
Math 404 Exam 3 is Thurs. April 25. You are allowed 20 sheets of notes and a
calculator. The exam covers HW7-10, and Q7-10. The final is Monday, May 6, 8-10AM,
and is cumulative.You are allowed 25 sheets of notes and a calculator for the
final.

96) Let Fn(x) be the empirical cdf and let F ∗(x) be the fitted cdf. Let X1, ..., Xn be iid
or possibly truncated or censored. Let d be the truncation point (d = 0 for no truncation)
and let u be the censoring point (u = ∞ for no censoring). The Kolmogorov Smirnov
test statistic D = max

d≤x≤u
|Fn(x) − F ∗(x)| = max

xi

(|Fn(xi) − F ∗(xi)|, |Fn(xi−) − F ∗(xi)|)

where F (x−) = P (X < x). Note that Fn(x) =
#xi ≤ x

n
and Fn(x−) =

#xi < x

n
. Let

x1 ≤ x2 ≤ ... ≤ xn be the observed order statistics. If there are no ties, then Fn(xi) = i/n
and Fn(xi−) = (i − 1)/n. The following table works when there are no ties. Then D is
the largest value in the last column.

xi Fn(xi) Fn(xi−) F ∗(xi) max(|Fn(xi) − F ∗(xi)|, |Fn(xi−)− F ∗(xi)|)
x1 1/n 0/n F ∗(x1) max(|1/n − F ∗(x1)|, |0/n − F ∗(x1)|)
x2 2/n 1/n F ∗(x2) max(|2/n − F ∗(x2)|, |1/n − F ∗(x2)|)
...

...
...

...
...

xj j/n (j − 1)/n F ∗(xj) max(|j/n − F ∗(xj)|, |(j − 1)/n − F ∗(xj)|)
...

...
...

...
...

xn n/n (n − 1)/n F ∗(xn) max(|n/n − F ∗(xn)|, |(n − 1)/n − F ∗(x2)|)

97) Kolmogorov Smirnov critical values

α 0.1 0.05 0.01
1.22√

n

1.36√
n

1.63√
n

98) 4 step Kolmogorov Smirnov test
i) H0: fitted distribution is good H1: not H0

ii) D
iii) reject H0 if D > critical value, otherwise fail to reject H0

iv) non technical conclusion: reject H0: fitted distribution is not good, fail to reject H0:
fitted distribution is good (or there is not enough evidence to conclude that the fitted
distribution is not good).

99) The Anderson Darling test is a competitor of the χ2 test and the Kolmogorov
Smirnov test.

Kolmogorov Smirnov Anderson Darling chisquare test

i) indiv data indiv data indiv or grouped data

ii) contin fits contin fits contin or discrete fits

iii) lower the critical lower the critical no adjustment for critical

value if u < oo value if u < oo value if u < oo

iv) lower the critical lower the critical df = k - r -1 adjusts for

value if r > 0 value if r > 0 r > 0
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v)crit value decreases crit value decreases critical value free of the

as n increases as n increases sample size n

vi) no discretization no discretization discretization with group data

vii) uniform weight on higher weight on the higher weight on intervals with

all parts of the distr tails of the distr lower prob (often the right tail)

100) Likelihood Ratio Test (LRT) where H0: distribution is from model A and H1:
distribution is from model B where model A is a special case of model B: Let Θ0 be
the parameter space for H0 (model A) and let Θ1 be the parameter space for H1 (model
B). Let θ̂0 be the MLE for model A where θ̂0 ∈ Θ0, and let θ̂1 be the MLE for model B
where θ̂1 ∈ Θ1. Let L0 = L(θ̂0) and L1 = L(θ̂1). then the LRT test statistic is

T = −2 ln(
L0

L1
) = 2 ln(

L1

L0
) = 2[ln(L1) − ln(L0)].

Let df = d = dB − dA = number of free parameters in B − number of free parameters in
A, where a free parameter is not specified, so must be estimated using the MLE. Reject
H0 if T > χ2

d,1−α = χ2
d,P on the χ2 table, otherwise fail to reject H0. Then the 4 step test

is
i) H0 data is from distribution A H1: data is from distribution B
ii) T
iii) reject H0 if T > χ2

d,P , otherwise fail to reject H0

iv) nontechnical conclusion: reject H0: data came from distribution B, fail to reject H0:
data came from distribution A (or there is not enough evidence to conclude that the data
came from distribution B)

101) LRT if model A is not a special case of model B or if there are models A1, A2, ..., Ak:
Select, for every number of parameters, the model with the highest loglikelihood. Sup-
pose α = 0.05 is the significance level. In order to prefer the best 2 parameter model
over the best 1 parameter model, need 2(ln L2 − lnL1) ≥ χ2

1,0.95 = 3.841. If the best
2 parameter model is not good, need 2(ln L3 − lnL1) ≥ χ2

2,0.95 = 5.991, and so on. If
the 2 parameter model is preferred, then start over comparing the 3, 4, ... parameter
models with the 2 parameter model. So need 2(lnL3 − lnL2) ≥ χ2

1,0.95 = 3.841, and if
the 3 parameter model is not good, need 2(ln L4 − lnL2) ≥ χ2

2,0.95 = 5.991, and so on.
If −loglikelihood is given, multiply the values by −1. See first 2 columns of the table
below. The third column is usually omitted.

number of parameters maximal loglikelihood Schwarz Bayesian

1 ln(L1) ln(L1) −
1

2
ln(n)

2 ln(L2) ln(L2) −
2

2
ln(n)

...
...

k ln(Lk) ln(Lk) −
k

2
ln(n)

102) For the above table, the Schwarz Bayesian criterion says take the model that

maximizes ln(Lr)−
r

2
ln(n) where n is the sample size and r is the number of parameters.

