
Math 404 Exam 1 is Thurs. Feb. 15. You are allowed 7 sheets of notes and a
calculator. The exam covers HW1-3, and Q1-3. Numbers refer to types of problems on
exam. In this class log(t) = ln(t) = loge(t) while exp(t) = et.

0) Get familiar with the following distributions. For continuous distributions, assume
formulas are given on the support, and the support is x > 0, unless told otherwise.

a) Exponential(θ)= Gamma(α = 1, θ): f(x) =
1

θ
e−x/θ where x, θ > 0.

F (x) = 1 − e−x/θ, E(X) = θ, V (X) = θ2, E[X ∧ x] = θ(1 − e−x/θ), eX(d) = θ.
E(Xk) = θkΓ(k + 1) for k > −1. If k is a positive integer, E(Xk) = θkk!.
M(t) = (1−θt)−1, t < 1/θ. V aRp(X) = −θ ln(1−p). TV aRp(X) = −θ ln(1−p)+θ.
b) Gamma(α, θ): f(x) =

1

θαΓ(α)
xα−1e−x/θ where α, θ, and x are positive.

E(X) = αθ, V (X) = αθ2, E(Xk) =
θkΓ(α + k)

Γ(α)
for k > −α.

M(t) = (1 − θt)−α for t < 1/θ.

c) (two parameter) Pareto(α, θ): f(x) =
αθα

(θ + x)α+1
where α, θ, and x are positive.

F (x) = 1 −
(

θ

x+ θ

)α

, E(X) =
θ

α− 1
for α > 1, V(X) =

θ2α

(α− 1)2(α − 2)
for α > 2.

eX(d) =
θ + d

α− 1
, E(Xk) =

θkΓ(k + 1)Γ(α − k)

Γ(α)
for −1 < k < α.

If k < α is a positive integer, E(Xk) =
θkk!

(α − 1) · · · (α− k)
.

E[X ∧ x] =
θ

α− 1



1 −
(

θ

x+ θ

)α−1


 , for α 6= 1, and E[X ∧ x] = −θ ln

(

θ

x+ θ

)

for

α = 1.

V aRp(X) = θ[(1 − p)−1/α − 1], TV aRp(X) = V aRp(X) +
θ(1 − p)−1/α

α − 1
for α > 1.

d) If X ∼ single parameter Pareto(α, θ): f(x) =
αθα

xα+1
I(x > θ) where α > 0 and θ is

real. Note the support is x > θ. F (x) = 1−
(

θ

x

)α

for x > θ. E(X) =
αθ

α− 1
for α > 1.

V (X) =
αθ2

α− 2
−

(

αθ

α− 1

)2

for α > 2. E(Xk) =
αθk

α − k
for k < α. E(X ∧ x) =

αθ

α− 1
− θα

(α − 1)xα−1
for x ≥ θ. E(X ∧ x) = x for x < θ. Use θ ≥ 0 for loss models.

V aRp(X) = θ[(1−p)−1/α], TV aRp(X) =
αθ(1 − p)−1/α

α− 1
= V aRp(X)+

1

α − 1
V aRp(X)

for α > 1.

e) Uniform(a, b). This distribution has support on a ≤ x ≤ b, f(x) =
1

b− a
, F (x) =

(x−a)/(b−a), E(X) = (a+ b)/2, V (X) = (b−a)2/12, eX(d) =
b− d

2
, 0 ≤ a ≤ d ≤ b.

f) Weibull(θ, τ ): f(x) =
τ (x/θ)τe−(x/θ)τ

x
where θ > 0 and τ > 0.
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F (x) = 1 − e−(x/θ)τ

, E(Xk) = θkΓ(1 + k/τ ) for k > −τ . Here θ, τ > 0 and the
Weibull(θ, τ = 1) RV is the Exponential(θ) RV. V aRp(X) = θ[− ln(1 − p)]1/τ .

g) Inverse Weibull(θ, τ ): f(x) =
τ (θ/x)τe−(θ/x)τ

x
.

