Math 404 Exam 3 is Thurs. April 25. You are allowed 20 sheets of notes and a calculator. The exam covers HW7-10, and Q7-10. The final is Monday, May 6, 8-10AM, and is cumulative. You are allowed 25 sheets of notes and a calculator for the final.
96) Let $F_{n}(x)$ be the empirical cdf and let $F^{*}(x)$ be the fitted cdf. Let X_{1}, \ldots, X_{n} be iid or possibly truncated or censored. Let d be the truncation point ($d=0$ for no truncation) and let u be the censoring point ($u=\infty$ for no censoring). The Kolmogorov Smirnov test statistic $D=\max _{d \leq x \leq u}\left|F_{n}(x)-F^{*}(x)\right|=\max _{x_{i}}\left(\left|F_{n}\left(x_{i}\right)-F^{*}\left(x_{i}\right)\right|,\left|F_{n}\left(x_{i}-\right)-F^{*}\left(x_{i}\right)\right|\right)$ where $F(x-)=P(X<x)$. Note that $F_{n}(x)=\frac{\# x_{i} \leq x}{n}$ and $F_{n}(x-)=\frac{\# x_{i}<x}{n}$. Let $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ be the observed order statistics. If there are no ties, then $F_{n}\left(x_{i}\right)=i / n$ and $F_{n}\left(x_{i}-\right)=(i-1) / n$. The following table works when there are no ties. Then D is the largest value in the last column.

x_{i}	$F_{n}\left(x_{i}\right)$	$F_{n}\left(x_{i}-\right)$	$F^{*}\left(x_{i}\right)$	$\max \left(\left\|F_{n}\left(x_{i}\right)-F^{*}\left(x_{i}\right)\right\|,\left\|F_{n}\left(x_{i}-\right)-F^{*}\left(x_{i}\right)\right\|\right)$
x_{1}	$1 / n$	$0 / n$	$F^{*}\left(x_{1}\right)$	$\max \left(\left\|1 / n-F^{*}\left(x_{1}\right)\right\|,\left\|0 / n-F^{*}\left(x_{1}\right)\right\|\right)$
x_{2}	$2 / n$	$1 / n$	$F^{*}\left(x_{2}\right)$	$\max \left(\left\|2 / n-F^{*}\left(x_{2}\right)\right\|,\left\|1 / n-F^{*}\left(x_{2}\right)\right\|\right)$
\vdots	\vdots	\vdots	\vdots	\vdots
x_{j}	j / n	$(j-1) / n$	$F^{*}\left(x_{j}\right)$	$\max \left(\left\|j / n-F^{*}\left(x_{j}\right)\right\|,\left\|(j-1) / n-F^{*}\left(x_{j}\right)\right\|\right)$
\vdots	\vdots	\vdots	\vdots	\vdots
x_{n}	n / n	$(n-1) / n$	$F^{*}\left(x_{n}\right)$	$\max \left(\left\|n / n-F^{*}\left(x_{n}\right)\right\|,\left\|(n-1) / n-F^{*}\left(x_{2}\right)\right\|\right)$

97) Kolmogorov Smirnov critical values

α	0.1	0.05	0.01
	$\frac{1.22}{\sqrt{n}}$	$\frac{1.36}{\sqrt{n}}$	$\frac{1.63}{\sqrt{n}}$

98) 4 step Kolmogorov Smirnov test
i) H_{0} : fitted distribution is good H_{1} : not H_{0}
ii) D
iii) reject H_{0} if $D>$ critical value, otherwise fail to reject H_{0}
iv) non technical conclusion: reject H_{0} : fitted distribution is not good, fail to reject H_{0} : fitted distribution is good (or there is not enough evidence to conclude that the fitted distribution is not good).
99) The Anderson Darling test is a competitor of the χ^{2} test and the Kolmogorov Smirnov test.

| | Kolmogorov Smirnov | Anderson Darling |
| :--- | :---: | :---: |\quad chisquare test

```
v)crit value decreases
    as n increases
vi) no discretization no discretization
vii) uniform weight on higher weight on the
all parts of the distr tails of the distr lower prob (often the right tail)
```

100) Likelihood Ratio Test (LRT) where H_{0} : distribution is from model A and H_{1} : distribution is from model B where model \mathbf{A} is a special case of model \mathbf{B} : Let Θ_{0} be the parameter space for H_{0} (model A) and let Θ_{1} be the parameter space for H_{1} (model B). Let $\hat{\boldsymbol{\theta}}_{0}$ be the MLE for model A where $\hat{\boldsymbol{\theta}}_{0} \in \Theta_{0}$, and let $\hat{\boldsymbol{\theta}}_{1}$ be the MLE for model B where $\hat{\boldsymbol{\theta}}_{1} \in \Theta_{1}$. Let $L_{0}=L\left(\hat{\boldsymbol{\theta}}_{0}\right)$ and $L_{1}=L\left(\hat{\boldsymbol{\theta}}_{1}\right)$. then the LRT test statistic is

$$
T=-2 \ln \left(\frac{L_{0}}{L_{1}}\right)=2 \ln \left(\frac{L_{1}}{L_{0}}\right)=2\left[\ln \left(L_{1}\right)-\ln \left(L_{0}\right)\right] .
$$

Let $d f=d=d_{B}-d_{A}=$ number of free parameters in $B-$ number of free parameters in A, where a free parameter is not specified, so must be estimated using the MLE. Reject H_{0} if $T>\chi_{d, 1-\alpha}^{2}=\chi_{d, P}^{2}$ on the χ^{2} table, otherwise fail to reject H_{0}. Then the 4 step test is
i) H_{0} data is from distribution $\mathrm{A} \quad H_{1}$: data is from distribution B
ii) T
iii) reject H_{0} if $T>\chi_{d, P}^{2}$, otherwise fail to reject H_{0}
iv) nontechnical conclusion: reject H_{0} : data came from distribution B, fail to reject H_{0} : data came from distribution A (or there is not enough evidence to conclude that the data came from distribution B)
101) LRT if model A is not a special case of model B or if there are models $A_{1}, A_{2}, \ldots, A_{k}$: Select, for every number of parameters, the model with the highest loglikelihood. Suppose $\alpha=0.05$ is the significance level. In order to prefer the best 2 parameter model over the best 1 parameter model, need $2\left(\ln L_{2}-\ln L_{1}\right) \geq \chi_{1,0.95}^{2}=3.841$. If the best 2 parameter model is not good, need $2\left(\ln L_{3}-\ln L_{1}\right) \geq \chi_{2,0.95}^{2}=5.991$, and so on. If the 2 parameter model is preferred, then start over comparing the $3,4, \ldots$ parameter models with the 2 parameter model. So need $2\left(\ln L_{3}-\ln L_{2}\right) \geq \chi_{1,0.95}^{2}=3.841$, and if the 3 parameter model is not good, need $2\left(\ln L_{4}-\ln L_{2}\right) \geq \chi_{2,0.95}^{2}=5.991$, and so on. If $-\log l i k e l i h o o d$ is given, multiply the values by -1 . See first 2 columns of the table below. The third column is usually omitted.

number of parameters	maximal loglikelihood	Schwarz Bayesian
1	$\ln \left(L_{1}\right)$	$\ln \left(L_{1}\right)-\frac{1}{2} \ln (n)$
2	$\ln \left(L_{2}\right)$	$\ln \left(L_{2}\right)-\frac{2}{2} \ln (n)$
\vdots	\vdots	
k	$\ln \left(L_{k}\right)$	$\ln \left(L_{k}\right)-\frac{k}{2} \ln (n)$