So take the model that maximizes the 3rd column.

2



103) For Bayesian statistics θ is a random variable. Let π(θ) be the prior pdf or
pmf. Let f(x|θ) be the conditional pdf or pmf: the likelihood function where usually
f(x|θ) =

∏n
i=1 f(xi|θ). The joint pdf or pmf is f(x, θ) = π(θ)f(x|θ). The posterior pdf

or pmf is

π(θ|x) =
f(x, θ)

f(x)
.

Then the marginal or unconditional pdf or pmf is f(x) =
∫

f(x, θ)dθ if θ has interval
support or f(x) =

∑
θ f(x, θ) if θ has a pmf.

104) Typically if the prior is a pdf then so is the posterior, and if the prior is a pmf
then so is the posterior. The prior will be a pdf if θ is modeling an interval (e.g., like a
probability on [0, 1]), and the prior will be a pmf if θ is modeling a countable number of
values (e.g., only probabilities 0.3 and 0.7 are of interest).

105) Suppose θ = (θ1, ..., θk is a random vector. Bayes’ Theorem: for a posterior
pdf,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|t)π(t)dt

while for a posterior pmf,

π(θ|x) =
f(x|θ)π(θ)
∑

t f(x|t)π(t)
.

In both denominators, t is often replaced by θ.
106) Know: the posterior pdf or pmf π(θ|x) ∝ π(θ)f(x|θ), the product of the prior

and the likelihood. All constants that do not depend on θ can be discarded on the right
hand side. Then recognize that the right hand side is a brand name distribution or use
the fact that a pdf integrates to 1 and a pmf sums to 1: integrate to get the constant c
that makes the posterior a pdf (or sum to get c for a pmf).

107) The posterior distribution is a perfectly good probability distribution. Let W =
θ|x. Then P (a < W < b) = P (a < θ < b|x) and E(W ) = E(θ|x).

108) The posterior support is a subset of the prior support. So if the prior support
is (a,b), then the posterior support is a subset of (a,b) (often equal to (a,b)). If the
prior support is {0.3, 0.5, 0.7}, then the posterior support is a subset (often proper) of
{0.3, 0.5, 0.7}.

109) If a conjugate prior is used, then the posterior distribution has the same distri-
bution as the prior distribution, but with different parameters.

110) a) θ|x ∼ beta(a, b) if π(θ|x) ∝ θa−1(1 − θ)b−1 where a, b > −1 and θ ∈ [0, 1].
b) θ|x ∼ gamma(α, β) if π(θ|x) ∝ θα−1e−θ/β where α, β, θ > 0.
c) θ|x ∼ single parameter Pareto (α, β) if π(θ|x) ∝ θ−(α+1) where θ > β, α > 0 and

β is real.
d) θ|x ∼ Pareto (α, β) if π(θ|x) ∝ (β + θ)−(α+1) where α, β, θ > 0.

e) θ|x ∼ N(µ, σ2) if π(θ|x) ∝ exp(
(−1

2σ2
(θ − µ)2

)
where σ2 > 0 and θ and µ are real.

Note that θ takes the place of x and β often takes the place of θ compared to the
distributions given on p. 1-2 of the exam 1 review.

111) Let Xn+1 be a future value of the data given X1 = x1, ..., Xn = xn have
been collected. The predictive density (pdf or pmf) f(x|x) = f(y|x) = f(xn+1|x) =
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∫
f(y|θ)π(θ|x)dθ =

∫
f(x|θ)π(θ|x)dθ is the updated unconditional (marginal) pdf (or

pmf) for Xn+1 given the data x. here f(x|θ) is the likelihood if n = 1 and usually θ = θ.
112) Using some bad notation, E(Xn+1) = E(Xn+1|x) = E[E(Xn+1|Θ)|x] is the

Bayesian premium =
∫

xf(x|x)dx using the predictive density from 111).
113) The Bayesian estimator or Bayes estimator minimizes the expected posterior

loss function.
a) For the (mean) square error loss function, l(θ̂, θ) = (θ̂ − θ)2, the Bayesian point

estimator is the mean of the posterior distribution: θ̂ = E(Θ|x).
b) For the absolute value of the error loss function, l(θ̂, θ) = |θ̂ − θ|, the Bayesian

point estimator is the median of the posterior distribution: θ̂ = π0.5.
c) For the zero–one loss function, (l(θ̂, θ) = 0 if θ̂ = θ, and l(θ̂, θ) = 1 or any constant

k if θ̂ 6= θ,) the Bayesian point estimator θ̂ is the mode of the posterior distribution.
114) The sample space S is partitioned into n subsets A1, A2, ..., An if a) Ai ∩Aj = Ø

for i 6= j, b) Ai 6= Ø for i = 1, ..., n, and c) A1 ∪ A2 ∪ · · · ∪ An = S. Often n = 2, and A
and the complement A form a partition of S. Let A1, A2, ..., An partition S, and let E
be an event in S, then
a) P (E) = P (A1)P (E|A1) + P (A2)P (E|A2) + · · · + P (An)P (E|An) and

b) Bayes’ rule: P (Aj|E) =
P (Aj ∩ E)

P (E)
=

P (Aj)P (E|Aj)

P (E)

=
P (Aj)P (E|Aj)

P (A1)P (E|A1) + P (A2)P (E|A2) + · · · + P (An)P (E|An)
.