F (x) = e−(θ/x)τ

, E(Xk) = θkΓ(1 − k/τ ) for k < τ . Here θ, τ > 0 and the
Inverse Weibull(θ, τ = 1) RV is the Inverse Exponential(θ) RV. V aRp(X) = θ[− ln(p)]−1/τ .

h) normal(µ, σ): E(X) = µ, V (X) = σ2. The support is (−∞,∞). If Z ∼ N(0, 1),
then the cdf of Z is Φ(x) and the pdf of Z is φ(x). If X ∼ N(µ, σ2), then the cdf of X

is F (x) = Φ
(

x− µ

σ

)

. If X ∼ N(µ, σ2), then the cdf FX(x) = Φ
(

x− µ

σ

)

, and the pdf

fX(x) =
1

σ
√

2π
exp

[−1

2σ2
(x− µ)2

]

. TV aRp(X) = µ + σ
φ(zp)

1 − p
where P (Z ≤ zp) = p if

Z ∼ N(0, 1). V aRp(X) = µ+ σzp. Here σ > 0 and µ is real.
i) lognormal(µ, σ): E(X) = exp(µ + 1

2
σ2), V (X) = exp(σ2)(exp(σ2) − 1) exp(2µ),

F (x) = Φ

(

ln(x)− µ

σ

)

, E(X∧x) = exp(µ+
1

2
σ2)Φ

(

lnx− µ − σ2

σ

)

+x[1−Φ(
ln x− µ

σ
)].

If X ∼ LN(µ, σ), then ln(X) ∼ N(µ, σ2). Here σ > 0 and µ is real.
V aRp(X) = exp(µ + zpσ). For a > 0, aX ∼ LN(µ + ln(a), σ).

j) beta(a, b): The support is [0,1]. The pdf f(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 where

a > 0 and b > 0. E(X) =
a

a+ b
. V (X) =

ab

(a + b)2(a + b+ 1)
.

The following are discrete distributions. These are used to count the number of claims,
so the random variable X is often denoted by N . Note: pk = P (X = k) = p(k).

k) binomial(q,m): m is a (usually known) positive integer

pk =

(

m

k

)

qk(1 − q)m−k for k = 0, 1, . . . ,m where 0 < q < 1.

E(N) = mq, V (N) = mq(1 − q), P (z) = [1 + q(z − 1)]m.

l) Poisson(λ): pk =
e−λλk

k!
for k = 0, 1, . . ., where λ > 0. E(N) = λ = V (N),

P (z) = eλ(z−1).
m) Negative Binomial(β, r): β, r > 0 and p0 = (1 + β)−r. For k = 1, 2, ...,

pk =
r(r + 1) · · · (r + k − 1)βk

k!(1 + β)r+k
and pk =

(k + r − 1)!βk

k!(r− 1)!(1 + β)r+k
for integer r.

E(N) = rβ, V (N) = rβ(1 + β), P (z) = [1 − β(z − 1)]−r. The Geometric(β) is the

special case with r = 1 and pk =
βk

(1 + β)k+1
for k = 0, 1, . . ..

Some properties of the gamma function follow.
i) Γ(k) = (k − 1)! for integer k ≥ 1.
ii) Γ(x + 1) = x Γ(x) for x > 0.
iii) Γ(x) = (x− 1) Γ(x− 1) for x > 1.
iv) Γ(0.5) =

√
π.
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Let X ≥ 0 be a nonnegative random variable.
Then the cumulative distribution function (cdf) F (x) = P (X ≤ x). Since X ≥ 0,

F (0) = 0, F (∞) = 1, and F (x) is nondecreasing.
The probability density function (pdf) f(x) = F ′(x).
The survival function S(x) = P (X > x). S(0) = 1, S(∞) = 0 and S(x) is nonin-

creasing.

The hazard rate function = force of mortality = µ(x) = h(x) =
f(x)

1 − F (x)
=
f(x)

S(x)
for x > 0 and F (x) < 1. Note that h(x) ≥ 0 if F (x) < 1.

The cumulative hazard function H(x) =
∫ x
0 h(t)dt for x > 0. It is true that

H(0) = 0, H(∞) = ∞, and H(x) is nondecreasing.