102) For the above table, the Schwarz Bayesian criterion says take the model that maximizes $\ln \left(L_{r}\right)-\frac{r}{2} \ln (n)$ where n is the sample size and r is the number of parameters. So take the model that maximizes the 3rd column.
103) For Bayesian statistics θ is a random variable. Let $\pi(\theta)$ be the prior pdf or pmf. Let $f(\boldsymbol{x} \mid \theta)$ be the conditional pdf or pmf: the likelihood function where usually $f(\boldsymbol{x} \mid \theta)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)$. The joint pdf or pmf is $f(\boldsymbol{x}, \theta)=\pi(\theta) f(\boldsymbol{x} \mid \theta)$. The posterior pdf or pmf is

$$
\pi(\theta \mid \boldsymbol{x})=\frac{f(\boldsymbol{x}, \theta)}{f(\boldsymbol{x})}
$$

Then the marginal or unconditional pdf or pmf is $f(\boldsymbol{x})=\int f(\boldsymbol{x}, \theta) d \theta$ if θ has interval support or $f(\boldsymbol{x})=\sum_{\theta} f(\boldsymbol{x}, \theta)$ if θ has a pmf.
104) Typically if the prior is a pdf then so is the posterior, and if the prior is a pmf then so is the posterior. The prior will be a pdf if θ is modeling an interval (e.g., like a probability on $[0,1]$), and the prior will be a pmf if θ is modeling a countable number of values (e.g., only probabilities 0.3 and 0.7 are of interest).
105) Suppose $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right.$ is a random vector. Bayes' Theorem: for a posterior pdf,

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{x})=\frac{f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int f(\boldsymbol{x} \mid \boldsymbol{t}) \pi(\boldsymbol{t}) d \boldsymbol{t}}
$$

while for a posterior pmf,

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{x})=\frac{f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\sum_{\boldsymbol{t}} f(\boldsymbol{x} \mid \boldsymbol{t}) \pi(\boldsymbol{t})} .
$$

In both denominators, \boldsymbol{t} is often replaced by $\boldsymbol{\theta}$.
106) Know: the posterior pdf or pmf $\pi(\boldsymbol{\theta} \mid \boldsymbol{x}) \propto \pi(\boldsymbol{\theta}) f(\boldsymbol{x} \mid \boldsymbol{\theta})$, the product of the prior and the likelihood. All constants that do not depend on $\boldsymbol{\theta}$ can be discarded on the right hand side. Then recognize that the right hand side is a brand name distribution or use the fact that a pdf integrates to 1 and a pmf sums to 1 : integrate to get the constant c that makes the posterior a pdf (or sum to get c for a pmf).
107) The posterior distribution is a perfectly good probability distribution. Let $W=$ $\theta \mid \boldsymbol{x}$. Then $P(a<W<b)=P(a<\theta<b \mid \boldsymbol{x})$ and $E(W)=E(\theta \mid \boldsymbol{x})$.
108) The posterior support is a subset of the prior support. So if the prior support is (a, b), then the posterior support is a subset of (a, b) (often equal to (a, b)). If the prior support is $\{0.3,0.5,0.7\}$, then the posterior support is a subset (often proper) of $\{0.3,0.5,0.7\}$.
109) If a conjugate prior is used, then the posterior distribution has the same distribution as the prior distribution, but with different parameters.
110) a) $\theta \mid \boldsymbol{x} \sim \operatorname{beta}(a, b)$ if $\pi(\theta \mid \boldsymbol{x}) \propto \theta^{a-1}(1-\theta)^{b-1}$ where $a, b>-1$ and $\theta \in[0,1]$.
b) $\theta \mid \boldsymbol{x} \sim \operatorname{gamma}(\alpha, \beta)$ if $\pi(\theta \mid \boldsymbol{x}) \propto \theta^{\alpha-1} e^{-\theta / \beta}$ where $\alpha, \beta, \theta>0$.
c) $\theta \mid \boldsymbol{x} \sim$ single parameter Pareto (α, β) if $\pi(\theta \mid \boldsymbol{x}) \propto \theta^{-(\alpha+1)}$ where $\theta>\beta, \alpha>0$ and β is real.
d) $\theta \mid \boldsymbol{x} \sim$ Pareto (α, β) if $\pi(\theta \mid \boldsymbol{x}) \propto(\beta+\theta)^{-(\alpha+1)}$ where $\alpha, \beta, \theta>0$.
e) $\theta \mid \boldsymbol{x} \sim N\left(\mu, \sigma^{2}\right)$ if $\pi(\theta \mid \boldsymbol{x}) \propto \exp \left(\left(\frac{-1}{2 \sigma^{2}}(\theta-\mu)^{2}\right)\right.$ where $\sigma^{2}>0$ and θ and μ are real.

Note that θ takes the place of x and β often takes the place of θ compared to the distributions given on p. 1-2 of the exam 1 review.
111) Let X_{n+1} be a future value of the data given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ have been collected. The predictive density (pdf or pmf) $f(x \mid \boldsymbol{x})=f(y \mid \boldsymbol{x})=f\left(x_{n+1} \mid \boldsymbol{x}\right)=$
$\int f(y \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid \boldsymbol{x}) d \boldsymbol{\theta}=\int f(x \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid \boldsymbol{x}) d \boldsymbol{\theta}$ is the updated unconditional (marginal) pdf (or pmf) for X_{n+1} given the data \boldsymbol{x}. here $f(x \mid \boldsymbol{\theta})$ is the likelihood if $n=1$ and usually $\boldsymbol{\theta}=\theta$.
112) Using some bad notation, $E\left(X_{n+1}\right)=E\left(X_{n+1} \mid \boldsymbol{x}\right)=E\left[E\left(X_{n+1} \mid \Theta\right) \mid \boldsymbol{x}\right]$ is the Bayesian premium $=\int x f(x \mid \boldsymbol{x}) d x$ using the predictive density from 111).
113) The Bayesian estimator or Bayes estimator minimizes the expected posterior loss function.
a) For the (mean) square error loss function, $l(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{2}$, the Bayesian point estimator is the mean of the posterior distribution: $\hat{\theta}=E(\Theta \mid \boldsymbol{x})$.
b) For the absolute value of the error loss function, $l(\hat{\theta}, \theta)=|\hat{\theta}-\theta|$, the Bayesian point estimator is the median of the posterior distribution: $\hat{\theta}=\pi_{0.5}$.
c) For the zero-one loss function, $(l(\hat{\theta}, \theta)=0$ if $\hat{\theta}=\theta$, and $l(\hat{\theta}, \theta)=1$ or any constant k if $\hat{\theta} \neq \theta$,) the Bayesian point estimator $\hat{\theta}$ is the mode of the posterior distribution.
114) The sample space S is partitioned into n subsets $A_{1}, A_{2}, \ldots, A_{n}$ if a) $A_{i} \cap A_{j}=\varnothing$ for $i \neq j, \mathrm{~b}) A_{i} \neq \emptyset$ for $i=1, \ldots, n$, and c) $A_{1} \cup A_{2} \cup \cdots \cup A_{n}=S$. Often $n=2$, and A and the complement \bar{A} form a partition of S. Let $A_{1}, A_{2}, \ldots, A_{n}$ partition S, and let E be an event in S, then
a) $P(E)=P\left(A_{1}\right) P\left(E \mid A_{1}\right)+P\left(A_{2}\right) P\left(E \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(E \mid A_{n}\right)$ and
b) Bayes' rule: $P\left(A_{j} \mid E\right)=\frac{P\left(A_{j} \cap E\right)}{P(E)}=\frac{P\left(A_{j}\right) P\left(E \mid A_{j}\right)}{P(E)}$

$$
=\frac{P\left(A_{j}\right) P\left(E \mid A_{j}\right)}{P\left(A_{1}\right) P\left(E \mid A_{1}\right)+P\left(A_{2}\right) P\left(E \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(E \mid A_{n}\right)} .
$$

