [-H(x)]$.
C) $S(x)=1-F(x)=1-\int_{0}^{x} f(t) d t=\int_{x}^{\infty} f(t) d t=\exp [-H(x)]=\exp \left[-\int_{0}^{x} h(t) d t\right]$.
D) $h(x)=\frac{f(x)}{1-F(x)}=\frac{f(x)}{S(x)}=\frac{F^{\prime}(x)}{1-F(x)}=\frac{-S^{\prime}(x)}{S(x)}=-\frac{d}{d x} \ln [S(x)]=H^{\prime}(x)$.
E) $H(x)=\int_{0}^{x} h(t) d t=-\ln [S(x)]=-\ln [1-F(x)]$.

Tip: if $F(x)=1-\exp [G(x)]$ for $x>0$, then $H(x)=-G(x)$ and $S(x)=\exp [G(x)]$.
Tip: For $S(x)>0$, note that $S(x)=\exp [\ln (S(x))]=\exp [-H(x)]$. Finding $\exp [\ln (S(x))]$ and setting $H(x)=-\ln [S(x)]$ is easier than integrating $h(x)$.
2) Know: Except for the inverse Gaussian distribution, the continuous distributions in Appendix A with parameter θ are scale families with scale parameter θ if any other parameters $\boldsymbol{\tau}$ are fixed, written $X \sim S F(\theta \mid \boldsymbol{\tau})$. Let $a>0$. Then $Y=a X \sim S F(a \theta \mid \boldsymbol{\tau})$. If $X \sim L N(\mu, \sigma)$, then $Y=a X \sim L N(\mu+\ln (a), \sigma)$. Often $a=1+r$.
3) $X \wedge d=\min (X, d)$ is the limited loss RV. This RV is right censored. The limited expected value $E[X \wedge d]=\int_{0}^{d} x f(x) d x+d S(d)=\int_{0}^{d} S(x) d x$. The expected loss (per loss) for a policy holder with deductible d is $E[X \wedge d]$.
4) Let $X \geq 0$ be continuous. If $\lim _{x \rightarrow \infty} x S(x)=0$, then $E(X)=\int_{0}^{\infty} x f(x) d x=$ $\int_{0}^{\infty} S(x) d x=\int_{0}^{\infty}[1-F(x)] d x=\mu=$ mean. The k th raw moment $=\mu_{k}^{\prime}=E\left(X^{k}\right)=$ $\int_{0}^{\infty} x^{k} f(x) d x$. If $\lim _{x \rightarrow \infty} x^{k} S(x)=0$ and $k \geq 1$, then $E\left(X^{k}\right)=\int_{0}^{\infty} k x^{k-1} S(x) d x$.

If X is discrete, $=E\left(X^{k}\right)=\sum_{k} x^{k} P(X=x)$.
5) The k th central moment $\mu_{k}=E\left[(X-\mu)^{k}\right]$. The variance uses $k=2$ and the short cut formula for the variance is $V(X)=E\left[(X-\mu)^{2}\right]=\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2}$ where $\mu=E(X)$. Note: $\mu_{3}=\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu+2 \mu^{3}$ and $\mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu+6 \mu_{2}^{\prime} \mu^{2}-3 \mu^{4}$.