Assume X ≥ 0 unless told otherwise.
1) Given one of F (x), f(x), S(x), h(x), or H(x), be able to find the other 4 quantities

for x > 0. See HW1.
A) F (x) =

∫ x
0 f(t)dt = 1 − S(x) = 1 − exp[−H(x)] = 1 − exp[− ∫ x

0 h(t)dt].

B) f(x) = F ′(x) = −S ′(x) = h(x)[1 − F (x)] = h(x)S(x) = h(x) exp[−H(x)] =
H ′(x) exp[−H(x)].

C) S(x) = 1 − F (x) = 1 − ∫ x
0 f(t)dt =

∫

∞

x f(t)dt = exp[−H(x)] = exp[− ∫ x
0 h(t)dt].

D) h(x) =
f(x)

1 − F (x)
=
f(x)

S(x)
=

F ′(x)

1 − F (x)
=

−S ′(x)

S(x)
= − d

dx
ln[S(x)] = H ′(x).

E) H(x) =
∫ x
0 h(t)dt = − ln[S(x)] = − ln[1 − F (x)].

Tip: if F (x) = 1 − exp[G(x)] for x > 0, then H(x) = −G(x) and S(x) = exp[G(x)].

Tip: For S(x) > 0, note that S(x) = exp[ln(S(x))] = exp[−H(x)]. Finding exp[ln(S(x))]
and setting H(x) = − ln[S(x)] is easier than integrating h(x).

2) Know: Except for the inverse Gaussian distribution, the continuous distributions
in Appendix A with parameter θ are scale families with scale parameter θ if any other
parameters τ are fixed, written X ∼ SF (θ|τ ). Let a > 0. Then Y = aX ∼ SF (aθ|τ ). If
X ∼ LN(µ, σ), then Y = aX ∼ LN(µ + ln(a), σ). Often a = 1 + r.

3) X ∧ d = min(X, d) is the limited loss RV. This RV is right censored. The limited

expected value E[X ∧ d] =
∫ d

0
xf(x)dx + dS(d) =

∫ d

0
S(x)dx. The expected loss (per

loss) for a policy holder with deductible d is E[X ∧ d].
4) Let X ≥ 0 be continuous. If limx→∞ xS(x) = 0, then E(X) =

∫

∞

0 xf(x)dx =
∫

∞

0 S(x)dx =
∫

∞

0 [1 − F (x)]dx = µ = mean. The kth raw moment = µ′

k = E(Xk) =
∫

∞

0
xkf(x)dx. If limx→∞ xkS(x) = 0 and k ≥ 1, then E(Xk) =

∫

∞

0
kxk−1S(x)dx.

If X is discrete, = E(Xk) =
∑

k

xkP (X = x).

5) The kth central moment µk = E[(X − µ)k]. The variance uses k = 2 and the short
cut formula for the variance is V (X) = E[(X − µ)2] = σ2 = E(X2) − [E(X)]2 where
µ = E(X). Note: µ3 = µ′

3 − 3µ′

2µ+ 2µ3 and µ4 = µ′

4 − 4µ′

3µ+ 6µ′

2µ
2 − 3µ4.
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The standard deviation SD(X) =
√

V (X) = σ.

6) Suppose X ≥ 0. Then E[g(X)] =
∫

∞

0 g(x)f(x)dx for X continuous and E[g(X)] =
∑

x:p(x)>0

g(x) p(x) for X discrete.

7) The coefficient of variation = CV =
σ

µ
, skewness = γ1 =

µ3

σ3
, and kurtosis =

γ2 =
µ4

σ4
. For a statistic T , CV (T ) = SD(T )/E(T ).

8) The per loss RV Y L = (X − d)+ = 0 if X ≤ d, Y L = (X − d)+ = X − d if
X > d. The RV is left censored since values X ≤ d are not ignored but are set to d. So
values of X − d < 0 are set to 0. Note that (X − d)+ is the positive part of X − d, and
represents payment for insurance with a deductible. The superscript L represents
the “payment,” possibly 0, made per loss. E[(X−d)+] = eX(d)[1−F (d)] = eX(d)S(d) =
∫

∞

d
(x− d)f(x)dx =

∫

∞

d
S(x)dx = E(Y L) = E(Y P )S(d).