In particular, if $n=2, P(E)=P(A) P(E \mid A)+P(\bar{A}) P(E \mid \bar{A})$ and
$P(A \mid E)=\frac{P(A) P(E \mid A)}{P(A) P(E \mid A)+P(\bar{A}) P(E \mid \bar{A})}$.
In a Bayes' rule story problem, 2 or more unconditional probabilities are given (or easy to find with the complement rule). Several conditional probabilities are also given (or easy to find with the complement rule). Make a tree diagram with the events corresponding to the unconditional events labelling the left branches and the events corresponding to the conditional probabilities labelling the right branches. Above the left branches place the unconditional probabilities and above the right branches place the conditional probabilities. You will be asked to find an unconditional right branch probability and to use Bayes' rule to find $\mathrm{P}($ left branch | right branch $)$.

Tips: the hard conditional probability, P (left branch | right branch), usually appears at the end of the story problem. This tells you how to label the left branches and the right branches of the tree. (The easy conditional probabilities, P (right branch | left branch), can also tell you how to label the tree.) The probabilities of the left branch sum to one. Each subtree of right branches has probabilities that sum to one. Occasionally you are asked to find both a P (right branch \| left branch) (directly from the tree) and P (left branch | right branch) (using Bayes rule).
115) Let $W=X_{n+1}\left(=X_{n+1} \mid \boldsymbol{x}\right)$. Often want the Bayesian estimate $=$ posterior mean of $g\left(\theta_{i}\right)=h\left(W \mid \theta_{i}\right)$. For example, the expected value of the next claim $=\mathrm{E}$ (claim $\left.\mid \boldsymbol{x}\right)$ has $g\left(\theta_{i}\right)=\mathrm{E}\left(\right.$ claim $\left.\mid \theta_{i}\right)$ and $P\left(X_{n+1}>c \mid \boldsymbol{x}\right)$ has $g\left(\theta_{i}\right)=P\left(X_{n+1}>c \mid \theta_{i}\right)$. Using the predictive distribution from 111), the Bayesian estimate is
$E[g(\Theta) \mid \boldsymbol{x})]=\sum_{i} g\left(\theta_{i}\right) \pi\left(\theta_{i} \mid \boldsymbol{x}\right)=\sum_{i} h\left(w \mid \theta_{i}\right) \pi\left(\theta_{i} \mid \boldsymbol{x}\right)$. Replace the sum by an integral if the posterior is a pdf instead of a pmf.
116) Bayesian credibility puts a prior on classes of risks. Let θ_{i} correspond to class i. Then $\mathrm{X}=$ losses follow a different distribution for each class. Note that X is a generic RV: might want the aggregate loss $X=S=\sum_{i=1}^{N} X_{i}$. Use the following table to find the Bayesian premium. Enough information needs to be given to find row i) and ii). Often $k=2$, and if there are j times as many people in class 1 as in class 2 , then $\pi($ class 1$)$ $=j /(j+1)$ while $\pi($ class 2$)=1 /(j+1)$. Each middle row iii $)$ term is a product of the corresponding terms from rows i) and ii). For row iv), the posterior is the ratio of a row iii) term and the row iii) sum. For row v), the hypothetical mean is the conditional mean of each class. The sum of the row vi) terms is the Bayesian premium $=$ predicted expected value, the quantity that you want to find.

row	class 1	\ldots	class k	sum
i) prior	$\pi($ class 1$)$	\ldots	$\pi($ class k $)$	1
ii) likelihood	$f(\boldsymbol{x} \mid$ class 1$)$	\ldots	$f(\boldsymbol{x} \mid$ class k $)$	
iii) joint prob	$\pi($ class 1$) f(\boldsymbol{x} \mid$ class 1$)$	\ldots	$\pi($ class k $) f(\boldsymbol{x} \mid$ class k $)$	denom. of Bayes' th.
iv) posterior	$\frac{\pi(\text { class } 1) f(\boldsymbol{x} \mid \text { class } 1)}{\text { row iii }) \text { sum }}$	\ldots	$\frac{\pi(\text { class } k) f(\boldsymbol{x} \mid \text { class } k)}{\text { row iii }) \text { sum }}$	
	$=\pi($ class $1 \mid \boldsymbol{x})$	\ldots	$=\pi($ class k $\mid \boldsymbol{x})$	
v)hyp. mean	$\mu_{1}=E(X \mid$ class 1$)$	\ldots	$\mu_{k}=E(X \mid$ class k $)$	1
vi) B. prem. contr.	$\mu_{1} \pi($ class $1 \mid \boldsymbol{x})$	\ldots	$\mu_{k} \pi($ class k $\mid \boldsymbol{x})$	Bayesian premium

117) Let $S=\sum_{i=1}^{N} X_{i}$ where $S=0$ if $N=0$. The distribution of S is called a compound distribution with N the primary distribution and X the secondary distribution. Assume the X_{i} are iid and $X_{i} \Perp N$ unless told otherwise: then $E(S)=E(N) E(X)$ and $V(S)=E(N) V(X)+[E(X)]^{2} V(N)$.
118) Classical credibility $=$ limited fluctuation credibility. Let M be the underlying manual rate or pure premium. Let X_{j} be the claims, or losses, or aggregate losses in past experience period j. Let the policyholder experience $\left(X_{1}, \ldots, X_{n}\right)$ be the data where n is the number of time periods exposed to a risk. Assume the X_{j} are independent with $E\left(X_{j}\right)=E(X)$ and $V\left(X_{j}\right)=V(X)$. Let the coefficient of variation $C V\left(X_{j}\right)=$ $C V(X)=\frac{S D(X)}{E(X)}=\frac{\sqrt{V(X)}}{E(X)}$. Let the credibility premium $P_{C}=Z \bar{X}+(1-Z) M$ where the credibility (factor) $Z \in[0,1]$. Full credibility occurs if $Z=1$ so $P_{C}=\bar{X}$. Partial credibility occurs when $Z<1$. Want to establish credibility standards based on 2 parameters: a) the probability of being in an interval like a CI: $0.9,0.95$ or 0.99 , with z_{p} given by $1.645,1.96$, or 2.576 , and b) the maximum amount of fluctuation to allow: eg $k=0.05$.
119) Let e be the amount of exposure needed for full credibility (for $Z=1$). For a general RV W, want "CI" $e E(W) \pm z_{p} \sqrt{e V(W)}$ and want the fluctuation $\frac{z_{p} \sqrt{e V(W)}}{e E(W)} \leq k$ so $1 \pm$ fluctuation $\in[1-k, 1+k]$. Then $e=\left(\frac{z_{p}}{k}\right)^{2}\left(\frac{S D(W)}{E(W)}\right)^{2}=\left(\frac{z_{p}}{k}\right)^{2}[C V(W)]^{2}$ is
the general formula for full credibility.
120) In the table below, i) for exposure units $e=e_{F}$: the measurement unit is the (expected) number of exposures where an exposure unit is a) a risk over a time period (eg number of person years) for both number of claims and aggregate losses, b) a claim for severity (claim size). So e_{F} is the (expected) number of risks needed for full credibility. ii) For number of claims $e=n_{F}$ is the (expected) number of claims needed for full credibility. Then $e_{F}=n_{F} / \lambda$, the (expected) number of claims divided by the expected number of claims per risk λ. iii) For aggregate losses, the exposure unit $e=a_{F}=n_{F} E(X)$, the (expected) number of claims times the expected losses per claim. Note that $e_{F}=a_{F} /(\lambda E(X))$. Want W to be within $100 k \%$ of the expected $100 p \%$ of the time.
121) Suppose $N \sim \operatorname{Pois}(\lambda)$. The general formula for e for full credibility is given below for various W. Let $n_{0}=\left(\frac{z_{p}}{k}\right)^{2}$. Want how many exposures e are needed for full credibility.