In particular, if n = 2, P (E) = P (A)P (E|A) + P (A)P (E|A) and

P (A|E) =
P (A)P (E|A)

P (A)P (E|A) + P (A)P (E|A)
.

In a Bayes’ rule story problem, 2 or more unconditional probabilities are given (or
easy to find with the complement rule). Several conditional probabilities are also given
(or easy to find with the complement rule). Make a tree diagram with the events
corresponding to the unconditional events labelling the left branches and the events
corresponding to the conditional probabilities labelling the right branches. Above the
left branches place the unconditional probabilities and above the right branches place
the conditional probabilities. You will be asked to find an unconditional right branch
probability and to use Bayes’ rule to find P(left branch | right branch).

Tips: the hard conditional probability, P(left branch | right branch), usually appears
at the end of the story problem. This tells you how to label the left branches and the right
branches of the tree. (The easy conditional probabilities, P(right branch | left branch),
can also tell you how to label the tree.) The probabilities of the left branch sum to one.
Each subtree of right branches has probabilities that sum to one. Occasionally you are
asked to find both a P(right branch | left branch) (directly from the tree) and P(left
branch | right branch) (using Bayes rule).

115) Let W = Xn+1(= Xn+1|x). Often want the Bayesian estimate = posterior mean
of g(θi) = h(W |θi). For example, the expected value of the next claim = E(claim |x)
has g(θi) = E(claim |θi) and P (Xn+1 > c|x) has g(θi) = P (Xn+1 > c|θi). Using the
predictive distribution from 111), the Bayesian estimate is
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E[g(Θ)|x)] =
∑

i g(θi)π(θi|x) =
∑

i h(w|θi)π(θi|x). Replace the sum by an integral if the
posterior is a pdf instead of a pmf.

116) Bayesian credibility puts a prior on classes of risks. Let θi correspond to class i.
Then X = losses follow a different distribution for each class. Note that X is a generic
RV: might want the aggregate loss X = S =

∑N
i=1 Xi. Use the following table to find the

Bayesian premium. Enough information needs to be given to find row i) and ii). Often
k = 2, and if there are j times as many people in class 1 as in class 2, then π(class 1)
= j/(j + 1) while π(class 2) = 1/(j + 1). Each middle row iii) term is a product of the
corresponding terms from rows i) and ii). For row iv), the posterior is the ratio of a
row iii) term and the row iii) sum. For row v), the hypothetical mean is the conditional
mean of each class. The sum of the row vi) terms is the Bayesian premium = predicted
expected value, the quantity that you want to find.

row class 1 ... class k sum
i) prior π(class 1) ... π(class k) 1

ii) likelihood f(x|class 1) ... f(x|class k)
iii) joint prob π(class 1)f(x|class 1) ... π(class k)f(x|class k) denom. of Bayes’ th.

iv) posterior
π(class 1)f(x|class 1)

row iii) sum
...

π(class k)f(x|class k)

row iii) sum
= π(class 1|x) ... = π(class k|x) 1

v)hyp. mean µ1 = E(X|class 1) ... µk = E(X|class k)
vi) B. prem. contr. µ1π(class 1|x) ... µkπ(class k|x) Bayesian premium

117) Let S =
∑N

i=1 Xi where S = 0 if N = 0. The distribution of S is called a com-
pound distribution with N the primary distribution and X the secondary distribution.
Assume the Xi are iid and Xi N unless told otherwise: then E(S) = E(N)E(X) and
V (S) = E(N)V (X) + [E(X)]2V (N).

118) Classical credibility = limited fluctuation credibility. Let M be the underlying
manual rate or pure premium. Let Xj be the claims, or losses, or aggregate losses in
past experience period j. Let the policyholder experience (X1, ..., Xn) be the data where
n is the number of time periods exposed to a risk. Assume the Xj are independent
with E(Xj) = E(X) and V (Xj) = V (X). Let the coefficient of variation CV (Xj) =

CV (X) =
SD(X)

E(X)
=

√
V (X)

E(X)
. Let the credibility premium PC = ZX + (1 − Z)M

where the credibility (factor) Z ∈ [0, 1]. Full credibility occurs if Z = 1 so PC = X.
Partial credibility occurs when Z < 1. Want to establish credibility standards based on
2 parameters: a) the probability of being in an interval like a CI: 0.9 , 0.95 or 0.99, with
zp given by 1.645, 1.96, or 2.576, and b) the maximum amount of fluctuation to allow:
eg k = 0.05.

119) Let e be the amount of exposure needed for full credibility (for Z = 1). For a

general RV W , want “CI” eE(W )±zp

√
eV (W ) and want the fluctuation

zp

√
eV (W )

eE(W )
≤ k

so 1 ± fluctuation ∈ [1 − k, 1 + k]. Then e =
(

zp

k

)2
(

SD(W )

E(W )

)2

=
(

zp

k

)2

[CV (W )]2 is
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the general formula for full credibility.
120) In the table below, i) for exposure units e = eF : the measurement unit is

the (expected) number of exposures where an exposure unit is a) a risk over a time
period (eg number of person years) for both number of claims and aggregate losses, b)
a claim for severity (claim size). So eF is the (expected) number of risks needed for
full credibility. ii) For number of claims e = nF is the (expected) number of claims
needed for full credibility. Then eF = nF/λ, the (expected) number of claims divided
by the expected number of claims per risk λ. iii) For aggregate losses, the exposure unit
e = aF = nFE(X), the (expected) number of claims times the expected losses per claim.
Note that eF = aF/(λE(X)). Want W to be within 100 k% of the expected 100 p% of
the time.