The standard deviation $S D(X)=\sqrt{V(X)}=\sigma$.
6) Suppose $X \geq 0$. Then $E[g(X)]=\int_{0}^{\infty} g(x) f(x) d x$ for X continuous and $E[g(X)]=$ $\sum_{x: p(x)>0} g(x) p(x)$ for X discrete.
7) The coefficient of variation $=C V=\frac{\sigma}{\mu}$, skewness $=\gamma_{1}=\frac{\mu_{3}}{\sigma^{3}}$, and kurtosis $=$ $\gamma_{2}=\frac{\mu_{4}}{\sigma^{4}}$. For a statistic $T, C V(T)=S D(T) / E(T)$.
8) The per loss RV $Y^{L}=(X-d)_{+}=0$ if $X \leq d, Y^{L}=(X-d)_{+}=X-d$ if $X>d$. The RV is left censored since values $X \leq d$ are not ignored but are set to d. So values of $X-d<0$ are set to 0 . Note that $(X-d)_{+}$is the positive part of $X-d$, and represents payment for insurance with a deductible. The superscript L represents the "payment," possibly 0 , made per loss. $E\left[(X-d)_{+}\right]=e_{X}(d)[1-F(d)]=e_{X}(d) S(d)=$ $\int_{d}^{\infty}(x-d) f(x) d x=\int_{d}^{\infty} S(x) d x=E\left(Y^{L}\right)=E\left(Y^{P}\right) S(d)$.
9) For a given value of $d>0$ with $P(X>d)>0$, the excess loss variable or per payment $\mathrm{RV} Y^{P}=(X-d) \mid X>d$. This is a left truncated and shifted RV. The mean excess loss function $e_{X}(d)=E\left(Y^{P}\right)=E[(X-d) \mid X>d]=\frac{\int_{d}^{\infty}(x-d) f(x) d x}{1-F(d)}=$ $\frac{\int_{d}^{\infty} S(x) d x}{S(d)}=\frac{E\left(Y^{L}\right)}{S(d)}$. The superscript P represents "payment" per payment >0 actually made (so the loss $>d$).
10) Since insurance with a limit d plus insurance with a deductible d equals full coverage insurance: $X \wedge d+(X-d)_{+}=X$, we get $E[X \wedge d]+E\left[(X-d)_{+}\right]=E[X]$, and $E[X \wedge d]=E[X]-E\left[(X-d)_{+}\right]$. So $E\left(Y^{L}\right)=E(X)-E(X \wedge d)$.
11) $E\left[(d-X)_{+}\right]=d-E[X \wedge d]$
12) The Value at Risk of X at the $100 p \%$ level $=100 p$ th percentile $\operatorname{Va} R_{p}(X)=\pi_{p}$ satisfies $F\left(\pi_{p}\right)=P\left(X \leq \pi_{p}\right)=p$ if X is a continuous RV with increasing $F(x)$. Then to find π_{p}, let $\pi=\pi_{p}$ and solve $F(\pi) \stackrel{\text { set }}{=} p$ for π.

For a general RV X, π_{p} satisfies $F\left(\pi_{p}-\right)=P\left(X<\pi_{p}\right) \leq p \leq F\left(\pi_{p}\right)=P\left(X \leq \pi_{p}\right)$. So $F\left(\pi_{p}-\right) \leq p$ and $F\left(\pi_{p}\right) \geq \alpha$. Then graphing $F(x)$ can be useful for finding π_{p}.
13) The tail value at risk of X at $100 p \%$ security level is
$T V a R_{p}(X)=E\left(X \mid X>\pi_{p}\right)=\frac{\int_{\pi_{p}}^{\infty} x f(x) d x}{1-F\left(\pi_{p}\right)}=\frac{\int_{p}^{1} \pi_{u} d u}{1-p}=\operatorname{Va}_{p}(X)+e_{X}\left(\pi_{p}\right)=$ $\pi_{p}+\frac{\int_{\pi_{p}}^{\infty}\left(x-\pi_{p}\right) f(x) d x}{1-p}=\pi_{p}+\frac{E(X)-E\left(X \wedge \pi_{p}\right)}{1-p}$.
14) The loss elimination ratio $\mathrm{LER}=\frac{E[X \wedge d]}{E(X)}$ if $E(X)$ exists. Note that $E\left(Y^{L}\right)=$ $E\left[(X-d)_{+}\right]=E(X)-E[X \wedge d]$. So $E[X \wedge d]=E(X)-E\left[(X-d)_{+}\right]=E(X)-E\left(Y^{L}\right)$.
15) Know Given X is a loss RV with parameters γ, be able to estimate many of the above quantities given $\hat{\gamma}$: plug in $\hat{\gamma}$ for γ.
16) If there is a policy limit u, then $X \wedge u$ is important. If there is a deductible d, and a maximum payment $u-d$, then $u=u-d+d$.
17) The method of moments estimator for a $k \times 1$ parameter vector γ sets
$E\left(X_{j}\right) \stackrel{\text { set }}{=} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$ for $j=1, \ldots, k$ and solves for $\gamma_{1}, \ldots, \gamma_{k}$. The solution is the method of moments estimator $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{k}\right)$.