9) For a given value of d > 0 with P (X > d) > 0, the excess loss variable or per
payment RV Y P = (X − d)|X > d. This is a left truncated and shifted RV. The

mean excess loss function eX(d) = E(Y P ) = E[(X − d)|X > d] =

∫

∞

d (x− d)f(x)dx

1 − F (d)
=

∫

∞

d S(x)dx

S(d)
=
E(Y L)

S(d)
. The superscript P represents “payment” per payment> 0 actually

made (so the loss > d).
10) Since insurance with a limit d plus insurance with a deductible d equals full

coverage insurance: X ∧d + (X−d)+ = X, we get E[X ∧d] + E[(X−d)+] = E[X],
and E[X ∧ d] = E[X] − E[(X − d)+]. So E(Y L) = E(X) − E(X ∧ d).

11) E[(d−X)+] = d− E[X ∧ d]
12) The Value at Risk of X at the 100p% level = 100pth percentile V aRp(X) = πp

satisfies F (πp) = P (X ≤ πp) = p if X is a continuous RV with increasing F (x). Then to

find πp, let π = πp and solve F (π)
set
= p for π.

For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) = P (X ≤ πp).
So F (πp−) ≤ p and F (πp) ≥ α. Then graphing F (x) can be useful for finding πp.

13) The tail value at risk of X at 100p% security level is

TV aRp(X) = E(X|X > πp) =

∫

∞

πp
xf(x)dx

1 − F (πp)
=

∫ 1
p πudu

1 − p
= V aRp(X) + eX(πp) =

πp +

∫

∞

πp
(x− πp)f(x)dx

1 − p
= πp +

E(X) − E(X ∧ πp)

1 − p
.

14) The loss elimination ratio LER =
E[X ∧ d]
E(X)

if E(X) exists. Note that E(Y L) =

E[(X− d)+] = E(X)−E[X ∧ d]. So E[X ∧ d] = E(X)−E[(X− d)+] = E(X)−E(Y L).
15) Know Given X is a loss RV with parameters γ, be able to estimate many of the

above quantities given γ̂: plug in γ̂ for γ.
16) If there is a policy limit u, then X ∧ u is important. If there is a deductible d,

and a maximum payment u− d, then u = u− d + d.

17) The method of moments estimator for a k × 1 parameter vector γ sets
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E(Xj)
set
=

1

n

n
∑

i=1

Xj
i for j = 1, ..., k and solves for γ1, ..., γk. The solution is the method of

moments estimator γ̂ = (γ̂1, ..., γ̂k).
In more detail, let µ̂′

j = 1
n

∑n
i=1X

j
i , let µ′

j = E(Xj) and assume that µ′

j = µ′

j(γ1, ..., γk).
Solve the system

µ̂′

1
set
= µ′

1(γ1, ..., γk)
...

...

µ̂′

k
set
= µ′

k(γ1, ..., γk)

for the method of moments estimator γ̂.

18) If g is a continuous function of the first k moments and h(γ) = g(µ′

1(γ), ..., µ′

k(γ)),
then the method of moments estimator of h(γ) is g(µ̂′

1, ..., µ̂
′

k).

19) The method of moments estimator (MME) for E(X) is X =
1

n

n
∑

i=1

Xi = m, the

sample mean. The MME for V (X) is the sample biased variance = empirical variance

= σ̂2
E =

1

n

n
∑

i=1

(Xi−X)2 =
1

n

n
∑

i=1

X2
i −

[

1

n

n
∑

i=1

Xi

]2

= t−m2 where t =
1

n

n
∑

i=1

X2
i , the sample

2nd moment. Often Xi will be replaced by xi if X1, ..., Xn are iid RVs and x1, ..., xn are
the observed data.

20) The unbiased estimator of the variance is the sample variance

σ̂2
U =

1

n− 1

n
∑

i=1

(Xi −X)2 =
n

n− 1
σ̂2

E.

21) Suppose there are 2 unknown parameters γ1 and γ2. Solving E(X)
set
= m and

E(X2)
set
= t for γ1 and γ2 is equivalent to solving E(X)

set
= m and V (X)

set
= σ̂2

E for γ1 and
γ2: both give the MMEs for γ1 and γ2.