121) Suppose N ∼ Pois(λ). The general formula for e for full credibility is given

below for various W . Let n0 =
(

zp

k

)2

. Want how many exposures e are needed for full

credibility.

experience Number of claims claim size Aggregate losses
(severity) (pure premium)

expressed in W = N W = X W = S

exposure units e = eF
n0

λ

n0

λ
[CV (X)]2

n0

λ
(1 + [CV (X)]2)

number of claims e = nF n0 n0[CV (X)]2 n0(1 + [CV (X)]2)
aggregate losses e = aF n0E(X) n0E(X)[CV (X)]2 n0E(X)(1 + [CV (X)]2)

122) PC = M + Z(X − M). The credibility factor for i) e < eF exposure units is

Z =
√

e/eF . The credibility factor for n < nF expected claims is Z =
√

n/nF , and the

credibility factor for a < aF aggregate claims is Z =
√

a/aF . If the prior estimate or

manual rate or pure premium M is given for what a statistic T estimates, (eg T = X:
the average claim, or T =

∑
Xi: the total loss), then PC = M + Z(T − M).

123) Assume all relevant expectations exist. Then iterated expectations or the con-
ditional mean formula is E(X) = E[E(X|Y )] = EY [EX |Y (X|Y )]. The conditional vari-
ance formula is V (X) = E[V (X|Y )] + V [E(X|Y )]. Also, E(Xk) = E[E(Xk|Y )] and
E(h(X, Y )) = E(E[h(X, Y )|Y ]).

124) Let Θ = θi correspond to risk class i. Let E(X) = E[E(X|Θ)], EPV =
E[V (X|Θ)] and V HM = V [E(X|Θ)]. Note that V (X) = EPV + V HM by 118).

Let k = EPV/V HM and let Z =
n

n + k
=

n(V HM)

n(V HM) + EPV
. Then for Bühlmann

credibility, (a linear approximation to Bayesian credibility), the credibility premium or
Bühlmann credibility estimate is PC = ZX + (1 − Z)E(X) = E(X) + Z[X − E(X)].

125) For classical limited fluctuations credibility, Pc = M + Z(T − M) where T is a
statistic like T = X or T =

∑n
i=1 Xi = total loss, and M is the prior estimate or manual

rate or pure premium for what T estimates. Suppose you have e < eF , n < nF or a < aF

(expected) exposure units. Then Z =
√

e/eF , Z =
√

n/nF , or Z =
√

a/aF .
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126) distribution 1 + [CV (X)]2

exponential EXP(θ) 2

gamma G(α, θ) 1 +
1

α

lognormal LN(µ, σ) eσ2

Pareto(α, θ)
2(α − 1)

α − 2

127) The Bühlmann credibility method is a linear approximation to the Bayesian
credibility method. Let Θ = θi correspond to risk class i. Let the hypothetical mean
µi = E(X|Θ = θi) be the mean of class i. The model or process is X|Θ (with pdf or pmf
equal to the likelihood with n = 1). Let µ = E(X) = E(E[X|Θ]) = EHM = overall
mean = expected value of the (process mean or) hypothetical mean. Let v = EPV =
E(V [X|Θ]) = expected value of the process variance. Let a = V HM = V (E[X|Θ]) =
variance of the hypothetical mean. Note that V (X) = EPV +V HM . Then Bühlmann’s

k =
v

a
=

EPV

V HM
and Bühlmann’s Z =

n

n + k
=

na

na + v
=

n(V HM)

n(V HM) + EPV
. Then

for Bühlmann credibility, the credibility premium or Bühlmann credibility estimate is
Pc = ZX + (1 − Z)E(X) = E(X) + Z[X − E(X)].

128) Know: For nonparametric or semiparametric empirical Bayes estimation for
Bühlmann credibility, if â < 0 set â = 0 and Ẑ = 0.

129) For uniform exposures, nonparametric empirical Bayes estimation for Bühlmann

credibility has Xij = loss for the ith policy holder in the jth year, µ̂ = X =
1

r

r∑

i=1

Xi =

1

nr

r∑

i=1

n∑

j=1

Xij, v̂ = ÊPV =
1

r

r∑

i=1

1

n − 1

n∑

j=1

(Xij − X i)
2 =

1

r

r∑

i=1

σ̂2
ui, and

â = ̂V HM =
1

r − 1

r∑

i=1

(Xi − X)2 − v̂

n
. Here r = number of policyholders and n =

number of years for loss data for each policyholder. If â = 0 set Ẑ = 0, otherwise, k̂ =
v̂

â
and Ẑ =

n

n + k̂
. Then the Bühlmann premium for policyholder i is

Pci = ẐX i + (1 − Ẑ)X = X + Ẑ[Xi −X ].
130) Nonuniform exposures, nonparametric empirical Bayes estimation for Bühlmann

credibility: suppose there are ni years of data for group (policyholder) i with mij expo-
sures for group i in year j (uniform exposures 129) has ni ≡ n and mij ≡ m), and

mi =
ni∑

j=1

mij. (If the time unit is years, then mi is the number of exposure–years for

group i over all ni years.) Let m =
∑r

i=1 mi. Then µ̂ = X =

∑r
i=1

∑ni

j=1 mijXij

m
,

v̂ = ÊPV =

∑r
i=1

∑ni

j=1 mij(Xij −X i)
2

∑r
i=1(ni − 1)

, and

â = ̂V HM =

∑r
i=1 mi(Xi − X)2 − v̂(r − 1)

m − 1
m

∑r
i=1 m2

i

. If â = 0 set Ẑ = 0, otherwise, k̂ =
v̂

â
and
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Ẑ =
n

n + k̂
. Then the Bühlmann premium for policyholder i is

P i
c = Pci = ẐX i + (1 − Ẑ)X = X + Ẑ[Xi −X ].

