
Math 404 Exam 2 is Thurs. March 21. You are allowed 14 sheets of notes and

a calculator. The exam covers HW4-6, and Q4-6.
47) Often L(θ) = L(θ|x1, ..., xn) =

∏n
i=1 L(θ|xi). Note that 1 − F (w) = S(w).

a) For iid individual data, L(θ|xi) = f(xi) if X has pdf f(x).
b) For iid individual data, L(θ|xi) = p(xi) if X has pmf p(x).
c) If it is only known that xi is in some interval (cj−1, cj ], then

L(θ|xi) = P (xi ∈ (cj−1, cj]) = F (cj) − F (cj−1).
The endpoints can be open or closed if X is from a continuous distribution.

d) If xi is right censored at ui, then the interval is [ui,∞), and L(θ|xi) = 1 − F (ui).

e) For grouped data from the table below, L(θ) =
m∏

j=1

[F (cj) − F (cj−1)]
nj .

interval number
(c0, c1] n1

(c1, c2] n2

(c2, c3] n3
...

...
(cm−2, cm−1] nm−1

(cm−1, cm] nm

f) If xi is left truncated at di, then L(θ|xi) =
f(xi)

1 − F (di)
.

g) If xi is left truncated at di and right censored at ui, then L(θ|xi) =
1 − F (ui)

1 − F (di)
.

h) If the data are left truncated at the deductible d with n − k uncensored cases xi

and k cases right censored at u, then L(θ) =
[
∏n−k

i=1 f(xi)][1 − F (u)]k

[1 − F (d)]n
.

i) (Rare, the interval is (0, d].): If xi is censored below at d, L(θ|xi) = F (d).

j) (Rare): If xi is truncated above at u, L(θ|xi) =
f(xi)

F (u)
.

Note that left truncated = truncated below = truncated, and right censored = cen-
sored above = censored are often used.

48) Let wi = xi if xi is uncensored and wi = yi = ui if xi is (right) censored at ui.
Let the deductible be di where di = 0 means no (left) truncation.

obs wi di L(θ|wi) comment
1 y = 0.1 0 1 − F (0.1) censored at 0.1
2 x = 0.8 0 f(0.8) uncensored

3 y = 5 0.3
1 − F (5)

1 − F (0.3)
censored at 5 and truncated at 0.3

4 x = 4.1 1
f(4.1)

1 − F (1)
uncensored but truncated at 1

For the above table, L(θ) = [1 − F (0.1)][f(0.8)]

[
1 − F (5)

1 − F (0.3)

][
f(4.1)

1 − F (1)

]
.
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49) When finding L(θ) = L(θ|x1, ..., xn) =
∏n

i=1 L(θ|xi), consider the numerator and
denominator for the term L(θ|xi). a) For the numerator, use f(xi) if xi is known. If it
is only known that xi is between y and z use F (z)− F (y) (where X is continuous with
grouped data or right censored at u with y = u and z = ∞ so F (z)−F (y) = 1−F (u)).
b) Let d be the truncation point. Then the denominator is 1−F (d). (Use d = 0 if there
is no truncation so 1 − F (0) = 1.)

50) For individual discrete data, L(θ) =
n∏

i=1

p(xi) =
m∏

j=1

[p(xj)]
nj where nj is the

number of times xi = xj for j = 1, ..., m. This is useful if the discrete data is tabled for
m values of xj.

51) For independent data X1, ..., Xn, L(θ) =

n∏

i=1

fXi
(xi) or L(θ) =

n∏

i=1

pXi
(xi) where

the Xi need not have the same distribution. Then ln[L(θ)] =
n∑

i=1

ln[fXi
(xi)] or

ln[L(θ)] =
n∑

i=1

ln[pXi
(xi)].

52) If there is a deductible d, and a policy limit = maximum payment u− d, then the
maximum covered loss u = u − d + d. For a coinsurance policy, the insurance company
pays αX of the loss for some α ∈ (0, 1]. For coinsurance with a deductible, the insurance
company pays α(X − d)+.

53) Using the above notation if Y P is the per payment RV and X is the loss RV, then

Y P = α(X − d), so X =
Y P

α
+ d. Here X is (left) truncated at d and (right) censored at

u. Note d = 0, u = ∞, and α = 1 are possible (no deductible, no maximum payment or
coverage, no coinsurance). Note that Y P is (right) censored at α(u − d).