In more detail, let $\hat{\mu}_{j}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$, let $\mu_{j}^{\prime}=E\left(X^{j}\right)$ and assume that $\mu_{j}^{\prime}=\mu_{j}^{\prime}\left(\gamma_{1}, \ldots, \gamma_{k}\right)$. Solve the system

for the method of moments estimator $\hat{\gamma}$.
18) If g is a continuous function of the first k moments and $h(\boldsymbol{\gamma})=g\left(\mu_{1}^{\prime}(\gamma), \ldots, \mu_{k}^{\prime}(\gamma)\right)$, then the method of moments estimator of $h(\boldsymbol{\gamma})$ is $g\left(\hat{\mu}_{1}^{\prime}, \ldots, \hat{\mu}_{k}^{\prime}\right)$.
19) The method of moments estimator (MME) for $E(X)$ is $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=m$, the sample mean. The MME for $V(X)$ is the sample biased variance $=$ empirical variance $=\hat{\sigma}_{E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]^{2}=t-m^{2}$ where $t=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$, the sample 2nd moment. Often X_{i} will be replaced by x_{i} if X_{1}, \ldots, X_{n} are iid RVs and x_{1}, \ldots, x_{n} are the observed data.
20) The unbiased estimator of the variance is the sample variance $\hat{\sigma}_{U}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{n}{n-1} \hat{\sigma}_{E}^{2}$.
21) Suppose there are 2 unknown parameters γ_{1} and γ_{2}. Solving $E(X) \stackrel{\text { set }}{=} m$ and $E\left(X^{2}\right) \stackrel{\text { set }}{=} t$ for γ_{1} and γ_{2} is equivalent to solving $E(X) \stackrel{\text { set }}{=} m$ and $V(X) \stackrel{\text { set }}{=} \hat{\sigma}_{E}^{2}$ for γ_{1} and γ_{2} : both give the MMEs for γ_{1} and γ_{2}.
22) If there is one unknown parameter γ and $E(X)=g(\gamma)$ where g^{-1} exists (e.g. g is increasing or decreasing), then the MME $\hat{\gamma}=g^{-1}(\bar{X})$.
23) Some useful MMEs where the parameters are unknown (except for k in vii)).
i) $G(\alpha, \theta): \hat{\alpha}=\frac{m^{2}}{t-m^{2}}=\frac{m^{2}}{\hat{\sigma}_{E}^{2}}, \hat{\theta}=\frac{\hat{\sigma}_{E}^{2}}{m}=\frac{t-m^{2}}{m}$
ii) $\operatorname{EXP}(\theta): \hat{\theta}=m$
iii) $U(0, \theta): \hat{\theta}=2 m$
iv) $\operatorname{Pareto}(\alpha, \theta): \hat{\alpha}=\frac{2\left(t-m^{2}\right)}{t-2 m^{2}}=\frac{2 \hat{\sigma}_{E}^{2}}{t-2 m^{2}}, \quad \hat{\theta}=\frac{m t}{t-2 m^{2}}$
v) $\operatorname{LN}(\mu, \sigma): \hat{\mu}=2 \ln (m)-0.5 \ln (t), \quad \hat{\sigma}^{2}=\ln (t)-2 \ln (m)$
vi) $\operatorname{Poisson}(\lambda): \hat{\lambda}=m$
vii) binomial $(q, k), k$ known: $\hat{q}=\bar{X} / k=m / k$
(the text often uses $k=m$ which can be confusing)
viii) $\operatorname{Geometric}(\beta): \hat{\beta}=m$
ix) negative $\operatorname{binomial}(r, \beta): \hat{r}=\frac{m^{2}}{\hat{\sigma}_{E}^{2}-m}=\frac{m}{\hat{\beta}}, \hat{\beta}=\frac{\hat{\sigma}_{E}^{2}-m}{m}=\frac{m}{\hat{r}}$.
24) Suppose X has a mixture distribution where the cdf of X is $F_{X}(x)=$ $(1-\epsilon) F_{X_{1}}(x)+\epsilon F_{X_{2}}(x)$ where $0 \leq \epsilon \leq 1$ and $F_{X_{1}}$ and $F_{X_{2}}$ are cdfs, then $E[g(X)]=$
$(1-\epsilon) E\left[g\left(X_{1}\right)\right]+\epsilon E\left[g\left(X_{2}\right)\right]$. In particular, $E\left(X^{2}\right)=(1-\epsilon) E\left[X_{1}^{2}\right]+\epsilon E\left[X_{2}^{2}\right]=$ $(1-\epsilon)\left[V\left(X_{1}\right)+\left(E\left[X_{1}\right]\right)^{2}\right]+\epsilon\left[V\left(X_{2}\right)+\left(E\left[X_{2}\right]\right)^{2}\right] . E(X)=(1-\epsilon) E\left[X_{1}\right]+\epsilon E\left[X_{2}\right]$.
25) If X is a point mass at a or degenerate at a, then $P(X=a)=1$. Often $a=0$.
26) Let $\gamma=\left(\gamma_{1}, \ldots, \gamma\right)$. Percentile matching matches k percentiles instead of k moments. Usually $k=1$ or 2 . Solve the system