131) Semiparametric empirical Bayes estimation for Bühlmann credibility: assume
the number of claims for each policyholder has a conditional Poisson(λ) distribution (λ
is a RV). Each member has ñ = 1 year of exposure. The loss for the ith policy holder is
Xi for i = 1, ..., n. (Note that n was r and ñ was n in 129). Also note that Xi = Xi since

ñ = 1.) Then µ̂ = X = v̂ = ÊPV , and â = ̂V HM =
1

n − 1

n∑

i=1

(Xi−X)2 − v̂. If â = 0

set Ẑ = 0, otherwise, k̂ =
v̂

â
and Ẑ =

ñ

ñ + k̂
=

1

1 + k̂
. Then the Bühlmann premium for

policyholder i is P i
c = Pci = ẐXi + (1 − Ẑ)X = X + Ẑ[Xi − X]. This formula does not

make sense with grouped data where 129) or 130) should be used.
132) Bayesian credibility: a) Poisson–Gamma: Suppose N |λ ∼ Poisson(λ) with

conjugate prior distribution λ ∼ G(α, θ). Then N ∼ NB(r = α, β = θ). With k claims

in n exposures, the posterior distribution λ|(n, k) ∼ G

(
α′ = α + k, θ′ =

θ

1 + nθ

)
where

1

θ′
=

1

θ
+ n =

1 + nθ

θ
. The n exposures could be n years for one insured, n insureds for

1 year, or the sum of ni insureds for year i for years 1, ..., m: n =
∑m

i=1 ni. Note that

X = k/n. Then the posterior mean E(λ|(n, k)) = α′θ′ = Pc =
(α + k)θ

1 + nθ
=

α + nX
1
θ

+ n
=

γ

γ + n

α

γ
+

n

n + γ
X where γ = 1/θ and Z =

n

n + γ
. The predictive distribution N |(n, k) ∼

NB

(
r = α′ = α + k, β = θ′ =

θ

1 + nθ

)
.

b) normal–normal. Let v = σ2 and a = τ 2. Suppose X ∼ N(θ, σ2) with conjugate
prior θ ∼ N(µ, τ 2) where σ2, µ and τ 2 are constants. (Sometimes use Θ in place of θ.)
Then X ∼ N(µ, σ2 + τ 2). Let the data x = (X1, ..., Xn). Then the posterior distribution

θ|x ∼ N(µ + Z(X − µ), (1 − Z)τ 2 + σ2) with Z =
n

n + σ2

τ2

=
nτ 2

nτ 2 + σ2
.

c) binomial–beta: Suppose N |q ∼ binomial(q, m) with conjugate prior distribution q ∼
beta(a, b) Suppose there are k claims in m exposures. Then the posterior distribution
q|(m, k) ∼ beta(a + k, b + m − k). Here q = P (claim).

133) If N |q ∼ Bernoulli(q) ∼ binomial(q, m = 1) and q ∼ beta(a, b), and if the
data x is n Bernoulli(q) trials with k 1’s, then the posterior distribution q|(n, k) ∼
beta(a + k, b + n − k). (132 c) treats the binomial(q,m) case as n = m Bernoulli trials.)
Then the posterior mean E(q|x) = a+k

n+a+b
.

134) For Bayesian credibility, typical exam questions tend to use distributions that
are “easy to integrate” (to find the constant c that makes the posterior pdf integrate to
1) like the uniform, exponential, and single parameter Pareto distributions.

135) Bernoulli shortcut: Suppose W is a RV that takes on two values a and b with
pa = P (W = a) and pb = 1 − pa. Then V (W ) = (b − a)2papb = (a − b)2pa(1 − pa).
W = X|Θ = θi is possible. Note that E(W ) = apa + bpb.

136) Bühlmann credibility with a discrete prior π(class i) = πi where Θ = i denotes
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class i. Let X be the RV of interest. Let µ(Θ) = E(X|Θ) and v(Θ) = V (X|Θ). Then
µ(θ) = E(X|Θ = θ) and v(θ) = V (X|Θ = θ). The model or process is X|Θ.

row class 1 ... class k sum
i) prior π1 ... πk 1

ii) E(X| class i) µ1 ... µk

iii) Wi = V (X| class i) V (X|1) ... V (X|k)

Then µ = E(µ(Θ)) = E(E(X|Θ)) = E(X) =
∑k

i=1 µiπi,
v = E(v(Θ)) = E(V (X|Θ)) =

∑k
i=1 V (X|i)πi = EPV , and

a = V HM = V (E(X|Θ)) = V (W ) = E(W 2) − [E(W )]2 = E(W 2) − µ2 =
(
∑k

i=1[µi]
2πi) − µ2.

Let X = Xj for class j. Often k tables with nj values of xij are given for i = 1, ..., nj

and j = 1, ..., k where the xij are the values Xj can take.

xi1 P (X1 = xi1) ... xik P (Xk = xik)
x11 p11 ... x1k p1,k
...