54) Given losses Xi, but told that there is a deductible d and maximum payment
u − d or maximum covered loss u = u − d + d, be able to convert the loss data for Xi

to what you would have based on insurer payments Y P = min((X − d)+, u) provided
Y P > 0. Then convert the data into losses the insurer would observe using 53) to find
the MLE. See HW4 3b).

55) Let f(x) = f(x|θ) be the pdf or pmf of X. Assume the support of X does
not depend on any unknown parameters. (See 37).) The family of pdfs or pmfs is a k
parameter exponential family if

f(x|θ) = h(x)c(θ) exp

[
k∑

i=1

wi(θ)ti(x)

]
(1)

and k is the smallest integer where (1) holds.
56) For a one parameter exponential family, f(x|θ) = h(x)c(θ) exp [w(θ)t(x)]. Let

η = w(θ) and let Ω be the parameter space (range) of η. If Ω is an open interval (a, b)
(with a = −∞ and b = ∞ possible), then X is from a one parameter regular exponential
family (1PREF).
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57) For a two parameter exponential family, f(x|θ) = h(x)c(θ) exp [w1(θ)t1(x) + w2(θ)t2(x)] .
Let η1 = w1(θ) and η2 = w2(θ). If i) the parameter space of (η1, η2) = Ω is a cross prod-
uct of two open intervals, and ii) neither η1 and η2 nor t1(x) and t2(x) satisfy a linearity
constraint, then X is from a two parameter regular exponential family (2PREF).

58) Suppose X is from a 2PREF. If one of the two parameters is known, then X is
from a 1PREF.

59) All of the brand name exponential families are regular except the inverse Gaussian
distribution. 1PREFs: EXP(θ), Poisson(λ), binomial(q, m) with m known, single param-
eter Pareto(α, θ) with θ known, Weibull(θ, τ ) with τ known, inverse exponential (θ), two
parameter Pareto(α, θ) with θ known, inverse Weibull(θ, τ ) with τ known, geometric(β),
negative binomial(β, r) with r known. 2PREFs: N(µ, σ2), LN(µ, σ), Gamma(α, θ),
beta(a, b).

The U(0, θ) distribution is not an exponential family since the support depends on θ.
60) Let x = (x1, ..., xn). Let X = (X1, ..., Xn). Let X have joint pdf or pmf

f(x|θ) = L(θ). As a RV, let the likelihood L(θ) = L(θ|X). Then Fisher’s information

or the information number or the information is In(θ) = I(θ) = Eθ

([
d
dθ

ln(L(θ))
]2

)
=

Eθ

([
d
dθ

ln(f(X|θ))
]2

)
. Then I1(θ) = Eθ

([
d
dθ

ln(L(θ|X))
]2

)
= Eθ

([
d
dθ

ln(f(X|θ))
]2

)
.

61) Let θ = (θ1, ..., θk). Then the k×k information matrix In(θ) = I(θ) = (Iij) where

Iij = E

[
∂

∂θi

ln(L(θ))
∂

∂θj

ln(L(θ))

]
where L(θ) = L(θ|X). If there are k = 2 parameters,

In(θ) = I(θ) =




E

([
∂

∂θ1
ln(L(θ))

]2
)

E
[

∂
∂θ1

ln(L(θ)) ∂
∂θ2

ln(L(θ))
]

E
[

∂
∂θ2

ln(L(θ)) ∂
∂θ1

ln(L(θ))
]

E

([
∂

∂θ2
ln(L(θ))

]2
)




. Since

I(θ) is symmetric, only 3 terms need to be computed when k = 2.

62) If X1, ..., Xn are iid from a k–parameter exponential family, then Iij = −E

[
∂2

∂θi∂θj
ln(L(θ))

]
.

If k = 1 then In(θ) = −E

[
d2

dθ2
ln(L(θ|X))

]
= nI1(θ) where I1(θ) = −E

[
d2

dθ2
ln(L(θ|X))

]

where X is a RV since n = 1. Hence I1(θ) = −E

[
d2

dθ2
ln(f(X|θ))

]
where f(x|θ) is the

pdf or pmf of X. If k = 2, then In(θ) = I(θ) = −




E
[

∂2

∂θ2
1

ln(L(θ))
]

E
[

∂2

∂θ1∂θ2
ln(L(θ))

]

E
[

∂2

∂θ2∂θ1
ln(L(θ))

]
E

[
∂2

∂θ2
2

ln(L(θ))
]


 .

