
Exam 1 is Wed. Feb. 15. You are allowed 6 sheets of notes and a calculator.

The exam covers HW1-3 and Q1-3. Numbers refer to types of problems on exam.

In this class log(t) = ln(t) = loge(t) while exp(t) = et.

Let T ≥ 0 be a nonnegative random variable.
Then the cumulative distribution function (cdf) F (t) = P (T ≤ t). Since T ≥ 0,

F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.
The probability density function (pdf) f(t) = F ′(t).
The survival function S(t) = P (T > t). S(0) = 1, S(∞) = 0 and S(t) is nonin-

creasing.

The hazard function h(t) =
f(t)

1 − F (t)
for t > 0 and F (t) < 1. Note that h(t) ≥ 0 if

F (t) < 1.
The cumulative hazard function H(t) =

∫ t
0 h(u)du for t > 0. It is true that

H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.

1) Given one of F (t), f(t), S(t), h(t) or H(t), be able to find the other 4 quantities for
t > 0. See HW1: 1,3. Know that each quantity is nonnegative.

A) F (t) =
∫ t
0 f(u)du = 1 − S(t) = 1 − exp[−H(t)] = 1 − exp[−

∫ t
0 h(u)du].

B) f(t) = F ′(t) = −S ′(t) = h(t)[1−F (t)] = h(t)S(t) = h(t) exp[−H(t)] = H ′(t) exp[−H(t)].

C) S(t) = 1 − F (t) = 1 −
∫ t
0 f(u)du =

∫

∞

t f(u)du = exp[−H(t)] = exp[−
∫ t
0 h(u)du].

D)

h(t) =
f(t)

1 − F (t)
=

f(t)

S(t)
=

F ′(t)

1 − F (t)
=

−S ′(t)

S(t)
= −

d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t
0 h(u)du = − log[S(t)] = − log[1 − F (t)].

Tip: if F (t) = 1 − exp[G(t)] for t > 0, then H(t) = −G(t) and S(t) = exp[G(t)].

Tip: For S(t) > 0, note that S(t) = exp[log(S(t))] = exp[−H(t)]. Finding exp[log(S(t))]
and setting H(t) = − log[S(t)]is easier than integrating h(t).

Know that if T ∼ EXP (λ) where λ > 0, then h(t) = λ for t > 0, f(t) = λe−λt

for t > 0, F (t) = 1 − e−λt for t > 0, S(t) = e−λt for t > 0, H(t) = λt for t > 0 and
E(T ) = 1/λ. The exponential distribution can be a good model if failures are due
to random shocks that follow a Poisson process, but constant hazard means that a used
product is as good as a new product.

Know that if T ∼ Weibull(λ, γ) where λ > 0 and γ > 0, then h(t) = λγtγ−1 for t > 0,
f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1 − exp(−λtγ) for t > 0, S(t) = exp(−λtγ)
for t > 0, H(t) = λtγ for t > 0. The Weibull(λ, γ = 1) distribution is the EXP(λ)
distribution. The hazard function can be increasing, decreasing or constant. Hence the
Weibull distribution often fits reliability data well, and the Weibull distribution is the
most important distribution in reliability analysis.
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2) Let Ŝ(t) be the estimated survival function. Let t(p) be the pth percentile of T :
P (T ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (T > t(p)). Then t̂(p), the estimated
time when 100 p % have died, can be estimated from a graph of Ŝ(t) with “over” and
“down” lines. a) Find 1 − p on the vertical axis and draw a horizontal “over” line to
Ŝ(t). Draw a vertical “down” line until it intersects the horizontal axis at t̂(p). Usually
want p = 0.5 but sometimes p = 0.25 and p = 0.75 are used. See HW1, 4,5.

The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A and 0, otherwise. Sometimes
an indicator function such as I(0,∞)(y) will be denoted by I(y > 0).

If none of the survival times are censored, then the empirical survival function =
(number of individual with survival times > t)/(number of individuals) = a/n =

ŜE(t) =
1

n

n
∑

i=1

I(Ti > t) = p̂t = sample proportion of lifetimes > t.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (= lifetimes =
death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct survival times.
Let di = number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n then there are
no ties. If m < n and some di ≥ 2, then there are ties.

ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for ti−1 ≤ t < ti. Note
that

∑m
i=1 di = n.