... ...
...

...
xn1,1 pn1,1 ... xnk ,k pnk ,k

Then E(Xj) = µj =
∑nj

i=1 xijpij and V (Xj) = V (X|j) =
∑nj

i=1(xij − µj)
2pij. Often

k = 2. Then a = [µ2 − µ1]
2π1π2 by 135). If nj = 2, then V (X|j) = (x2j − x1j)

2p1jp2j by
135).

137) If the Bühlmann premium for 1 member is P 1
C = E(X)+Z(X −E(X)), and the

group has J members, then the Bühlmann premium for the group is PC = JP 1
C .

138) In calculating Bühlmann’s Z =
n

n + k
=

na

na + v
, need to know the number

n of exposures. The exposure unit is the unit for which the credibility premium is
charged. If you calculate the number of claims per insured, then the insured (a member)
is the exposure unit. If you calculate claim size per claim then the exposure unit is a
claim. Often an exposure unit is 1 member–year (member per year time period), and
n = n1 + n2 + · · · + nd where ni is the number of members for the ith year, i = 1, ..., d.

139) The RV X for which you are calculating the credibility is often the claim count
or claim size or aggregate loss of a single member of J members receiving insurance.

140) Bühlmann credibility with a continuous prior: the model or process is X|Θ, the
hypothetical mean is µ(Θ) = E(X|Θ), the process variance is v(Θ) = V (X|Θ). Typically
the prior is a brand name continuous distribution. Find µ = E(µ(Θ)) = E(E(X|Θ)) =
E(X), v = E(v(Θ)) = E(V (X|Θ)) = EPV , and a = V HM = V (E(X|Θ)).

141) Often X|Λ = N |Λ ∼ Poisson(Λ). Then the hypothetical mean µ(Λ) = E(N |Λ) =
Λ = V (N |Λ) = v(Λ) = the process variance. Then a = V (µ(Λ)) = V (Λ) and v =
E(v(Λ)) = E(Λ) = µ. See 142) = Table 51.1.
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Material on Final but not on Exam 3.
143) Bühlmann Straub credibility: There are mj exposures in period j. Assume

X1, ..., Xn are independent conditional on Θ. Often Xj = W j = 1
mj

∑mj

i=1 Wij where,

conditional on Θ = θ, the Wij are independent with mean µ(θ) = E(Xj |Θ = θ) and

variance v(θ) where
v(θ)

mj
= V (Xj |Θ = θ). Then µ = E[µ(Θ)] = E[E(Xj |Θ)] = E(Xj),

v = E[v(Θ)] = E[V (Xj |Θ)], and a = V (µ(Θ)) = V (E(Xj|Θ)). Also cov(Xi, Xj) = a

for i 6= j and V (Xj) =
v

mj
+ a, k = v/a, Z =

m

m + k
where m =

∑n
i=1 mi. Then

P 1
C = ZX + (1 − Z)µ = µ + Z(X − µ) is the premium for 1 member of the group

where X =
n∑

j=1

mj

m
Xj . The credibility premium charged to the group in year n + 1 is

PC = mn+1P
1
C where mn+1 is the number of group members in year n + 1. Note that

Bühlmann credibility has mj ≡ 1 for j = 1, ..., n. Note that mjXj is the total loss for
the group in year (time period) j: think of Wij as the loss to the ith member in year j
where there are mj members in the group in year j. Then Xj is the average loss (of the
mj members) in year j.

Ratemaking
144) Let i be the interest rate and δ be the force of interest. Then eδ = 1 + i and

δ = ln(1 + i).
145) Let Y = ln(loss cost). The average accident date of accident year z is June 30,

x, eg z = 2003. Let x = year − starting year evaluated at June, 30. So if the starting
year is 2003 and the accident years are 2003 to 2009, then x takes on values 0, 1, 2, 3, 4,
5, and 6 for these years at June, 30. To compute x and time t, start at June 30 of the
starting year for x.

6/30 6/30 6/30 6/30 6/30 6/30 6/30

-----|-----|-----|-----|-----|-----|-----|

2003 2004 2005 2006 2007 2008 2009

x 0 1 2 3 4 5 6

Suppose in the above diagram, we want to get the 2006 loss cost projected to Sept. 1,
2009. At June 30, 2009, x = 6, and Sept. 30 is two months later = 2/12 ≈ 0.16 later.
Hence x = 6.16 at Sept. 30, 2009. The time t from June 30, 2006 to Sept. 1, 2009 is the
time from June 30, 2006 until June 30, 2009 +0.16 = 3 + 0.16 = 3.16

a) The first method to get the 2006 loss cost projected to Sept. 1, 2009 is to use a
given fitted (least squares) line to get Y = a + δx. Suppose Y = 4.7534 + 0.1085x. Then
Y = 4.7534+0.1085(6.16) = 5.42176 Then the (2006 loss cost projected to Sept. 1, 2009
=) projected cost is eY = 226.28.

b) The second method to get the 2006 loss cost projected to Sept. 1, 2009 is to use
projected loss cost = (experience loss cost in 2006) eδ t. If the experience loss cost in 2006
was 158.57, then the projected loss cost = 158.57e0.1085(3.16) = 158.57e0.34286 = 223.42.