Since I(θ) is symmetric, only 3 terms need to be computed when k = 2.
63) If X1, ..., Xn are iid, then under regularity conditions, if k = 1 then I1(θ) =

−E

[
d2

dθ2
ln(f(X|θ))

]
, if k = 2 then I1(θ) = −




E
[

∂2

∂θ2
1

ln(f(X|θ))
]

E
[

∂2

∂θ1∂θ2
ln(f(X|θ))

]

E
[

∂2

∂θ2∂θ1
ln(f(X|θ))

]
E

[
∂2

∂θ2
2

ln(f(X|θ))
]


 ,

and In(θ) = nI1(θ) or In(θ) = nI1(θ).
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64) Unless told otherwise, if X1, ..., Xn are iid, assume equations 62) and 63) can
be used. Exception: 60) must be used instead of 62) if X1, ..., Xn are iid U(0, θ).

65) A k × 1 random vector X has a k−dimensional multivariate normal distribution

X ∼ Nk(µ,Σ) iff tTX has a univariate normal distribution for any k×1 constant vector
t. If Σ is positive definite, then X has a joint pdf

f(z) =
1

(2π)k/2|Σ|1/2
e−(1/2)(z−µ)TΣ

−1
(z−µ)

where |Σ|1/2 is the square root of the determinant of Σ.
66) If X ∼ Nk(µ,Σ), then E(X) = µ and Cov(X) = Σ where E(X) = (E(X1), ..., E(Xk))

T

and Cov(X) = Σ = (σij) where σij = Cov(Xi, Xj). Note that σii = σ2
i = V (Xi).

67) MLE Limit Theorem: Let X1, ..., Xn be iid. a) Let θ̂n be the MLE of θ. Under
regularity conditions and if τ ′(θ) 6= 0, then

√
n[θ̂n − θ]

D→ N

(
0,

1

I1(θ)

)
and

√
n[τ (θ̂n) − τ (θ)]

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.

So θ̂ ∼ AN
(
θ, 1

nI1(θ)

)
and τ (θ̂) ∼ AN

(
τ (θ), [τ ′(θ)]2

nI1(θ)

)
.

b) Let θ̂n be the MLE of θ. Then under regularity conditions,

√
n(θ̂n − θ)

D→ Nk

(
0, I−1

1 (θ)
)

and θ̂ ∼ ANk

(
θ,

I−1
1 (θ)

n

)
= ANk(θ, I−1

n (θ)).

68) If A =

[
a11 a12

a21 a22

]
, then A−1 =

1

a11a22 − a21a12

[
a22 −a12

−a21 a11

]
. In this class

A is usually symmetric (A = AT ), so a12 = a21.

69) Delta Method: If g′(θ) 6= 0 and
√

n(Tn − θ)
D→ N(0, σ2), then√

n(g(Tn) − g(θ))
D→ N(0, σ2[g′(θ)]2). For example, apply to the CLT with Tn = X and

θ = µ or MLE limit theorem 67a) with Tn = θ̂n and g(θ) = τ (θ).

70) The asymptotic variance of the MLE θ̂ is V ar(θ̂) =
1

nI1(θ)
=

1

In(θ)
. The asymp-

totic variance of τ (θ̂) is V ar(τ (θ̂)) =
[τ ′(θ)]2

nI1(θ)
=

[τ ′(θ)]2

In(θ)
if τ ′(θ) 6= 0. The asymptotic

covariance matrix of the MLE θ̂ is Cov(θ̂) = I−1
n (θ) = [nI1(θ)]−1 when θ̂ or θ̂ is asymp-

totically normal as in 67). The asymptotic variance of θ̂ approximates the variance of
θ̂ and the asymptotic covariance matrix of θ̂ approximates the covariance matrix of θ̂.
If g′(θ) 6= 0 and V ar(θ̂) is the asymptotic variance of θ̂, then the the Delta Method
asymptotic variance of g(θ̂) is V ar(g(θ̂)) = [g′(θ)]2V ar(θ̂).