22) If there is one unknown parameter γ and E(X) = g(γ) where g−1 exists (e.g. g
is increasing or decreasing), then the MME γ̂ = g−1(X).

23) Some useful MMEs where the parameters are unknown (except for k in vii)).

i) G(α, θ): α̂ =
m2

t−m2
=
m2

σ̂2
E

, θ̂ =
σ̂2

E

m
=
t−m2

m

ii) EXP(θ): θ̂ = m
iii) U(0, θ): θ̂ = 2m

iv) Pareto(α, θ): α̂ =
2(t−m2)

t− 2m2
=

2σ̂2
E

t− 2m2
, θ̂ =

mt

t− 2m2

v) LN(µ, σ): µ̂ = 2 ln(m) − 0.5 ln(t), σ̂2 = ln(t) − 2 ln(m)
vi) Poisson(λ): λ̂ = m
vii) binomial(q, k), k known: q̂ = X/k = m/k

(the text often uses k = m which can be confusing)
viii) Geometric(β): β̂ = m

ix) negative binomial(r, β): r̂ =
m2

σ̂2
E −m

=
m

β̂
, β̂ =

σ̂2
E −m

m
=
m

r̂
.

24) Suppose X has a mixture distribution where the cdf of X is FX(x) =
(1 − ε)FX1

(x) + εFX2
(x) where 0 ≤ ε ≤ 1 and FX1

and FX2
are cdfs, then E[g(X)] =
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(1 − ε)E[g(X1)] + εE[g(X2)]. In particular, E(X2) = (1 − ε)E[X2
1 ] + εE[X2

2 ] =
(1 − ε)[V (X1) + (E[X1])

2] + ε[V (X2) + (E[X2])
2]. E(X) = (1 − ε)E[X1] + εE[X2].

25) If X is a point mass at a or degenerate at a, then P (X = a) = 1. Often a = 0.
26) Let γ = (γ1, ..., γ). Percentile matching matches k percentiles instead of k mo-

ments. Usually k = 1 or 2. Solve the system

π̂p1

set
= πp1

(γ1, ..., γk)
...

...

π̂pk

set
= πpk

(γ1, ..., γk)

for γ̂ = (γ̂1, ..., γ̂k). Here F (πpj
) = pj and F (π̂pj

) ≈ pj . V aRp(X) = πp is given for some
brand name distributions. Usually X comes from a continuous distribution.

27) Let X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n) be the order statistics of X1, ..., Xn.
Let the greatest integer function bxc = the greatest integer ≤ x, i.e. b7.7c = 7. The
smoothed empirical estimator of a percentile πp is π̂p = X(j) if j = (n+ 1)p is an integer,
and π̂p = (1 − h)X(j) + hX(j+1) if (n + 1)p is not an integer where j = b(n + 1)pc and
h = (n+ 1)p− j. Here π̂p is undefined if j = 0 or j = n+1, equivalently, π̂p is undefined
if 0 ≤ p < 1/(n + 1) or if p = 1.

28) Given a table of intervals representing loss sizes, number of losses (or proportion
of losses), and a distribution X with one parameter γ, be able to estimate γ by matching
the 100pjth percentile πpj

. Let n = n1 + n2 + · · ·+ nm and pi = (n1 + · · ·+ ni)/n. For a

given value of pj , solve π̂pj
= aj

set
= πpj

= πpj
(γ) for γ. The solution is γ̂.

interval number (or proportion ni/n) π̂pi

(a0, a1] n1 a1 = π̂p1

(a1, a2] n2 a2 = π̂p2

(a2, a3] n3 a3 = π̂p3

...
...

...
(am−2, am−1] nm−1 am−1 = π̂pm−1

(am−1, am] nm

29) The 100pth percentile V aRp(X) = πp satisfies F (πp) = P (X ≤ πp) = p if X is a

continuous RV with increasing F (x). Then to find πp, solve F (πp)
set
= p for πp.