See homework 11, problem 2, where 2006 is changed to 2007.
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146) Two methods can be used to calculate the overall average rate change.
a) Lost cost (pure premium) method has the new average lost cost = num1/den1 where
num1 = expected dollar losses in effective period (trended and developed) and
den1 = number of earned exposure units. Then the new average gross rate =
(new average lost cost)/(permissable loss ratio) where the
permissable loss ratio = 1− expense ratio.

b) The loss ratio method has indicated rate change =
num2

den2
− 1 where num2 =

expected effective loss ratio and den2 = permissable loss ration, and num2 = num1/den3
where den3 = dollars of earned premium at current rates. Then the new average gross
rate = (present average manual rate)(indicated rate change +1).

Example

expected dollar losses in effective period (trended and developed) 30,000,000
earned exposure units 1,000,0000

earned premium at current rates 45,000,000
present average manual rate 45

permissable loss ration = 1− expense ratio 0.7

a) loss cost method: expected effective loss cost = 30,000,000/1,000,000 = 30 (= new
average loss cost), and the new average gross rate = 30/0.7 = 42.8571.

b) loss ratio method: expected effective loss ratio = 30,000,000/45,000,000 = 2/3 =
0.6667.

indicated rate change =
2/3

0.7
− 1 = −0.04762 which means thee is a rate reduction of

4.762%. Then the new average gross rate = 45

(
2/3

0.7

)
= 42.8571.

Chapter 8:
See Exam 1 review 8)-11) and 14)-16).
147) Know: Except for the inverse Gaussian distribution, the continuous distribu-

tions in Appendix A with parameter θ are scale families with scale parameter θ if any
other parameters τ are fixed, written X ∼ SF (θ|τ ). Let a > 0. Then Y = aX ∼
SF (aθ|τ). See 31). If X ∼ LN(µ, σ), then Y = aX ∼ LN(µ+ ln(a), σ). Often a = 1+ r.

148) Let fZ(x) be the pdf of RV Z. Then the family of pdfs fX(x) =
1

θ
fZ

(
x

θ

)
indexed

by a scale parameter θ > 0 is the scale family for the RV X = θZ with standard pdf
fZ(x). If the expected values exist, then E(X) = θE(Z) and V (X) = θ2V (Z). See 147).

149) X is a loss RV from a scale family with scale parameter θ if Y = cX is from the
same scale family with scale parameter cθ for any constant c > 0.

150) A payment per loss has 0 as a possibility where there is a loss without a payment
due to a deductible. The left censored and shifted RV = per loss RV Y L = (X − d)+. So
Y L = 0 for X < d, and YL = X − d for X > d. Recall (X − d)+ = max(X − d, 0).

151) For payment per payment, the excess loss RV = per payment RV Y P is undefined
when there is no payment, ie for X < d. Y P = Y L|Y L > 0 = (X − d)|X > d = X − d
for X > d. See 9).
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152) The RVs in 150) and 151) are for an ordinary deductible. A franchise de-
ductible pays Y L = 0 if X ≤ d but pays Y L = X if X > d. So the franchise deductible
pays the full amount X if X > d. For a franchise deductible, Y P is undefined for X < d,
and Y P = X for X > d. Assume a deductible is an ordinary deductible unless
stated otherwise.

153) i) If X ∼ EXP (θ), then Y P ∼ EXP (θ) and eX(d) = θ.
ii) If X ∼ U(0, θ) and d < θ, then Y P ∼ U(0, θ − d) and eX(d) = (θ − d)/2.
iii) If X ∼ (two parameter) Pareto (α, θ) then Y P ∼ (two parameter) Pareto (α, θ + d),

and for α > 1, eX(d) =
θ + d

α − 1
.

iv) If X ∼ single parameter Pareto (α, θ) and α > 1, then eX(d) =
d

α − 1
for d ≥ θ, and

eX(d) =
α(θ − d) + d

α − 1
for d ≤ θ. If d ≥ θ, then Y P ∼ (two parameter) Pareto (α, d).

154) The mean excess loss = E(Y P ) = eX(d) =
E(Y L)

SX(d)
=

E[(X − d)+]

SX(d)
=

∫∞
d SX(x)dx

SX(d)
=

∫∞
d (x − d)fX(x)dx

SX(d)
=

E[(X) − E[X ∧ d]

SX(d)
. Note that E(Y L) is given in the

numerator. Tables give E(X), E(X ∧x), FX(x) = 1−SX(x), V aRp(X) and TV aRp(X).
Recall that TV aRp(X) = V aRp(X) + eX(πp) = πp + eX(πp).

155) Let X be a loss RV. Then for y > 0,

i) fY P (y) =
fX(y + d)

SX(d)
, ii) SY P (y) =

SX(y + d)

SX(d)
, iii) FY P (y) =

FX(y + d) − FX(d)

SX(d)
, and

iv) hY P (y) =
fX(y + d)

SX(y + d)
= hX(y + d). Since Y L is a mixture of a point mass at 0 and

Y P , the pdf of Y L does not exist. v) FY L(y) = FX(y + d), and SY L(y) = SX(y + d). Y P

is a continuous RV, so the formulas from 1) still hold.
156) Let Y L(O) and Y P (O) be the loss RV and payment RV for an ordinary deductible

(d), and let Y L(F ) and Y P (F ) be the loss RV and payment RV for a franchise deductible
(d). Then E[Y L(F )] = E[Y L(O)]+dSX (d) = E(X)−E(X∧d)+dSX (d), and E[Y P (F )] =

E[Y P (O)] + d =
E(Y L(F )]

SX(d)
. This expectation makes sense because the policy with a

franchise deductible pays d more than that of a policy with an ordinary deductible when
X > d. Usually the F and O are suppressed. E[Y L(F )] =

∫∞
d xf(x)dx.