71) Suppose X1, ..., Xn are iid with mean E(X) and variance V (X) where θ = cE(X)

and the MLE θ̂ = cX for some known constant c. Then I1(θ) =
1

c2V (X)
and the

asymptotic variance V ar(θ̂) = V (cX) = c2V (X)/n.
72) Let g : R

2 → R have nonzero partial derivatives. Then the Delta Method asymp-
totic variance of g(θ̂1, θ̂2) is V ar(g(θ̂1, θ̂2)) =

(
∂g(θ)

∂θ1

)2

V ar(θ̂1) + 2

(
∂g(θ)

∂θ1

) (
∂g(θ)

∂θ2

)
Cov(θ̂1, θ̂2) +

(
∂g(θ)

∂θ2

)2

V ar(θ̂2)
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where the asymptotic covariance matrix of (θ̂1, θ̂2) is Cov(θ̂) =

[
V ar(θ̂1) Cov(θ̂1, θ̂2)

Cov(θ̂1, θ̂2) V ar(θ̂2)

]
,

where Cov(θ̂) = I−1
n (θ) if θ̂ is the MLE. It is also true that

V ar(g(θ̂1, θ̂2)) =

(
∂g(θ)

∂θ1

∂g(θ)

∂θ2

)[
V ar(θ̂1) Cov(θ̂1, θ̂2)

Cov(θ̂1, θ̂2) V ar(θ̂2)

]



∂g(θ)
∂θ1

∂g(θ)
∂θ2


 .

Mnemonic: Cov(θ̂i, θ̂j) has coefficient
∂g(θ)

∂θi

∂g(θ)

∂θj

where Cov(θ̂i, θ̂i) = V ar(θ̂i).

73) Let X1, ..., Xn be iid with distribution X. Here are some values of I1(θ) and the
asymptotic variance V ar(θ̂) of the MLE. See 45).

a) If X ∼ EXP (θ), then θ̂ = X, I1(θ) =
1

θ2
and V ar(θ̂) =

θ2

n
.

b) If X ∼ LN(µ, σ) with µ and σ2 are unknown. Let Wi = ln(Xi). Then µ̂ = W and

σ̂2 =
1

n

n∑

i=1

(Wi − W )2. Now I1(µ) =
1

σ2
, I1(σ) =

2

σ2
, V ar(µ̂) =

σ2

n
, V ar(σ̂) =

σ2

2n
, and

Cov(µ̂, σ̂) = 0.

c) Let X ∼ Pareto(α, θ). i) If α is fixed, then I1(θ) =
α

(α + 2)θ2
and

V ar(θ̂) =
(α + 2)θ2

nα
. ii) If θ is fixed, then I1(α) =

1

α2
and V ar(α̂) =

α2

n
.

d) If X ∼ Weibull(θ, τ ) with τ fixed, then I1(θ) =
τ 2

θ2
and V ar(θ̂) =

θ2

nτ 2
.

e) If X ∼ U(0, θ) then θ̂ = X(n), I1(θ) =
1

θ2
and V ar(θ̂) =

nθ2

(n + 1)2(n + 2)
6= 1

nI1(θ)
,

and θ̂ is not asymptotically normal.

f) If X ∼ N(µ, σ2) with µ and σ2 unknown, then µ̂ = X, σ̂2 =
1

n

n∑

i=1

(Xi − X)2,

I1(µ) =
1

σ2
, I1(σ

2) =
1

2σ4
, V ar(µ̂) =

σ2

n
, V ar(σ̂2) =

2σ4

n
, and Cov(µ̂, σ̂2) = 0.

g) If X ∼ Poisson(λ) then λ̂ = X, I1(λ) =
1

λ
and V ar(λ̂) =

λ

n
.

h) If X ∼ binomial(q, k), k known, then q̂ = X/k, I1(q) =
k

q(1− q)
and

V ar(q̂) =
q(1 − q)

nk
.

i) If X ∼ negative binomial (r, β) with r known, then β̂ =
X

r
, I1(β) =

r

β(1 + β)
and

V ar(β̂) =
β(1 + β)

nr
.

j) If X ∼ G(α, θ) with α known, then θ̂ = X/α, I1(θ) =
α

θ2
and V ar(θ̂) =

θ2

nα
.

k) If X ∼ geometric(β), then β̂ = X , I1(β) =
1

β(1 + β)
and V ar(β̂) =

β(1 + β)

n
.

5



74) Know: When asked to find V ar(θ̂), V ar(g(θ̂1, θ̂2)), and Cov(θ̂), plug in θ̂, θ̂1, θ̂2,
or θ̂ to get real numbers or a matrix with real number entries.