experience	Number of claims	claim size (severity)	Aggregate losses (pure premium)
expressed in	$W=N$	$W=X$	$W=S$
exposure units $e=e_{F}$	$\frac{n_{0}}{\lambda}$	$\frac{n_{0}}{\lambda}[C V(X)]^{2}$	$\frac{n_{0}}{\lambda}\left(1+[C V(X)]^{2}\right)$
number of claims $e=n_{F}$	n_{0}	$n_{0}[C V(X)]^{2}$	$n_{0}\left(1+[C V(X)]^{2}\right)$
aggregate losses $e=a_{F}$	$n_{0} E(X)$	$n_{0} E(X)[C V(X)]^{2}$	$n_{0} E(X)\left(1+[C V(X)]^{2}\right)$

122) $P_{C}=M+Z(\bar{X}-M)$. The credibility factor for i) $e<e_{F}$ exposure units is $Z=\sqrt{e / e_{F}}$. The credibility factor for $n<n_{F}$ expected claims is $Z=\sqrt{n / n_{F}}$, and the credibility factor for $a<a_{F}$ aggregate claims is $Z=\sqrt{a / a_{F}}$. If the prior estimate or manual rate or pure premium M is given for what a statistic T estimates, (eg $T=\bar{X}$: the average claim, or $T=\sum X_{i}$: the total loss), then $P_{C}=M+Z(T-M)$.
123) Assume all relevant expectations exist. Then iterated expectations or the conditional mean formula is $E(X)=E[E(X \mid Y)]=E_{Y}\left[E_{X \mid Y}(X \mid Y)\right]$. The conditional variance formula is $V(X)=E[V(X \mid Y)]+V[E(X \mid Y)]$. Also, $E\left(X^{k}\right)=E\left[E\left(X^{k} \mid Y\right)\right]$ and $E(h(X, Y))=E(E[h(X, Y) \mid Y])$.
124) Let $\Theta=\theta_{i}$ correspond to risk class i. Let $E(X)=E[E(X \mid \Theta)], E P V=$ $E[V(X \mid \Theta)]$ and $V H M=V[E(X \mid \Theta)]$. Note that $V(X)=E P V+V H M$ by 118). Let $k=E P V / V H M$ and let $Z=\frac{n}{n+k}=\frac{n(V H M)}{n(V H M)+E P V}$. Then for Bühlmann credibility, (a linear approximation to Bayesian credibility), the credibility premium or Bühlmann credibility estimate is $P_{C}=Z \bar{X}+(1-Z) E(X)=E(X)+Z[\bar{X}-E(X)]$.
125) For classical limited fluctuations credibility, $P_{c}=M+Z(T-M)$ where T is a statistic like $T=\bar{X}$ or $T=\sum_{i=1}^{n} X_{i}=$ total loss, and M is the prior estimate or manual rate or pure premium for what T estimates. Suppose you have $e<e_{F}, n<n_{F}$ or $a<a_{F}$ (expected) exposure units. Then $Z=\sqrt{e / e_{F}}, Z=\sqrt{n / n_{F}}$, or $Z=\sqrt{a / a_{F}}$.

126) distribution	$1+[C V(X)]^{2}$
exponential $\operatorname{EXP}(\theta)$	2
gamma $G(\alpha, \theta)$	$1+\frac{1}{\alpha}$
lognormal $L N(\mu, \sigma)$	$e^{\sigma^{2}}$
$\operatorname{Pareto}(\alpha, \theta)$	$\frac{2(\alpha-1)}{\alpha-2}$

