YOU ARE BEING GRADED FOR WORK

1) Suppose

$$F(t) = 1 - \exp\left[\frac{-(e^t - 1)}{\lambda}\right]$$

for t > 0 where $\lambda > 0$ and t > 0. Find the following quantities for t > 0.

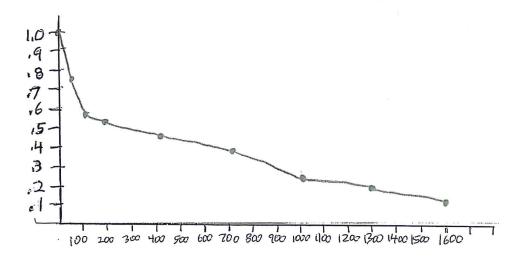
a)
$$S(t) = \left| -\overline{F}(t) \right|$$

a)
$$S(t) = |-F(t)| = |e \times P(-(e^{t})|) = e^{-(e^{t}+1)}$$

b)
$$f(t) = F(t) = -5(t) = h(t) S(t)$$

diff wrong - 5

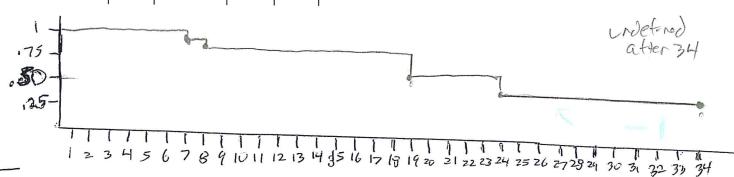
$$= -exp(-e^{t-1})(-e^{t}) = |e^{t}exp(-e^{t-1})| = e^{t}e^{t}$$


c)
$$h(t) = \frac{d}{dt}HdI - \frac{f(t)}{g(t)} - \frac{1}{1}e^{\frac{t}{2}}$$

d)
$$H(t) = -109(S(t)) = \begin{cases} e^{t-1} \\ 1 \end{cases}$$

$$=\int_0^t holdu = \int_0^t \frac{1}{1} e^t du = \frac{1}{1} e^t \Big|_0^t = \frac{e^t}{1}$$

2) The Allison (1996, p. 49) data is for survival times in days for 68 heart transplant patients. Use the life table estimator to compute the estimated survival function $\hat{S}_L(t_i)$ by filling in the table below. Show what you multiply to find $\hat{S}_L(t_i)$. Then plot the function.


I_{j}	d_j	c_j	n_j	n' _j = nj- Si	$\frac{n_j'-d_j}{n_j'}$	$\hat{S}_L(t_i) = \hat{S}_L(t_i) - \hat{N}_i - \hat{C}_i$
[0, 50)	16	3	68	66.5	0.7594	1.0000
[50, 100)	11	0	49	49	0.7755	0.7594 = 550/
[100, 200)	4	2	38	37	0.8919	0.5889 = 3(100)
[200, 400)	5	4	32	30	0.8333	0.5253 = 3(200)
[400, 700)	2	6	23	20	0.9000	0.4377 = 3 400
[700, 1000)	4	3	15	13.5	0.7037	0.3939
[1000, 1300)	1	2	8	7		0.2772 = 0.3939 (07037/
[1300, 1600)	1	3	5	3.5		0.2376 = 0.2772 (18571)
$[1600,\infty)$	0	1	1	0.5	1.0	0.1697 = 0.2376 (.7143)

Collett PSO

3) Survival times for 15 patients with melanoma are given below. 7, 8, 8, 8+, 12+, 16+, 17+, 17+, 18+, 19, 21+, 24, 24+, 27+, 34+ Compute the Kaplan Meier survival function $\hat{S}_K(t_i)$ by filling in the table below. Show what you multiply to find $\hat{S}_k(t_i)$. Then plot the function.

	T	1 .	1	Í	1 2
$t_{(j)}$	γ_j	t_i	n_i	d_i	$\hat{S}_K(t_i)$
	×	$t_0 = 0$			$\hat{S}_K(0)=1$
7	1	7	15	1	$\hat{S}_K(7) = 1 \left(1 - \frac{1}{15} \right) = \frac{14}{15} = 0.9333$
8	1	8	14	2	$\hat{S}_{K}(7) = 1 \left(1 - \frac{1}{15} \right) = \frac{14}{15} = 0.9333$ $\hat{S}_{K}(8) = \frac{14}{15} \left(1 - \frac{2}{14} \right) = 0.8000 \approx .79997$
8	1				
8	0				
12	0				
16	0				
17	0				-
17	0				
18	0				*
19	1	19	6	1	$\hat{S}_{K}(19) = .9 \left(-\frac{1}{6} \right) = .6666 = \frac{2}{3}$
21	0				
24	1	24	4	1	$\hat{S}_{K}(24) = \frac{7}{3}(-\frac{1}{4}) = ,5000$
24	0				
27	0				roughly 7 it 19t3
34	0				aretyc

4) Survival times for 15 patients with melanoma are given below. 7, 8, 8, 8, 12, 16, 17, 17, 18, 19, 21, 24, 24, 27, 34 Compute the empirical survival function $\hat{S}_E(t_i)$ by filling in the table below.