75) If
√

n

(
θ̂1 − θ1

θ̂2 − θ2

)
D→ N2

[(
0
0

)
,

(
σ11 σ12

σ21 σ22

)]
,

then
√

n(θ̂i − θi)
D→ N(0, σii) for i = 1, 2 where the asymptotic variance V ar(θ̂i) = σii/n.

76) Let zp be the 1−α/2 percentile z1−α/2 = the upper α/2 percentile zα/2, using bad
notation. So P (Z ≤ zp) = 1 − α/2 and P (Z > zp) = α/2.

CI 90% 95% 99%
zp 1.645 1.96 2.576

77) Using the notation in 76), if
√

n(θ̂ − θ)
D→ N(0, σ2), then V ar(θ̂) = σ2/n, and a

large sample 100(1 − p/2)% confidence interval (CI) for θ is

θ̂ ± zp

√
V̂ ar(θ̂) = (θ̂ − zp

σ̂√
n

, θ̂ + zp
σ̂√
n

).

If θ̂ is the MLE, then the 100(1 − p/2)% CI for θ is

θ̂ ± zp
1√

nI1(θ̂)
= θ̂ ± zp

1√
In(θ̂)

.

The 100(1 − p/2)% CI for τ (θ) = g(θ) is

τ (θ̂) ± zp

√
[τ ′(θ̂)]2

nI1(θ̂)
= τ (θ̂) ± zp

√
[τ ′(θ̂)]2

In(θ̂)
= τ (θ̂) ± zp

√
V̂ ar(τ (θ̂)).

The 100(1 − p/2)% CI for g(θ1, θ2) is

g(θ̂1, θ̂2) ± zp

√
V̂ ar(g(θ̂1, θ̂2))

where V̂ ar(g(θ̂1, θ̂2)) plugs (θ̂1, θ̂2) in for unknowns (θ1, θ2) in the V ar(g(θ̂1, θ̂2)) formula.
78) Let m = number of uncensored observations, c = number of censored observations,

n = m + c, let di be the truncation point for each observation (0 if untruncated). Let xi

be the observation if uncensored or the censoring point (ui) if censored. The following
formulas work if left truncation and right censoring are present or not. For a), see 53).

a) EXP(θ): θ̂ =

∑n
i=1(xi − di)

m
=

∑n
i=1 Y P

i

m
.

b) Weibull fixed τ : θ̂ =

(∑n
i=1(x

τ
i − dτ

i )

m

)1/τ

.

c) Pareto fixed θ: α̂ =
−m

∑n
i=1 ln

(
θ+di

θ+xi

) .

d) single parameter Pareto fixed θ: α̂ =
−m

∑n
i=1 ln

(
max(θ,di)

xi

) .
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79) Suppose the U(0, θ) distribution is used for grouped or censored data. Let [c, f)
be the highest integer with count nc > 0 (f = ∞ is allowed and c could be the censoring

value). Let m = number of observations < c, so n = m + nc. Then θ̂ = min
( n

m
c, f

)
.

Note that θ̂ is found by matching P (X < c) = p
set
= p̂ =

m

n
. For censored data use the

table below.

interval number
(0, c) m
[c,∞) nc

For grouped data with c = ck−1, n =
∑k

i=1 ni, and m = n − nk, use either of the two
tables below.

interval number or interval number
(c0, c1) n1 (c0, c1) n1

(c1, c2) n2 (c1, c2) n2

(c2, c3) n3 (c2, c3) n3
...

...
...

...
(ck−1, ck) nk > 0 (ck−1, ck) nk > 0

(ck,∞) 0

80) The Bernoulli technique is useful if there are 2 classes or groups, and p =
p(θ) = P (X is in the 1st group) has θ = p−1(p(θ)). Then L(p) = pn1(1 − p)n2 , p̂ = n1/n,

1− p̂ = n2/n. Solve p
set
= p̂ = n1/n for θ to get the MLE θ̂. For a discrete distribution, if

“0 claims” is the first class, then p = p0 = P (X = 0). If X is continuous, then p = F (c)
and 1−p = S(c) for the table below. Two typical tables are below. Note that n = n1+n2.

class or class number
0 claims (0, c) n1

1 or more claims (c,∞) n2

81) The Poisson, binomial, negative binomial and Geometric distributions are the

only members of the (a, b, 0) class. X is a member of this class if
pk

pk−1
= a +

b

k
for

k = 1, 2, .... Hence
k pk

pk−1
= a k + b for k = 1, 2, .... except the recursion goes up to k = m

for the binomial. In a sample ( e.g. 0,1,1,5,0,3,7,0,5,2,1,1,1,4,2,2, or see 82) or 83)), let

nk = number in sample equal to k. Plot k versus
k p̂k

p̂k−1
=

k nk

nk−1
where k is omitted if

nk = 0 (or if either count nk or nk−1 is small). If the nk are large, the plot should follow
a straight line with slope a. Often only need to compute the first 3 or 4 terms.