for $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{k}\right)$. Here $F\left(\pi_{p_{j}}\right)=p_{j}$ and $F\left(\hat{\pi}_{p_{j}}\right) \approx p_{j} . \operatorname{Va} R_{p}(X)=\pi_{p}$ is given for some brand name distributions. Usually X comes from a continuous distribution.
27) Let $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n-1)} \leq X_{(n)}$ be the order statistics of X_{1}, \ldots, X_{n}. Let the greatest integer function $\lfloor x\rfloor=$ the greatest integer $\leq x$, i.e. $\lfloor 7.7\rfloor=7$. The smoothed empirical estimator of a percentile π_{p} is $\hat{\pi}_{p}=X_{(j)}$ if $j=(n+1) p$ is an integer, and $\hat{\pi}_{p}=(1-h) X_{(j)}+h X_{(j+1)}$ if $(n+1) p$ is not an integer where $j=\lfloor(n+1) p\rfloor$ and $h=(n+1) p-j$. Here $\hat{\pi}_{p}$ is undefined if $j=0$ or $j=n+1$, equivalently, $\hat{\pi}_{p}$ is undefined if $0 \leq p<1 /(n+1)$ or if $p=1$.
28) Given a table of intervals representing loss sizes, number of losses (or proportion of losses), and a distribution X with one parameter γ, be able to estimate γ by matching the $100 p_{j}$ th percentile $\pi_{p_{j}}$. Let $n=n_{1}+n_{2}+\cdots+n_{m}$ and $p_{i}=\left(n_{1}+\cdots+n_{i}\right) / n$. For a given value of p_{j}, solve $\hat{\pi}_{p_{j}}=a_{j} \stackrel{\text { set }}{=} \pi_{p_{j}}=\pi_{p_{j}}(\gamma)$ for γ. The solution is $\hat{\gamma}$.

interval	number (or proportion $\left.n_{i} / n\right)$	$\hat{\pi}_{p_{i}}$
$\left(a_{0}, a_{1}\right]$	n_{1}	$a_{1}=\hat{\pi}_{p_{1}}$
$\left(a_{1}, a_{2}\right]$	n_{2}	$a_{2}=\hat{\pi}_{p_{2}}$
$\left(a_{2}, a_{3}\right]$	n_{3}	$a_{3}=\hat{\pi}_{p_{3}}$
\vdots	\vdots	\vdots
$\left(a_{m-2}, a_{m-1}\right]$	n_{m-1}	$a_{m-1}=\hat{\pi}_{p_{m-1}}$
$\left(a_{m-1}, a_{m}\right]$	n_{m}	

29) The $100 p$ th percentile $\operatorname{Va}_{p}(X)=\pi_{p}$ satisfies $F\left(\pi_{p}\right)=P\left(X \leq \pi_{p}\right)=p$ if X is a continuous RV with increasing $F(x)$. Then to find π_{p}, solve $F\left(\pi_{p}\right) \stackrel{\text { set }}{=} p$ for π_{p}.