127) The Bühlmann credibility method is a linear approximation to the Bayesian credibility method. Let $\Theta=\theta_{i}$ correspond to risk class i. Let the hypothetical mean $\mu_{i}=E\left(X \mid \Theta=\theta_{i}\right)$ be the mean of class i. The model or process is $X \mid \Theta$ (with pdf or pmf equal to the likelihood with $n=1$). Let $\mu=E(X)=E(E[X \mid \Theta])=E H M=$ overall mean $=$ expected value of the (process mean or) hypothetical mean. Let $v=E P V=$ $E(V[X \mid \Theta])=$ expected value of the process variance. Let $a=V H M=V(E[X \mid \Theta])=$ variance of the hypothetical mean. Note that $V(X)=E P V+V H M$. Then Bühlmann's $k=\frac{v}{a}=\frac{E P V}{V H M}$ and Bühlmann's $Z=\frac{n}{n+k}=\frac{n a}{n a+v}=\frac{n(V H M)}{n(V H M)+E P V}$. Then for Bühlmann credibility, the credibility premium or Bühlmann credibility estimate is $P_{c}=Z \bar{X}+(1-Z) E(X)=E(X)+Z[\bar{X}-E(X)]$.
128) Know: For nonparametric or semiparametric empirical Bayes estimation for Bühlmann credibility, if $\hat{a}<0$ set $\hat{a}=0$ and $\hat{Z}=0$.
129) For uniform exposures, nonparametric empirical Bayes estimation for Bühlmann credibility has $X_{i j}=$ loss for the i th policy holder in the j th year, $\hat{\mu}=\bar{X}=\frac{1}{r} \sum_{i=1}^{r} \bar{X}_{i}=$ $\frac{1}{n r} \sum_{i=1}^{r} \sum_{j=1}^{n} X_{i j}, \quad \hat{v}=\widehat{E P V}=\frac{1}{r} \sum_{i=1}^{r} \frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}=\frac{1}{r} \sum_{i=1}^{r} \hat{\sigma}_{u i}^{2}$, and $\hat{a}=\widehat{V H M}=\frac{1}{r-1} \sum_{i=1}^{r}\left(\bar{X}_{i}-\bar{X}\right)^{2}-\frac{\hat{v}}{n}$. Here $r=$ number of policyholders and $n=$ number of years for loss data for each policyholder. If $\hat{a}=0$ set $\hat{Z}=0$, otherwise, $\hat{k}=\frac{\hat{v}}{\hat{a}}$ and $\hat{Z}=\frac{n}{n+\hat{k}}$. Then the Bühlmann premium for policyholder i is $P_{c i}=\hat{Z} \bar{X}_{i}+(1-\hat{Z}) \bar{X}=\bar{X}+\hat{Z}\left[\bar{X}_{i}-\bar{X}\right]$.
130) Nonuniform exposures, nonparametric empirical Bayes estimation for Bühlmann credibility: suppose there are n_{i} years of data for group (policyholder) i with $m_{i j}$ exposures for group i in year j (uniform exposures 129) has $n_{i} \equiv n$ and $m_{i j} \equiv m$), and $m_{i}=\sum_{j=1}^{n_{i}} m_{i j}$. (If the time unit is years, then m_{i} is the number of exposure-years for group i over all n_{i} years.) Let $m=\sum_{i=1}^{r} m_{i}$. Then $\hat{\mu}=\bar{X}=\frac{\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} m_{i j} X_{i j}}{m}$, $\hat{v}=\widehat{E P V}=\frac{\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} m_{i j}\left(X_{i j}-\bar{X}_{i}\right)^{2}}{\sum_{i=1}^{r}\left(n_{i}-1\right)}$, and $\hat{a}=V \widehat{H M}=\frac{\sum_{i=1}^{r} m_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}-\hat{v}(r-1)}{m-\frac{1}{m} \sum_{i=1}^{r} m_{i}^{2}}$. If $\hat{a}=0$ set $\hat{Z}=0$, otherwise, $\hat{k}=\frac{\hat{v}}{\hat{a}}$ and
$\hat{Z}=\frac{n}{n+\hat{k}}$. Then the Bühlmann premium for policyholder i is
$P_{c}^{i}=P_{c i}=\hat{Z} \bar{X}_{i}+(1-\hat{Z}) \bar{X}=\bar{X}+\hat{Z}\left[\bar{X}_{i}-\bar{X}\right]$.
131) Semiparametric empirical Bayes estimation for Bühlmann credibility: assume the number of claims for each policyholder has a conditional Poisson (λ) distribution $(\lambda$ is a RV). Each member has $\tilde{n}=1$ year of exposure. The loss for the i th policy holder is X_{i} for $i=1, \ldots, n$. (Note that n was r and \tilde{n} was n in 129). Also note that $\bar{X}_{i}=X_{i}$ since $\tilde{n}=1$.) Then $\hat{\mu}=\bar{X}=\hat{v}=\widehat{E P V}$, and $\hat{a}=V \widehat{H M}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}-\hat{v} . \quad$ If $\hat{a}=0$ set $\hat{Z}=0$, otherwise, $\hat{k}=\frac{\hat{v}}{\hat{a}}$ and $\hat{Z}=\frac{\tilde{n}}{\tilde{n}+\hat{k}}=\frac{1}{1+\hat{k}}$. Then the Bühlmann premium for policyholder i is $P_{c}^{i}=P_{c i}=\hat{Z} X_{i}+(1-\hat{Z}) \bar{X}=\bar{X}+\hat{Z}\left[X_{i}-\bar{X}\right]$. This formula does not make sense with grouped data where 129) or 130) should be used.
132) Bayesian credibility: a) Poisson-Gamma: Suppose $N \mid \lambda \sim \operatorname{Poisson}(\lambda)$ with conjugate prior distribution $\lambda \sim G(\alpha, \theta)$. Then $N \sim N B(r=\alpha, \beta=\theta)$. With k claims in n exposures, the posterior distribution $\lambda \left\lvert\,(n, k) \sim G\left(\alpha^{\prime}=\alpha+k, \theta^{\prime}=\frac{\theta}{1+n \theta}\right)\right.$ where $\frac{1}{\theta^{\prime}}=\frac{1}{\theta}+n=\frac{1+n \theta}{\theta}$. The n exposures could be n years for one insured, n insureds for 1 year, or the sum of n_{i} insureds for year i for years $1, \ldots, \mathrm{~m}: n=\sum_{i=1}^{m} n_{i}$. Note that $\bar{X}=k / n$. Then the posterior mean $E(\lambda \mid(n, k))=\alpha^{\prime} \theta^{\prime}=P_{c}=\frac{(\alpha+k) \theta}{1+n \theta}=\frac{\alpha+n \bar{X}}{\frac{1}{\theta}+n}=$ $\frac{\gamma}{\gamma+n} \frac{\alpha}{\gamma}+\frac{n}{n+\gamma} \bar{X}$ where $\gamma=1 / \theta$ and $Z=\frac{n}{n+\gamma}$. The predictive distribution $N \mid(n, k) \sim$ $N B\left(r=\alpha^{\prime}=\alpha+k, \beta=\theta^{\prime}=\frac{\theta}{1+n \theta}\right)$.
b) normal-normal. Let $v=\sigma^{2}$ and $a=\tau^{2}$. Suppose $X \sim N\left(\theta, \sigma^{2}\right)$ with conjugate prior $\theta \sim N\left(\mu, \tau^{2}\right)$ where σ^{2}, μ and τ^{2} are constants. (Sometimes use Θ in place of θ.) Then $X \sim N\left(\mu, \sigma^{2}+\tau^{2}\right)$. Let the data $\boldsymbol{x}=\left(X_{1}, \ldots, X_{n}\right)$. Then the posterior distribution $\theta \mid \boldsymbol{x} \sim N\left(\mu+Z(\bar{X}-\mu),(1-Z) \tau^{2}+\sigma^{2}\right)$ with $Z=\frac{n}{n+\frac{\sigma^{2}}{\tau^{2}}}=\frac{n \tau^{2}}{n \tau^{2}+\sigma^{2}}$.
c) binomial-beta: Suppose $N \mid q \sim \operatorname{binomial}(q, m)$ with conjugate prior distribution $q \sim$ $\operatorname{beta}(a, b)$ Suppose there are k claims in m exposures. Then the posterior distribution $q \mid(m, k) \sim \operatorname{beta}(a+k, b+m-k)$. Here $q=P($ claim $)$.
133) If $N \mid q \sim \operatorname{Bernoulli}(q) \sim \operatorname{binomial}(q, m=1)$ and $q \sim \operatorname{beta}(a, b)$, and if the data \boldsymbol{x} is $n \operatorname{Bernoulli}(q)$ trials with k 1 's, then the posterior distribution $q \mid(n, k) \sim$ $\operatorname{beta}(a+k, b+n-k)$. (132c) treats the binomial(q, m) case as $n=m$ Bernoulli trials.) Then the posterior mean $E(q \mid \boldsymbol{x})=\frac{a+k}{n+a+b}$.
134) For Bayesian credibility, typical exam questions tend to use distributions that are "easy to integrate" (to find the constant c that makes the posterior pdf integrate to 1) like the uniform, exponential, and single parameter Pareto distributions.
135) Bernoulli shortcut: Suppose W is a RV that takes on two values a and b with $p_{a}=P(W=a)$ and $p_{b}=1-p_{a}$. Then $V(W)=(b-a)^{2} p_{a} p_{b}=(a-b)^{2} p_{a}\left(1-p_{a}\right)$. $W=X \mid \Theta=\theta_{i}$ is possible. Note that $E(W)=a p_{a}+b p_{b}$.
136) Bühlmann credibility with a discrete prior π (class $i)=\pi_{i}$ where $\Theta=i$ denotes
class i. Let X be the RV of interest. Let $\mu(\Theta)=E(X \mid \Theta)$ and $v(\Theta)=V(X \mid \Theta)$. Then $\mu(\theta)=E(X \mid \Theta=\theta)$ and $v(\theta)=V(X \mid \Theta=\theta)$. The model or process is $X \mid \Theta$.

row	class 1	\ldots	class k	sum
i) prior	π_{1}	\ldots	π_{k}	1
ii) $E(X \mid$ class $i)$	μ_{1}	\ldots	μ_{k}	
iii) $W_{i}=V(X \mid$ class $i)$	$V(X \mid 1)$	\ldots	$V(X \mid k)$	

Then $\mu=E(\mu(\Theta))=E(E(X \mid \Theta))=E(X)=\sum_{i=1}^{k} \mu_{i} \pi_{i}$, $v=E(v(\Theta))=E(V(X \mid \Theta))=\sum_{i=1}^{k} V(X \mid i) \pi_{i}=E P V$, and $a=V H M=V(E(X \mid \Theta))=V(W)=E\left(W^{2}\right)-[E(W)]^{2}=E\left(W^{2}\right)-\mu^{2}=$ $\left(\sum_{i=1}^{k}\left[\mu_{i}\right]^{2} \pi_{i}\right)-\mu^{2}$.