The Poisson RV X has slope a = 0 and E(X) = V (X). The bin RV X has slope
a < 0 and E(X) > V (X). The NB RV X (Geometric is NB(β, r = 1)) has slope a > 0
and E(X) < V (X). Often N is used instead of X.
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For the Poisson RV, won’t get X = σ̂2
E or X = σ̂2

U , but
k nk

nk−1
are roughly constant

in that they oscillate about a number (rather than clearly increase or decrease) if the
nk and nk−1 are large. If choosing from the (a, b, 0) class and X is clearly larger than
σ̂2, choose the binomial distribution. If X is clearly smaller than σ̂2, then choose a
negative binomial distribution, possibly the Geometric distribution. (If a 90% CI for
E(X) contains σ̂2, then we might say that it is not clear that X is larger or smaller than
σ̂2.) Note that p0 = P (X = 0) and pk = P (X = k).

dist a b p0

Poisson(λ) 0 λ e−λ E(X) = V (X)

bin(q, m)
−q

1 − q
(m + 1)

q

1 − q
(1 − q)m E(X) > V (X)

NB(β, r)
β

1 + β
(r − 1)

β

1 + β
(1 + β)−r E(X) < V (X)

Geom(β)
β

1 + β
0 (1 + β)−1 E(X) < V (X)

82) For complete tabled discrete data, L =
∏m

k=0 pnk

k , ln(L) =
∑m

k=0 nk ln(pk),

1

n

n∑

i=1

Xj
i =

m∑

i=1

kjnk where often j = 1 or j = 2. Recall that X uses j = 1, the biased

variance or empirical variance σ̂2
E =

1

n

n∑

i=1

X2
i − (X)2 and unbiased (sample) variance

σ̂2
U =

n

n − 1
σ̂2

E .

k nk or nk

0 n0 n0

1 n1 n1

2 n2 n2
...

...
...

m nm nm

(m + 1)+ 0 n+
m+1 > 0

83) For tabled discrete data, where the last class has a count n+
m+1 > 0 equal to the

number of observations ≥ m + 1, L = (
m∏

k=0

pnk

k )(1 − p0 − · · · − pm)n+
m+1 .

ch 16

84) Let X have cdf F and pdf f . Let fn be the empirical pdf and let the empirical

cdf Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x) where the indicator function I(Xi ≤ x) = 1 if Xi ≤ x and

I(Xi ≤ x) = 0 if Xi > x. Then the indicator variables are iid binomial(q = F (x), m = 1).

If X is left truncated at d, let F ∗(x) =
F (x)− F (d)

1 − F (d)
and f∗(x) =

f(x)

1 − F (d)
be the cdf

and pdf of the truncated RV for x ≥ d.
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85) Our convention will be that a plot of a versus b will have a on the horizontal axis
and b on the vertical axis.

86) Suppose X1, ..., Xn are iid. A D(x) plot is a plot of x versus D(x) = Fn(x)−F ∗(x)
where F ∗(x) is often found using the MLE. Want the plot to oscillate about the D(x) = 0
line (often the horizontal axis).

87) Suppose X1, ..., Xn are iid. Order the observations x1 ≤ · · · ≤ xn (actually the
order statistics but xi is used instead of x(i)). The p–p plot is a plot of the sample CDF

“Fn(xj) =
j

n + 1
” versus the fitted CDF F ∗(xj) which is often found using the MLE.

If n is large, then a good fit is indicated by the plotted points clustering tightly about
the identity line with zero intercept and slope 1 that passes though the points (0,0) and
(1,1).