157) For a franchise deductible, let X be a loss RV. Then for y > d,

i) fY P (y) =
fX(y)

SX(d)
, ii) SY P (y) =

SX(y)

SX(d)
, iii) FY P (y) =

FX(y) − FX(d)

SX(d)
, and iv) hY P (y) =

hX(y). For 0 < y < d, fY P (y) = 0, SY P (y) = 1, FY P (y) = 0 and hY P (y) = 0. The pdf of
Y L does not exist. v) FY L(y) = FX(y) for y > d, and FY L(y) = FX(d) for 0 < y < d.
vi) SY L(y) = SX(y) for y > d, and SY L(y) = SX(d) for 0 < y < d.
vii) hY L(y) = hX(y) for y > d, and hY L(y) = hX(y) for 0 < y < d.

158)=14) The loss elimination ratio LER =
E[X ∧ d]

E(X)
if E(X) exists. Note that

E(Y L) = E[(X − d)+] = E(X) − E[X ∧ d]. So E[X ∧ d] = E(X) − E[(X − d)+] =
E(X) − E(Y L).
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159) Let the annual inflation rate be r where often you are told the uniform inflation
rate is 1 + r (usually 0 < r < 1). After inflation, the new loss RV Y = (1 + r)X.

160) Useful: Nearly all of the continuous distributions in Appendix A with parameter
θ are scale families with scale parameter θ if any other parameters τ are fixed, written
X ∼ SF (θ|τ ). Let a > 0 where often a = 1+ r. Then Y = aX ∼ SF (aθ|τ ). The inverse
Gaussian distribution is an exception. If X ∼ LN(µ, σ), then Y = aX ∼ LN(µ +
ln(a), σ).

161) If Y = (1 + r)X for loss RV X, then

i) E[Y ∧ d] = (1 + r)E

[
X ∧ d

1 + r

]
,

ii) E(Y ) = (1 + r)E(X), iii) FY (d) = FX

(
d

1 + r

)
, iv) SY (d) = SX

(
d

1 + r

)
.

162) For an ordinary deductible of d, after uniform inflation of 1+ r, method I):

i) E(Y L) = (1 + r)

[
E(X) − E

[
X ∧ d

1 + r

]]
, ii) E(Y P ) =

E(Y L)

SX

(
d

1+r

) .

Method II): If X ∼ SF (θ|τ), then the Xnew = (1 + r)X satisfies Xnew ∼
SF ((1 + r)θ|τ ). Use this modified distribution and formulas 154). See 160).

163) For a policy limit, the limited loss RV W = X ∧ u = min(X, u), and E(X ∧ u)
is the limited expected value. FX∧u(y) = FX(y) for y < u and FX∧u(y) = 1 for y ≥ u.

164) Policy limit and insurance: Let Y = (1 + r)X = Xnew.

Method 1: E(Y ∧ u) = E(Xnew ∧ u) = (1 + r)E
[
X ∧ u

1 + r

]
.

Method 2: If X ∼ SF (θ|τ ), then Xnew = (1 + r)X satisfies Xnew ∼ SF ((1 + r)θ|τ ).
Get E(Xnew ∧ u) and the table formulas for the modified distribution.

165) Let X be a loss RV. For a coinsurance policy, the insurance company pays αX
of the loss for some α ∈ (0, 1]. For coinsurance with a deductible, the insurance company
pays α(X − d)+.

166) Policy limit and a deductible: If there is a deductible d and a policy limit
= maximum payment of u− d, then the “maximum covered loss” u = u− d + d. (A loss
X > u is not fully covered in that the policy will only pay u− d instead of X − d.) The
the per loss RV

Y L = X ∧ u − X ∧ d =





0, X < d
X − d, d ≤ X < u
u − d X ≥ u.

Then E(YL) = E(X ∧ u) − E(X ∧ d) and E(YP ) =
E(Y L)

SX(d)
where Y P = Y L|X > d.

167) Insurance with an ordinary deductible d, policy limit u−d, coinsurance
α, and inflation r: The the per loss RV

Y L =





0, X < d
1+r

α[(1 + r)X − d], d
1+r

≤ X < u
1+r

α(u − d) X ≥ u
1+r

.
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Then E(YL) = α(1 + r)

[
E
(
X ∧ u

1 + r

)
− E

(
X ∧ d

1 + r

)]
and E(YP ) =

E(Y L)

SX

(
d

1+r

) .

Note that α = 1 for no coinsurance, r = 0 for no inflation, d = 0 for no deductible,
and take u = ∞ if there is no policy limit. So E(X ∧∞] = E(X) if there is no policy
limit.

168) (1 + r)X ∧ d = (1 + r)

(
X ∧ d

1 + r

)
Since E[(1 + r)X] = (1 + r)E[X], after

inflation, LER(d) =
E
[
X ∧ d

1+r

]

E[X]
. If X ∼ SF (θ|τ ) then Xnew ∼ SF ((1 + r)θ|τ ) gives

another method to find LER(d) after inflation.
169) Useful: i) If X ∼ EXP (θ), then LER(d) = 1 − e−d/θ.

ii) If X ∼ (two parameter) Pareto (α > 1, θ) then LER(d) = 1 −
(

θ

d + θ

)α−1

,

iii) If X ∼ single parameter Pareto (α > 1, θ) and d > θ, then LER(d) = 1 − (θ/d)α−1

α
.

If d < θ, then LER(d) =
(α − 1)θ

αθ
.
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