Let $X=X_{j}$ for class j. Often k tables with n_{j} values of $x_{i j}$ are given for $i=1, \ldots, n_{j}$ and $j=1, \ldots, k$ where the $x_{i j}$ are the values X_{j} can take.

$x_{i 1}$	$P\left(X_{1}=x_{i 1}\right)$	\ldots	$x_{i k}$	$P\left(X_{k}=x_{i k}\right)$
x_{11}	p_{11}	\ldots	$x_{1 k}$	$p_{1, k}$
\vdots	\vdots	\ldots	\vdots	\vdots
$x_{n_{1}, 1}$	$p_{n_{1}, 1}$	\ldots	$x_{n_{k}, k}$	$p_{n_{k}, k}$

Then $E\left(X_{j}\right)=\mu_{j}=\sum_{i=1}^{n_{j}} x_{i j} p_{i j}$ and $V\left(X_{j}\right)=V(X \mid j)=\sum_{i=1}^{n_{j}}\left(x_{i j}-\mu_{j}\right)^{2} p_{i j}$. Often $k=2$. Then $a=\left[\mu_{2}-\mu_{1}\right]^{2} \pi_{1} \pi_{2}$ by 135). If $n_{j}=2$, then $V(X \mid j)=\left(x_{2 j}-x_{1 j}\right)^{2} p_{1 j} p_{2 j}$ by 135).
137) If the Bühlmann premium for 1 member is $P_{C}^{1}=E(X)+Z(\bar{X}-E(X))$, and the group has J members, then the Bühlmann premium for the group is $P_{C}=J P_{C}^{1}$.
138) In calculating Bühlmann's $Z=\frac{n}{n+k}=\frac{n a}{n a+v}$, need to know the number n of exposures. The exposure unit is the unit for which the credibility premium is charged. If you calculate the number of claims per insured, then the insured (a member) is the exposure unit. If you calculate claim size per claim then the exposure unit is a claim. Often an exposure unit is 1 member-year (member per year time period), and $n=n_{1}+n_{2}+\cdots+n_{d}$ where n_{i} is the number of members for the i th year, $i=1, \ldots, d$.
139) The RV X for which you are calculating the credibility is often the claim count or claim size or aggregate loss of a single member of J members receiving insurance.
140) Bühlmann credibility with a continuous prior: the model or process is $X \mid \Theta$, the hypothetical mean is $\mu(\Theta)=E(X \mid \Theta)$, the process variance is $v(\Theta)=V(X \mid \Theta)$. Typically the prior is a brand name continuous distribution. Find $\mu=E(\mu(\Theta))=E(E(X \mid \Theta))=$ $E(X), v=E(v(\Theta))=E(V(X \mid \Theta))=E P V$, and $a=V H M=V(E(X \mid \Theta))$.
141) Often $X|\Lambda=N| \Lambda \sim \operatorname{Poisson}(\Lambda)$. Then the hypothetical mean $\mu(\Lambda)=E(N \mid \Lambda)=$ $\Lambda=V(N \mid \Lambda)=v(\Lambda)=$ the process variance. Then $a=V(\mu(\Lambda))=V(\Lambda)$ and $v=$ $E(v(\Lambda))=E(\Lambda)=\mu$. See 142) $=$ Table 51.1.

Material on Final but not on Exam 3.

143) Bühlmann Straub credibility: There are m_{j} exposures in period j. Assume X_{1}, \ldots, X_{n} are independent conditional on Θ. Often $X_{j}=\bar{W}_{j}=\frac{1}{m_{j}} \sum_{i=1}^{m_{j}} W_{i j}$ where, conditional on $\Theta=\theta$, the $W_{i j}$ are independent with mean $\mu(\theta)=E\left(X_{j} \mid \Theta=\theta\right)$ and variance $v(\theta)$ where $\frac{v(\theta)}{m_{j}}=V\left(X_{j} \mid \Theta=\theta\right)$. Then $\mu=E[\mu(\Theta)]=E\left[E\left(X_{j} \mid \Theta\right)\right]=E\left(X_{j}\right)$, $v=E[v(\Theta)]=E\left[V\left(X_{j} \mid \Theta\right)\right]$, and $a=V(\mu(\Theta))=V\left(\underset{m}{E}\left(X_{j} \mid \Theta\right)\right)$. Also $\operatorname{cov}\left(X_{i}, X_{j}\right)=a$ for $i \neq j$ and $V\left(X_{j}\right)=\frac{v}{m_{j}}+a, k=v / a, Z=\frac{m}{m+k}$ where $m=\sum_{i=1}^{n} m_{i}$. Then $P_{C}^{1}=Z \bar{X}+(1-Z) \mu=\mu+Z(\bar{X}-\mu)$ is the premium for 1 member of the group where $\bar{X}=\sum_{j=1}^{n} \frac{m_{j}}{m} X_{j}$. The credibility premium charged to the group in year $n+1$ is $P_{C}=m_{n+1} P_{C}^{1}$ where m_{n+1} is the number of group members in year $n+1$. Note that Bühlmann credibility has $m_{j} \equiv 1$ for $j=1, \ldots, n$. Note that $m_{j} X_{j}$ is the total loss for the group in year (time period) j : think of $W_{i j}$ as the loss to the i th member in year j where there are m_{j} members in the group in year j. Then X_{j} is the average loss (of the m_{j} members) in year j.

Ratemaking

144) Let i be the interest rate and δ be the force of interest. Then $e^{\delta}=1+i$ and $\delta=\ln (1+i)$.
145) Let $Y=\ln$ (loss cost). The average accident date of accident year z is June 30 , x , eg $\mathrm{z}=2003$. Let $\mathrm{x}=$ year - starting year evaluated at June, 30. So if the starting year is 2003 and the accident years are 2003 to 2009, then x takes on values $0,1,2,3,4$, 5 , and 6 for these years at June, 30. To compute x and time t, start at June 30 of the starting year for x .

Suppose in the above diagram, we want to get the 2006 loss cost projected to Sept. 1, 2009. At June 30, 2009, $x=6$, and Sept. 30 is two months later $=2 / 12 \approx 0.16$ later. Hence $x=6.16$ at Sept. 30, 2009. The time t from June 30, 2006 to Sept. 1, 2009 is the time from June 30, 2006 until June 30, $2009+0.16=3+0.16=3.16$
a) The first method to get the 2006 loss cost projected to Sept. 1, 2009 is to use a given fitted (least squares) line to get $Y=a+\delta x$. Suppose $Y=4.7534+0.1085 x$. Then $Y=4.7534+0.1085(6.16)=5.42176$ Then the (2006 loss cost projected to Sept. 1, 2009 $=)$ projected cost is $e^{Y}=226.28$.
b) The second method to get the 2006 loss cost projected to Sept. 1, 2009 is to use projected loss cost $=\left(\right.$ experience loss cost in 2006) $e^{\delta t}$. If the experience loss cost in 2006 was 158.57, then the projected loss cost $=158.57 e^{0.1085(3.16)}=158.57 e^{0.34286}=223.42$.