For a general RV X, π_{p} satisfies $F\left(\pi_{p}-\right)=P\left(X<\pi_{p}\right) \leq p \leq F\left(\pi_{p}\right)=P\left(X \leq \pi_{p}\right)$. So $F\left(\pi_{p}-\right) \leq p$ and $F\left(\pi_{p}\right) \geq \alpha$. Then graphing $F(x)$ can be useful for finding π_{p}.
30) Central Limit Theorem (CLT). Let X_{1}, \ldots, X_{n} be iid with $E(X)=\mu$ and $V(X)=\sigma^{2}$. Let the sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{D} N\left(0, \sigma^{2}\right) .
$$

Hence $\sqrt{n}\left(\frac{\bar{X}_{n}-\mu}{\sigma}\right)=\sqrt{n}\left(\frac{\sum_{i=1}^{n} X_{i}-n \mu}{n \sigma}\right)=\sqrt{n}\left(\frac{S_{n}-n \mu}{n \sigma}\right) \xrightarrow{D} N(0,1)$.
31) The notation $Y_{n} \xrightarrow{D} X$ means that for large n we can approximate the cdf of Y_{n} by the cdf of X. The distribution of X is the limiting distribution or asymptotic distribution of Y_{n}, and the limiting distribution does not depend on n.
32) The notation

$$
Y_{n} \approx N\left(\theta, \tau^{2} / n\right)
$$

also written as $Y_{n} \sim A N\left(\theta, \tau^{2} / n\right)$, means approximate the cdf of Y_{n} as if $Y_{n} \sim N\left(\theta, \tau^{2} / n\right)$. Note that the approximate distribution, unlike the limiting distribution, does depend on n. By the CLT, $\bar{X}_{n} \sim A N\left(\mu, \sigma^{2} / n\right)$ and $S_{n}=\sum_{i=1}^{n} X_{i} \sim A N\left(n \mu, n \sigma^{2}\right)$.
33) Suppose $z_{p}=\pi_{p}$ for the $\mathrm{N}(0,1)$ distribution: $P\left(Z \leq z_{p}\right)=p$. If $X \sim N\left(\mu, \sigma^{2}\right)$ and π_{p} is the $100 p$ th percentile of X with $P\left(X \leq \pi_{p}\right)=p$, then $\pi_{p}=V a R_{p}(X)=\mu+\sigma z_{p}$.