For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) = P (X ≤ πp).
So F (πp−) ≤ p and F (πp) ≥ α. Then graphing F (x) can be useful for finding πp.

30) Central Limit Theorem (CLT). Let X1, ..., Xn be iid with E(X) = µ and
V (X) = σ2. Let the sample mean Xn = 1

n

∑n
i=1Xi. Then

√
n(Xn − µ)

D→ N(0, σ2).

Hence
√
n

(

Xn − µ

σ

)

=
√
n

(

∑n
i=1Xi − nµ

nσ

)

=
√
n
(

Sn − nµ

nσ

)

D→ N(0, 1).

31) The notation Yn
D→ X means that for large n we can approximate the cdf of Yn by

the cdf of X. The distribution of Xis the limiting distribution or asymptotic distribution
of Yn, and the limiting distribution does not depend on n.
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32) The notation
Yn ≈ N(θ, τ 2/n),

also written as Yn ∼ AN(θ, τ 2/n), means approximate the cdf of Yn as if Yn ∼ N(θ, τ 2/n).
Note that the approximate distribution, unlike the limiting distribution, does depend on
n. By the CLT, Xn ∼ AN(µ, σ2/n) and Sn =

∑n
i=1Xi ∼ AN(nµ, nσ2).

33) Suppose zp = πp for the N(0,1) distribution: P (Z ≤ zp) = p. If X ∼ N(µ, σ2) and
πp is the 100pth percentile of X with P (X ≤ πp) = p, then πp = V aRp(X) = µ+ σzp.

If a statistic Tn ∼ AN(γ, ψ2). Then use the normal approximation to find i) P (a <

Tn < b) ≈ P

(

a− γ

ψ
< Z <

b− γ

ψ

)

where < can be replaced by ≤ unless Tn is discrete

and a continuity correction is desired. ii) πp(Tn) = V aRP (Tn) ≈ γ + ψzp. For example,
if Tn = Xn, then γ = µ and ψ2 = σ2/n.

34) Here are some percentile matching formulas if X1, ..., Xn are iid with distribution
X.

a) X ∼ EXP (θ): θ̂ =
−π̂p

ln(1 − p)

b) X ∼ Inverse Exponential (θ): θ̂ = −π̂p ln(p)

c) X ∼ LN(µ, σ): µ̂ = ln(π̂p) − zpσ̂, σ̂ =
ln(π̂p) − ln(π̂q)

zp − zq

d) X ∼ Weibull(θ, τ ): θ̂ =
π̂p

[− ln(1 − p)]1/τ̂
, τ̂ =

ln[ln(1 − p)/ ln(1 − q)]

ln(π̂p/π̂q)

35) For right censored data X1, ..., Xm, n −m cases censored at u > X(m), the order
statistics are X(1), ..., X(m), u, ..., u. If j + 1 ≤ m, then percentile matching can still be
used with π̂p from 27).

36) If X is (left) truncated at d then W = X|X > d has survival function SW (x) =
SX(x)

SX(d)
for x > d, and cdf FW (x) = 1 − SW (x) for x > d. If data is iid from the

truncated distribution, e.g. if the losses include the deductible d, find π̂p as in 27), but

solve
SX(π̂p)

SX(d)
set
= 1 − p for γ. Use two equations with π̂p and π̂q if you need to estimate

two parameters γ1 and γ2. (The brand name distribution X is being fit, but you have
left truncated data at d, so the equations for percentile matching are changed.)

37) Let h(x) ≡ hX(x|θ) be the pdf or pmf of a random variable X. Let the set Θ
be the set of parameter values θ of interest. Then the set Xθ = {x|hY (x|θ) > 0} is
called the sample space or support of X, and Θ is the parameter space of X. Often
Θ = {θ|h(x|θ) is a pdf or pmf }. Use the notation X = {x|h(x|θ) > 0} if the support
does not depend on θ. So X is the support of X if Xθ ≡ X ∀θ ∈ Θ. Similar definitions
can be used for X = (X1, ..., Xn).