See homework 11, problem 2, where 2006 is changed to 2007.
146) Two methods can be used to calculate the overall average rate change. a) Lost cost (pure premium) method has the new average lost cost $=$ num $1 /$ den 1 where num1 $=$ expected dollar losses in effective period (trended and developed) and den $1=$ number of earned exposure units. Then the new average gross rate $=$ (new average lost cost)/(permissable loss ratio) where the permissable loss ratio $=1-$ expense ratio.
b) The loss ratio method has indicated rate change $=\frac{\text { num } 2}{\text { den } 2}-1$ where num $2=$ expected effective loss ratio and den $2=$ permissable loss ration, and num $2=$ num1/den3 where den $3=$ dollars of earned premium at current rates. Then the new average gross rate $=($ present average manual rate $)($ indicated rate change +1$)$.

Example

expected dollar losses in effective period (trended and developed)	$30,000,000$
earned exposure units	$1,000,0000$
earned premium at current rates	$45,000,000$
present average manual rate	45
permissable loss ration $=1-$ expense ratio	0.7

a) loss cost method: expected effective loss cost $=30,000,000 / 1,000,000=30(=$ new average loss cost), and the new average gross rate $=30 / 0.7=42.8571$.
b) loss ratio method: expected effective loss ratio $=30,000,000 / 45,000,000=2 / 3=$ 0.6667 .
indicated rate change $=\frac{2 / 3}{0.7}-1=-0.04762$ which means thee is a rate reduction of 4.762%. Then the new average gross rate $=45\left(\frac{2 / 3}{0.7}\right)=42.8571$.

Chapter 8:

See Exam 1 review 8)-11) and 14)-16).
147) Know: Except for the inverse Gaussian distribution, the continuous distributions in Appendix A with parameter θ are scale families with scale parameter θ if any other parameters $\boldsymbol{\tau}$ are fixed, written $X \sim S F(\theta \mid \boldsymbol{\tau})$. Let $a>0$. Then $Y=a X \sim$ $S F(a \theta \mid \boldsymbol{\tau})$. See 31). If $X \sim L N(\mu, \sigma)$, then $Y=a X \sim L N(\mu+\ln (a), \sigma)$. Often $a=1+r$.
148) Let $f_{Z}(x)$ be the pdf of RV Z. Then the family of pdfs $f_{X}(x)=\frac{1}{\theta} f_{Z}\left(\frac{x}{\theta}\right)$ indexed by a scale parameter $\theta>0$ is the scale family for the RV $X=\theta Z$ with standard pdf $f_{Z}(x)$. If the expected values exist, then $E(X)=\theta E(Z)$ and $V(X)=\theta^{2} V(Z)$. See 147).
149) X is a loss RV from a scale family with scale parameter θ if $Y=c X$ is from the same scale family with scale parameter $c \theta$ for any constant $c>0$.
150) A payment per loss has 0 as a possibility where there is a loss without a payment due to a deductible. The left censored and shifted $\mathrm{RV}=$ per loss $\mathrm{RV} Y^{L}=(X-d)_{+}$. So $Y^{L}=0$ for $X<d$, and $Y_{L}=X-d$ for $X>d$. Recall $(X-d)_{+}=\max (X-d, 0)$.
151) For payment per payment, the excess loss $\mathrm{RV}=$ per payment $\mathrm{RV} Y^{P}$ is undefined when there is no payment, ie for $X<d . Y^{P}=Y^{L}\left|Y^{L}>0=(X-d)\right| X>d=X-d$ for $X>d$. See 9).
152) The RVs in 150) and 151) are for an ordinary deductible. A franchise deductible pays $Y^{L}=0$ if $X \leq d$ but pays $Y^{L}=X$ if $X>d$. So the franchise deductible pays the full amount X if $X>d$. For a franchise deductible, Y^{P} is undefined for $X<d$, and $Y^{P}=X$ for $X>d$. Assume a deductible is an ordinary deductible unless stated otherwise.
153) i) If $X \sim E X P(\theta)$, then $Y^{P} \sim E X P(\theta)$ and $e_{X}(d)=\theta$.
ii) If $X \sim U(0, \theta)$ and $d<\theta$, then $Y^{P} \sim U(0, \theta-d)$ and $e_{X}(d)=(\theta-d) / 2$.
iii) If $X \sim$ (two parameter) Pareto (α, θ) then $Y^{P} \sim$ (two parameter) Pareto $(\alpha, \theta+d)$, and for $\alpha>1, e_{X}(d)=\frac{\theta+d}{\alpha-1}$.
iv) If $X \sim$ single parameter Pareto (α, θ) and $\alpha>1$, then $e_{X}(d)=\frac{d}{\alpha-1}$ for $d \geq \theta$, and $e_{X}(d)=\frac{\alpha(\theta-d)+d}{\alpha-1}$ for $d \leq \theta$. If $d \geq \theta$, then $Y^{P} \sim$ (two parameter) Pareto (α, d).
154) The mean excess loss $=E\left(Y^{P}\right)=e_{X}(d)=\frac{E\left(Y^{L}\right)}{S_{X}(d)}=\frac{E\left[(X-d)_{+}\right]}{S_{X}(d)}=$ $\frac{\int_{d}^{\infty} S_{X}(x) d x}{S_{X}(d)}=\frac{\int_{d}^{\infty}(x-d) f_{X}(x) d x}{S_{X}(d)}=\frac{E[(X)-E[X \wedge d]}{S_{X}(d)}$. Note that $E\left(Y^{L}\right)$ is given in the numerator. Tables give $E(X), E(X \wedge x), F_{X}(x)=1-S_{X}(x), \operatorname{Va}_{p}(X)$ and $T V a R_{p}(X)$. Recall that $T \operatorname{Va}_{p}(X)=\operatorname{VaR}_{p}(X)+e_{X}\left(\pi_{p}\right)=\pi_{p}+e_{X}\left(\pi_{p}\right)$.
155) Let X be a loss RV. Then for $y>0$,
i) $f_{Y^{P}}(y)=\frac{f_{X}(y+d)}{S_{X}(d)}$, ii) $S_{Y^{P}}(y)=\frac{S_{X}(y+d)}{S_{X}(d)}$, iii) $F_{Y^{P}}(y)=\frac{F_{X}(y+d)-F_{X}(d)}{S_{X}(d)}$, and iv) $h_{Y^{P}}(y)=\frac{f_{X}(y+d)}{S_{X}(y+d)}=h_{X}(y+d)$. Since Y^{L} is a mixture of a point mass at 0 and Y^{P}, the pdf of Y^{L} does not exist. v) $F_{Y^{L}}(y)=F_{X}(y+d)$, and $S_{Y^{L}}(y)=S_{X}(y+d) . Y^{P}$ is a continuous RV , so the formulas from 1) still hold.
156) Let $Y^{L}(O)$ and $Y^{P}(O)$ be the loss RV and payment RV for an ordinary deductible (d), and let $Y^{L}(F)$ and $Y^{P}(F)$ be the loss RV and payment RV for a franchise deductible (d). Then $E\left[Y^{L}(F)\right]=E\left[Y^{L}(O)\right]+d S_{X}(d)=E(X)-E(X \wedge d)+d S_{X}(d)$, and $E\left[Y^{P}(F)\right]=$ $E\left[Y^{P}(O)\right]+d=\frac{E\left(Y^{L}(F)\right]}{S_{X}(d)}$. This expectation makes sense because the policy with a franchise deductible pays d more than that of a policy with an ordinary deductible when $X>d$. Usually the F and O are suppressed. $E\left[Y^{L}(F)\right]=\int_{d}^{\infty} x f(x) d x$.
157) For a franchise deductible, let X be a loss RV. Then for $y>d$, i) $f_{Y^{P}}(y)=\frac{f_{X}(y)}{S_{X}(d)}$, ii) $S_{Y^{P}}(y)=\frac{S_{X}(y)}{S_{X}(d)}$, iii) $F_{Y^{P}}(y)=\frac{F_{X}(y)-F_{X}(d)}{S_{X}(d)}$, and iv) $h_{Y^{P}}(y)=$ $h_{X}(y)$. For $0<y<d, f_{Y^{P}}(y)=0, S_{Y^{P}}(y)=1, F_{Y^{P}}(y)=0$ and $h_{Y^{P}}(y)=0$. The pdf of Y^{L} does not exist. v) $F_{Y^{L}}(y)=F_{X}(y)$ for $y>d$, and $F_{Y^{L}}(y)=F_{X}(d)$ for $0<y<d$. vi) $S_{Y^{L}}(y)=S_{X}(y)$ for $y>d$, and $S_{Y^{L}}(y)=S_{X}(d)$ for $0<y<d$.
vii) $h_{Y^{L}}(y)=h_{X}(y)$ for $y>d$, and $h_{Y^{L}}(y)=h_{X}(y)$ for $0<y<d$.
$158)=14)$ The loss elimination ratio $\mathrm{LER}=\frac{E[X \wedge d]}{E(X)}$ if $E(X)$ exists. Note that $E\left(Y^{L}\right)=E\left[(X-d)_{+}\right]=E(X)-E[X \wedge d] . \quad$ So $E[X \wedge d]=E(X)-E\left[(X-d)_{+}\right]=$ $E(X)-E\left(Y^{L}\right)$.
159) Let the annual inflation rate be r where often you are told the uniform inflation rate is $1+r$ (usually $0<r<1$). After inflation, the new loss $\mathrm{RV} Y=(1+r) X$.
160) Useful: Nearly all of the continuous distributions in Appendix A with parameter θ are scale families with scale parameter θ if any other parameters $\boldsymbol{\tau}$ are fixed, written $X \sim S F(\theta \mid \boldsymbol{\tau})$. Let $a>0$ where often $a=1+r$. Then $Y=a X \sim S F(a \theta \mid \boldsymbol{\tau})$. The inverse Gaussian distribution is an exception. If $X \sim L N(\mu, \sigma)$, then $Y=a X \sim L N(\mu+$ $\ln (a), \sigma)$.
161) If $Y=(1+r) X$ for loss RV X, then
i) $E[Y \wedge d]=(1+r) E\left[X \wedge \frac{d}{1+r}\right]$,
ii) $E(Y)=(1+r) E(X)$, iii) $F_{Y}(d)=F_{X}\left(\frac{d}{1+r}\right)$, iv) $S_{Y}(d)=S_{X}\left(\frac{d}{1+r}\right)$.
162) For an ordinary deductible of d, after uniform inflation of $1+r$, method I): i) $E\left(Y^{L}\right)=(1+r)\left[E(X)-E\left[X \wedge \frac{d}{1+r}\right]\right], \quad$ ii) $E\left(Y^{P}\right)=\frac{E\left(Y^{L}\right)}{S_{X}\left(\frac{d}{1+r}\right)}$.