If a statistic $T_{n} \sim A N\left(\gamma, \psi^{2}\right)$. Then use the normal approximation to find i) $P(a<$ $\left.T_{n}<b\right) \approx P\left(\frac{a-\gamma}{\psi}<Z<\frac{b-\gamma}{\psi}\right)$ where $<$ can be replaced by \leq unless T_{n} is discrete and a continuity correction is desired. ii) $\pi_{p}\left(T_{n}\right)=\operatorname{Va} R_{P}\left(T_{n}\right) \approx \gamma+\psi z_{p}$. For example, if $T_{n}=\bar{X}_{n}$, then $\gamma=\mu$ and $\psi^{2}=\sigma^{2} / n$.
34) Here are some percentile matching formulas if X_{1}, \ldots, X_{n} are iid with distribution X.
a) $X \sim \operatorname{EXP}(\theta): \hat{\theta}=\frac{-\hat{\pi}_{p}}{\ln (1-p)}$
b) $X \sim$ Inverse Exponential $(\theta): \hat{\theta}=-\hat{\pi}_{p} \ln (p)$
c) $X \sim L N(\mu, \sigma): \hat{\mu}=\ln \left(\hat{\pi}_{p}\right)-z_{p} \hat{\sigma}, \hat{\sigma}=\frac{\ln \left(\hat{\pi}_{p}\right)-\ln \left(\hat{\pi}_{q}\right)}{z_{p}-z_{q}}$
d) $X \sim \operatorname{Weibull}(\theta, \tau): \hat{\theta}=\frac{\hat{\pi}_{p}}{[-\ln (1-p)]^{1 / \hat{\tau}}}, \hat{\tau}=\frac{\ln [\ln (1-p) / \ln (1-q)]}{\ln \left(\hat{\pi}_{p} / \hat{\pi}_{q}\right)}$
35) For right censored data $X_{1}, \ldots, X_{m}, n-m$ cases censored at $u>X_{(m)}$, the order statistics are $X_{(1)}, \ldots, X_{(m)}, u, \ldots, u$. If $j+1 \leq m$, then percentile matching can still be used with $\hat{\pi}_{p}$ from 27).
36) If X is (left) truncated at d then $W=X \mid X>d$ has survival function $S_{W}(x)=$ $\frac{S_{X}(x)}{S_{X}(d)}$ for $x>d$, and cdf $F_{W}(x)=1-S_{W}(x)$ for $x>d$. If data is iid from the truncated distribution, e.g. if the losses include the deductible d, find $\hat{\pi}_{p}$ as in 27), but solve $\frac{S_{X}\left(\hat{\pi}_{p}\right)}{S_{X}(d)} \stackrel{s e t}{=} 1-p$ for γ. Use two equations with $\hat{\pi}_{p}$ and $\hat{\pi}_{q}$ if you need to estimate two parameters γ_{1} and γ_{2}. (The brand name distribution X is being fit, but you have left truncated data at d, so the equations for percentile matching are changed.)
37) Let $h(x) \equiv h_{X}(x \mid \boldsymbol{\theta})$ be the pdf or pmf of a random variable X. Let the set Θ be the set of parameter values $\boldsymbol{\theta}$ of interest. Then the set $\mathcal{X}_{\boldsymbol{\theta}}=\left\{x \mid h_{Y}(x \mid \boldsymbol{\theta})>0\right\}$ is called the sample space or support of X, and Θ is the parameter space of X. Often $\Theta=\{\boldsymbol{\theta} \mid h(x \mid \boldsymbol{\theta})$ is a pdf or pmf $\}$. Use the notation $\mathcal{X}=\{x \mid h(x \mid \boldsymbol{\theta})>0\}$ if the support does not depend on $\boldsymbol{\theta}$. So \mathcal{X} is the support of X if $\mathcal{X}_{\boldsymbol{\theta}} \equiv \mathcal{X} \forall \boldsymbol{\theta} \in \Theta$. Similar definitions can be used for $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$.
38) Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$. If $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is the data then the likelihood function $L(\boldsymbol{\theta})=L(\boldsymbol{\theta} \mid \boldsymbol{x})$. For each sample point $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, let $\hat{\boldsymbol{\theta}}(\boldsymbol{x})$ be a parameter value at which $L(\boldsymbol{\theta} \mid \boldsymbol{x})$ attains its maximum as a function of $\boldsymbol{\theta}$ with \boldsymbol{x} held fixed. Then a maximum likelihood estimator (MLE) of the parameter $\boldsymbol{\theta}$ based on the sample \boldsymbol{X} is $\hat{\boldsymbol{\theta}}(\boldsymbol{X})$. Note: it is crucial to observe that the likelihood function is a function of $\boldsymbol{\theta}$ (and that x_{1}, \ldots, x_{n} act as fixed constants).
39) If the MLE $\hat{\boldsymbol{\theta}}$ exists, then $\hat{\boldsymbol{\theta}} \in \Theta$. If the MLE $\hat{\boldsymbol{\theta}}=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{k}\right)$, then the MLE of θ_{i} is $\hat{\theta}_{i}$, the MLE of $\left(\theta_{1}, \theta_{5}\right)$ is $\left(\hat{\theta}_{1}, \hat{\theta}_{5}\right)$, etc.
40) Invariance Principle: If $\hat{\boldsymbol{\theta}}$ is the MLE of θ, then $\tau(\hat{\boldsymbol{\theta}})$ is the MLE of $\tau(\boldsymbol{\theta})$. Here τ is a function of $\boldsymbol{\theta}$ with domain Θ.
41) For individual data, X_{1}, \ldots, X_{n} are iid, usually with pdf $f(x)$ or $\operatorname{pmf} p(x)$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the observed data. Then the likelihood function $L(\boldsymbol{\theta}) \equiv L(\boldsymbol{\theta} \mid \boldsymbol{x})=$ $\prod_{i=1}^{n} h\left(x_{i}\right)$ where $h(x)$ is $f(x)$ or $p(x)$. The log likelihood function $\ln (L(\boldsymbol{\theta}))=$ $\sum_{i=1}^{n} \ln \left(h\left(x_{i}\right)\right)$. Usually use 42) to find the MLE.
42) For this class, assume that the maximum likelihood estimator (MLE) is a solution to $\frac{\partial}{\partial \theta_{i}} \ln L(\boldsymbol{\theta}) \stackrel{\text { set }}{=} 0$ for $i=1, \ldots, k$ where usually $k=1$ or 2 . (In Math 483 or 580 , used second derivatives to show that the MLE was the global max.)