38) Let X = (X1, ..., Xn). If x = (x1, ..., xn) is the data then the likelihood function
L(θ) = L(θ|x). For each sample point x = (x1, ..., xn), let θ̂(x) be a parameter value at
which L(θ|x) attains its maximum as a function of θ with x held fixed. Then a maximum
likelihood estimator (MLE) of the parameter θ based on the sample X is θ̂(X). Note:
it is crucial to observe that the likelihood function is a function of θ (and that x1, ..., xn

act as fixed constants).
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39) If the MLE θ̂ exists, then θ̂ ∈ Θ. If the MLE θ̂ = (θ̂1, ..., θ̂k), then the MLE of θi

is θ̂i, the MLE of (θ1, θ5) is (θ̂1, θ̂5), etc.
40) Invariance Principle: If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of τ (θ). Here

τ is a function of θ with domain Θ.
41) For individual data, X1, ..., Xn are iid, usually with pdf f(x) or pmf p(x). Let

x = (x1, ..., xn) be the observed data. Then the likelihood function L(θ) ≡ L(θ|x) =
∏n

i=1 h(xi) where h(x) is f(x) or p(x). The log likelihood function ln(L(θ)) =
∑n

i=1 ln(h(xi)). Usually use 42) to find the MLE.
42) For this class, assume that the maximum likelihood estimator (MLE) is a solution

to
∂

∂θi
lnL(θ)

set
= 0 for i = 1, ..., k where usually k = 1 or 2. (In Math 483 or 580, used

second derivatives to show that the MLE was the global max.)
Tips: a) exp(a) = ea. b) ln(ab) = b ln(a) and ln(eb) = b. c) ln(

∏n
i=1 ai) =

∑n
i=1 ln(ai).

d) Often ln[L(θ)] = ln(
∏n

i=1 f(xi|θ)) =
∑n

i=1 ln(f(xi|θ)). e) If t is a differentiable function

and t(θ) 6= 0, then d
dθ

ln(|t(θ)|) = t′(θ)
t(θ)

where t′(θ) = d
dθ
t(θ). In particular, d

dθ
ln(θ) = 1/θ.

f) Anything that does not depend on θ is treated as a constant with respect to θ and
hence has derivative 0 with respect to θ.

43) For small n, if given x it can be easier to plug in the xi to find the MLE. Sometimes
you will solve for the MLE as a statistic, then plug x into the statistic.

44) Let h(x|θ) be the pmf or pdf of a sample X. If X = x is observed, then the
likelihood function L(θ) = h(x|θ).

45) Let X1, ..., Xn be iid with distribution X. Here are some MLEs.
a) If X ∼ N(µ, σ2), then the MLE of µ is X. If µ and σ2 are unknown, then

the MLE of σ2 is the empirical variance (= method of moments estimator of V (X))

σ̂2 = σ̂2
E =

1

n

n
∑

i=1

(Xi −X)2. If µ is known, the MLE of σ2 is σ̂2 =
1

n

n
∑

i=1

(Xi − µ)2.

b) If X ∼ Poisson(λ) then λ̂ = X.
c) If X ∼ binomial(q, k), k known, then q̂ = X/k = m/k.
d) If X ∼ EXP (θ), then θ̂ = X.
e) If X ∼ negative binomial (r, β), the MLE of rβ = X, but the MLEs of r and β

need a computer. If r is known, then β̂ =
X

r
.

f) If X ∼ G(α, θ) with α known, the MLE of θ is X/α.
g) If X ∼ geometric(β), the MLE of β is X.
h) If X ∼ LN(µ, σ), let Wi = ln(Xi). Then the MLE of µ is W . If µ and σ2 are

unknown, then the MLE of σ2 is the empirical variance of the Wi: σ̂
2 =

1

n

n
∑

i=1

(Wi −W )2.

If µ is known, the MLE of σ2 is σ̂2 =
1

n

n
∑

i=1

(Wi − µ)2.

i) If X ∼ U(0, θ), the MLE of θ is θ̂ = X(n).

j) If X ∼ inverse exponential (θ), then the MLE θ̂ =
n

∑n
i=1

1
Xi

.

46) Note that for the G(α, β) with α known, binomial(q, k) with k known, EXP(θ),
geometric(β), and Poisson(λ) distributions, the MLEs are the same as the MMEs.
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