88) Often the plotted points in the p–p plot are indicated by a curve (or approximate
a curve). a) If the slope of the curve > 1 at a point, then in the region neighboring
the point, the fitted distribution is “thick,” or “heavy,” or “has too much weight in the
region,” or “the fitted distribution has more probability in the region than the sample.”
b) If the slope of the curve < 1 at a point, then in the region neighboring the point, the
fitted distribution is “thin,” or “light,” or “has too little weight in the region,” or “the
fitted distribution has less probability in the region than the sample.”
c) The “left tail” is the region near (0,0) (with j/(n + 1) near 0), and the “right tail” is
the region near (1,1) (with j/(n + 1) near 1).
d) An “ess shape” suggests that the left and right tails of fitted distribution are too light
and that the fitted distribution has too much probability in the middle of the plot where
the “ess shaped” curve intersects the identity line.
e) Suppose the plot is the reflection of the plot in d) about the identity line. Such a plot
indicates that the left and right tails of the fitted distribution are too heavy and that
the fitted distribution has too little probability in the middle of the plot where the curve
intersects the identity line.

89) H0 is the null hypothesis while HA = H1 is the alternative hypothesis. Use
α = 0.05 if α is not given.

90) The 4 step χ2 test of hypotheses is below.
i) H0: the fitted distribution is good HA: not H0

ii) test statistic Q =
k∑

i=1

(Oi − Ei)
2

Ei

iii) The degrees of freedom = k − r − 1 where r is the number of estimated parameters
(preferably MLEs), and r = 0 is possible. If Q > cutoff, then reject H0 (Q is in the
critical region and pval < α). If Q < cutoff, then fail to reject H0 (Q is not in the critical
region and pval > α).
iv) Give a nontechnical conclusion: “reject H0” implies that the fitted distribution is not
good, while “fail to reject H0” implies that the fitted distribution is good (or that there
is not enough evidence to conclude that the fitted distribution is not good).

91) A variant of the 4 step test is to find the smallest significance level at which H0

is rejected. For example, find that “H0 is rejected at the 0.005 significance level” or that
“H0 is rejected at the 5% (0.05) significance level but not at the 2.5% (0.025) significance

9



level.
92) The χ2 table gives the cutoff = critical value. Find degrees of freedom df =

k − r − 1. If Q is larger than any value on the df line, then reject H0 at significance
level 0.005. If Q is between two critical values in the df line, then reject H0 at the
significance level corresponding to the smaller critical value, but not at the significance
level corresponding to the larger critical value. The significance level corresponds to
1 − P where P is given on the top line of the table. Hence if df = 3 and Q = 8, then
7.815 < Q < 9.348. So reject H0 at the 0.05 significance level but not at the 0.025
significance level.

93) Data for the χ2 test is given in a table. Categories and counts ni = Oi are given.
Sometimes probabilities pi are given but sometimes need to be computed. The Ei = npi

and χ2 contributions Ci =
(Oi − Ei)

2

Ei
need to be computed. Note that n =

∑k
i=1 ni =

∑k
i=1 Oi =

∑k
i=1 Ei, 1 =

∑k
i=1 pi and Q =

k∑

i=1

(Oi − Ei)
2

Ei
=

k∑

i=1

Ci = (
k∑

i=1

O2
i

Ei
)−n. Often

pk and Ek are obtained by subtraction pk = 1−p1−· · ·−pk−1 and Ek = n−E1−· · ·−Ek−1.
If category i is the interval (ci−1, ci), then pi = F (ci) − F (ci−1) where often F is fitted
by MLE. If category i is the value j, then pi = P (X = j) which is often fitted by MLE.
(Note that P (X = j) is often denoted by pj for brand name discrete distributions.)

category Oi = ni pi Ei = npi Ci =
(Oi − Ei)

2

Ei

1 O1 = n1 p1 E1 C1

2 O2 = n2 p2 E2 C2
...

...
...

...
...

k Ok = nk pk Ek Ck

sum n 1 n Q

94) Want Ei ≥ 5 for i = 1, ..., k. If necessary, combine neighboring classes so this
result holds, unless the problem says to use the given classes. The last class for continuous
data should be (c, f) where f = ∞ unless the support of the distribution is (0, f). For
discrete data the last class is j+ unless the distribution only has support on 0, 1, ..., j.

95) The df = k − r − 1 occurs if the n claims are divided into k groups since then∑k
i=1 ni = n (conditional on n or after gathering the data). (Occasionally the claims are

just observed in k groups, so n is a random variable or the groups are independent. Then
df = k − r.)
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