$t_{(j)}$	$t_{m{i}}$	d_i	$\hat{S}_E(t_i)$	
7 8	$t_0 = 0$	1	$\hat{S}_E(0) = 1 = \frac{15}{15}$ $\hat{S}_E(7) = (15 - 1)/15 = 14/15$	
8				
8	8	3	$\hat{S}_E(8) = (14 - 3)/15 = 11/15$	
12	12	1	$\hat{S}_E(12) = (11-1)/15 = 10/15$	
16	16	1	$\hat{S}_E(66) = (10 - 1)/15 = 9/15$	
17				
17	17	2	$\hat{S}_E(17) = (9-2)/15 = 7/15$	
18	18	1	$\hat{S}_E(18) = (7-1)/15 = 6/15$	
19	19		$\hat{S}_{E}(19) = \frac{6 - 11/15}{5/15} = \frac{5/15}{5}$ $\hat{S}_{E}(21) = \frac{5 - 11/15}{5/15} = \frac{11/15}{5/15}$	= ,3333
21	21	l	$\hat{S}_E(21) = \frac{1}{2} \frac{1}{2}$	= 12607
24				. 777
24	24	2	$\hat{S}_E(24) = (4-2)/15 = 2/15$	= ,1333
27	27	1	$\hat{S}_E(27) = (2-1)/(55 + 1)/15$	= ,06667
34	34		$\hat{S}_E(34) = \frac{1}{1} \frac{1}{15} = 0$	

5) The following 20 survival times are listed from smallest to largest.

Find the empirical survival function value at 320:

$$\hat{S}_E(320) = \frac{\# > 320}{n}$$

where # > 320 is the number of survival times > 320.

$$-\left|\frac{5}{20} - \frac{1}{4} = 0.25\right|$$

6) The survival functions plotted below are for steroid induce remission times (weeks) for leukemia patients. One group of 21 patients was given the drug 6-MP, and a second group was given a placebo. (Want remission times to be long, like you want survival times to be long for sick people.)

a) For the patients who received a placebo, estimate when 50% of these have died. Show the over and down lines.

b) Which treatment (6-MP or placebo) seems to be better? Explain briefly.

c) If the hazard functions were plotted, which treatment would have the higher hazard (6-MP or placebo)?

Placebo

(lower forvival means higher hazard)

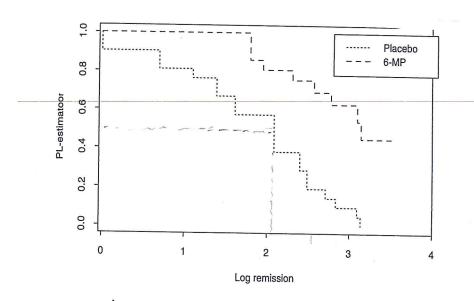


Figure 6.3 The PL-estimator for the 6-MP and Placebo groups when survival is measured on the \log_e scale.

time	n.risk	${\tt n.event}$	survival	std.err	lower	95% CI	upper	95% CI	
9	11	1	0.909	0.0867		0.7392		1.000	
13	10	1	0.818	0.1163		0.5903		1.000	
18	8	1	0.716	0.1397		0.4422		0.990	\leftarrow
23	7	1	0.614	0.1526		0.3145		0.913	
31	5	1	0.491	0.1642		0.1691		0.813	
34	4	1	0.368	0.1627		0.0494		0.687	
48	2	1	0.184	0.1535		0.0000		0.485	

7) The length of times of remission (time until relapse) in acute myelogeneous leukemia under maintenance chemotherapy for 11 patients is 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+. From the output above what is the 95% CI

9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+. From the output above what is the 95% CI for $S_{V}(18)$?

for $S_Y(18)$? (0.4422, 0.990)

8) Find the 95% classical CI for $S_Y(13)$ if n = 11 and $\hat{S}_E(13) = 5/11$.

$$3(13) \pm 1.96$$
 $3(13)(1-303)) = \frac{5}{11} \pm 1.96$ $\frac{15}{11}$

$$=.4545 \pm 1.96(.1501) = .4545 \pm .2943$$

= $(0.1602, 0.7488))$

9) Find the 95% plus four CI for $S_Y(13)$ if n=11 and $\hat{S}_E(13)=5/11$.

$$\vec{P}_{13} = \frac{n \hat{S}(13) + 2 - 11(\frac{5}{11}) + 2}{11 + 4} = \frac{7}{15} \quad CI = \vec{P} \pm 196 \vec{P} \cdot \vec{P} \cdot \vec{P}$$

10) SAS output for the myelomatomis data says that $\hat{S}_K(8) = 0.92$ and $SE(\hat{S}_K(8)) = 0.0543$. Find a 95% CI for S(8).

$$= .92 \pm (.96(.0543)) =$$

$$- .92 \pm .1064 - (.9136)$$