Method II): If $X \sim S F(\theta \mid \boldsymbol{\tau})$, then the $X_{\text {new }}=(1+r) X$ satisfies $X_{\text {new }} \sim$ $S F((1+r) \theta \mid \boldsymbol{\tau})$. Use this modified distribution and formulas 154). See 160).
163) For a policy limit, the limited loss $\mathrm{RV} W=X \wedge u=\min (X, u)$, and $E(X \wedge u)$ is the limited expected value. $F_{X \wedge u}(y)=F_{X}(y)$ for $y<u$ and $F_{X \wedge u}(y)=1$ for $y \geq u$.
164) Policy limit and insurance: Let $Y=(1+r) X=X_{\text {new }}$.

Method 1: $E(Y \wedge u)=E\left(X_{\text {new }} \wedge u\right)=(1+r) E\left[X \wedge \frac{u}{1+r}\right]$.
Method 2: If $X \sim S F(\theta \mid \boldsymbol{\tau})$, then $X_{\text {new }}=(1+r) X$ satisfies $X_{\text {new }} \sim S F((1+r) \theta \mid \boldsymbol{\tau})$. Get $E\left(X_{\text {new }} \wedge u\right)$ and the table formulas for the modified distribution.
165) Let X be a loss RV. For a coinsurance policy, the insurance company pays αX of the loss for some $\alpha \in(0,1]$. For coinsurance with a deductible, the insurance company pays $\alpha(X-d)_{+}$.
166) Policy limit and a deductible: If there is a deductible d and a policy limit $=$ maximum payment of $u-d$, then the "maximum covered loss" $u=u-d+d$. (A loss $X>u$ is not fully covered in that the policy will only pay $u-d$ instead of $X-d$.) The the per loss RV

$$
Y^{L}=X \wedge u-X \wedge d= \begin{cases}0, & X<d \\ X-d, & d \leq X<u \\ u-d & X \geq u\end{cases}
$$

Then $E\left(Y_{L}\right)=E(X \wedge u)-E(X \wedge d)$ and $E\left(Y_{P}\right)=\frac{E\left(Y^{L}\right)}{S_{X}(d)}$ where $Y^{P}=Y^{L} \mid X>d$.
167) Insurance with an ordinary deductible d, policy limit $u-d$, coinsurance α, and inflation r : The the per loss RV

$$
Y^{L}= \begin{cases}0, & X<\frac{d}{1+r} \\ \alpha[(1+r) X-d], & \frac{d}{1+r} \leq X<\frac{u}{1+r} \\ \alpha(u-d) & X \geq \frac{u}{1+r} .\end{cases}
$$

Then $E\left(Y_{L}\right)=\alpha(1+r)\left[E\left(X \wedge \frac{u}{1+r}\right)-E\left(X \wedge \frac{d}{1+r}\right)\right]$ and $E\left(Y_{P}\right)=\frac{E\left(Y^{L}\right)}{S_{X}\left(\frac{d}{1+r}\right)}$.
Note that $\alpha=1$ for no coinsurance, $r=0$ for no inflation, $d=0$ for no deductible, and take $u=\infty$ if there is no policy limit. So $E(X \wedge \infty]=E(X)$ if there is no policy limit.
168) $(1+r) X \wedge d=(1+r)\left(X \wedge \frac{d}{1+r}\right)$ Since $E[(1+r) X]=(1+r) E[X]$, after inflation, $L E R(d)=\frac{E\left[X \wedge \frac{d}{1+r}\right]}{E[X]}$. If $X \sim S F(\theta \mid \boldsymbol{\tau})$ then $X_{\text {new }} \sim S F((1+r) \theta \mid \boldsymbol{\tau})$ gives another method to find $\operatorname{LER}(d)$ after inflation.
169) Useful: i) If $X \sim E X P(\theta)$, then $\operatorname{LER}(d)=1-e^{-d / \theta}$.
ii) If $X \sim\left(\right.$ two parameter) Pareto $(\alpha>1, \theta)$ then $\operatorname{LER}(d)=1-\left(\frac{\theta}{d+\theta}\right)^{\alpha-1}$,
iii) If $X \sim$ single parameter Pareto $(\alpha>1, \theta)$ and $d>\theta$, then $L E R(d)=1-\frac{(\theta / d)^{\alpha-1}}{\alpha}$. If $d<\theta$, then $L E R(d)=\frac{(\alpha-1) \theta}{\alpha \theta}$.