Tips: a) $\exp (a)=e^{a}$. b) $\ln \left(a^{b}\right)=b \ln (a)$ and $\ln \left(e^{b}\right)=b$. c) $\ln \left(\prod_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} \ln \left(a_{i}\right)$. d) Often $\ln [L(\theta)]=\ln \left(\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)\right)=\sum_{i=1}^{n} \ln \left(f\left(x_{i} \mid \theta\right)\right)$. e) If t is a differentiable function and $t(\theta) \neq 0$, then $\frac{d}{d \theta} \ln (|t(\theta)|)=\frac{t^{\prime}(\theta)}{t(\theta)}$ where $t^{\prime}(\theta)=\frac{d}{d \theta} t(\theta)$. In particular, $\frac{d}{d \theta} \ln (\theta)=1 / \theta$. f) Anything that does not depend on θ is treated as a constant with respect to θ and hence has derivative 0 with respect to θ.
43) For small n, if given \boldsymbol{x} it can be easier to plug in the x_{i} to find the MLE. Sometimes you will solve for the MLE as a statistic, then plug \boldsymbol{x} into the statistic.
44) Let $h(\boldsymbol{x} \mid \boldsymbol{\theta})$ be the pmf or pdf of a sample \boldsymbol{X}. If $\boldsymbol{X}=\boldsymbol{x}$ is observed, then the likelihood function $L(\boldsymbol{\theta})=h(\boldsymbol{x} \mid \boldsymbol{\theta})$.
45) Let X_{1}, \ldots, X_{n} be iid with distribution X. Here are some MLEs.
a) If $X \sim N\left(\mu, \sigma^{2}\right)$, then the MLE of μ is \bar{X}. If μ and σ^{2} are unknown, then the MLE of σ^{2} is the empirical variance ($=$ method of moments estimator of $V(X)$) $\hat{\sigma}^{2}=\hat{\sigma}_{E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. If μ is known, the MLE of σ^{2} is $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$.
b) If $X \sim \operatorname{Poisson}(\lambda)$ then $\hat{\lambda}=\bar{X}$.
c) If $X \sim \operatorname{binomial}(q, k), k$ known, then $\hat{q}=\bar{X} / k=m / k$.
d) If $X \sim E X P(\theta)$, then $\hat{\theta}=\bar{X}$.
e) If $X \sim$ negative binomial (r, β), the MLE of $r \beta=\bar{X}$, but the MLEs of r and β need a computer. If r is known, then $\hat{\beta}=\frac{\bar{X}}{r}$.
f) If $X \sim G(\alpha, \theta)$ with α known, the MLE of θ is \bar{X} / α.
g) If $X \sim \operatorname{geometric}(\beta)$, the MLE of β is \bar{X}.
h) If $X \sim L N(\mu, \sigma)$, let $W_{i}=\ln \left(X_{i}\right)$. Then the MLE of μ is \bar{W}. If μ and σ^{2} are unknown, then the MLE of σ^{2} is the empirical variance of the W_{i} : $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}$. If μ is known, the MLE of σ^{2} is $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(W_{i}-\mu\right)^{2}$.
i) If $X \sim U(0, \theta)$, the MLE of θ is $\hat{\theta}=X_{(n)}$.
j) If $X \sim$ inverse exponential (θ), then the MLE $\hat{\theta}=\frac{n}{\sum_{i=1}^{n} \frac{1}{X_{i}}}$.
46) Note that for the $G(\alpha, \beta)$ with α known, $\operatorname{binomial}(q, k)$ with k known, $\operatorname{EXP}(\theta)$, geometric (β), and Poisson (λ) distributions, the MLEs are the same as the MMEs.