3) Know how to compute and plot ŜE(t) given the t(i) or given the ti and di. Use a
table like the one below. Let a0 = n and ai =

∑n
i=1 I(Ti > ti) = # of cases t(j) > ti for

i = 1, ..., m. Then ŜE(ti) = ai/n =
∑n

i=1 I(Ti > ti)/n = ŜE(ti−1) −
di

n
. See HW2, 1.

ti di ŜE(ti) = ŜE(ti−1) −
di

n

t0 = 0 ŜE(0) = 1 = n
n

= a0

n

t1 d1 ŜE(t1) = ŜE(t0) −
d1

n
= a0−d1

n
= a1

n

t2 d2 ŜE(t2) = ŜE(t1) −
d2

n
= a1−d2

n
= a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) −
dj

n
=

aj−1−dj

n
=

aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) −
dm−1

n
= am−2−dm−1

n
= am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) −
dm

n
= am−1−dm

n
= am

n

4) See HW2, 1. Let t1 ≤ t < tm. Then the classical large sample 95% CI for
S(tc) based on ŜE(t) is

ŜE(tc) ± 1.96

√

ŜE(tc)[1 − ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)].
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5) See HW2, 1. Let 0 < t. Let

p̃tc =
nŜE(tc) + 2

n + 4
.

Then the plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√

p̃tc [1 − p̃tc ]

n + 4
= p̃tc ± 1.96SE[p̃tc ].

Let Yi = time to event for ith person. Ti = min(Yi, Zi) where Zi is the censoring time
for the ith person (the time the ith person is lost to the study for any reason other than the
time to event under study). The censored data is y1, y2+, y3, ..., yn−1, yn+ where yi means
the time was uncensored and yi+ means the time was censored. t(1) ≤ t(2) ≤ · · · ≤ t(n)

are the ordered survival times (so if y4+ is the smallest survival time, then t(1) = y4+).
A status variable will be 1 if the time was uncensored and 0 if censored.

Let [0,∞) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where to = 0 and
tm = ∞. It is possible that the 1st interval will have left endpoint > 0 (t0 > 0) and
the last interval will have finite right endpoint (tm < ∞). Suppose that the following
quantities are known: dj = # deaths in Ij,
cj = # of censored survival times in Ij,
nj = # at risk in Ij = # who were alive and not yet censored at the start of Ij (at time
tj−1).
Let n′

j = nj −
cj

2
= average number at risk in Ij.

6) The lifetable estimator or actuarial method estimator of SY (t) takes ŜL(0) = 1
and

ŜL(tk) =
k

∏

j=1

n′

j − dj

n′

j

=
k

∏

j=1

p̃j

for k = 1, ..., m−1. If tm = ∞, ŜL(t) is undefined for t > tm−1. If tm 6= ∞, take ŜL(t) = 0
for t ≥ tm. To graph ŜL(t), use linear interpolation (connect the dots). If n′

j = 0, take
p̃j = 0. Note that

ŜL(tk) = ŜL(tk−1)
n′

k − dk

n′

k

for k = 1, ..., m− 1.

7) Know how to get the lifetable estimator and SE(ŜL(ti)) from output. See HW2
2b).

interval survival survival SE or interval survival survival SE

0 50 1.00 0 0 50 0.7594 0.0524

50 100 0.7594 0.0524 50 100 0.5889 0.0608

100 200 0.5889 0.0608 100 200 0.5253 0.0602

Since ŜL(0) = 1, ŜL(t) is for the left endpoint for the left output, and for the right
endpoint for the right output. For both cases, ŜL(50) = 0.7594 and SE(ŜL(50)) = 0.0524.
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8) See HW2 2d). A 95% CI for SY (ti) based on the lifetable estimator is

ŜL(ti) ± 1.96 SE[ŜL(ti)].

9) Know how to compute ŜL(t) with a table like the one below. The first 4 columns
need to be given but the last 3 columns may need to be filled in. You may be given a
table with all but a few entries filled. See HW3, 1.

Ij dj cj nj n′

j

n′

j−dj

n′

j

ŜL(t)

[t0 = 0, t1) d1 c1 n1 n1 −
c1
2

n′

1
−d1

n′

1

ŜL(to) = ŜL(0) = 1

[t1, t2) d2 c2 n2 n2 −
c2
2

n′

2
−d2

n′

2

ŜL(t1) = ŜL(t0)
n′

1
−d1

n′

1

[t2, t3) d3 c3 n3 n3 −
c3
2

n′

3
−d3

n′

3

ŜL(t2) = ŜL(t1)
n′

2
−d2

n′

2

...
...

...
...

...
...

...

[tk−1, tk) dk ck nk nk −
ck

2

n′

k
−dk

n′

k

ŜL(tk−1) = ŜL(tk−2)
n′

k−1
−dk−1

n′

k−1

...
...

...
...

...
...

...

[tm−2, tm−1) dm−1 cm−1 nm−1 nm−1 −
cm−1

2

n′

m−1
−dm−1

n′

m−1

ŜL(tm−2) = ŜL(tm−3)
n′

m−2
−dm−2

n′

m−2

[tm−1, tm = ∞) dm cm nm nm − cm

2
n′

m−dm

n′

m
ŜL(tm−1) = ŜL(tm−2)

n′

m−1
−dm−1

n′

m−1

10) Also get a 95% CI from output like that below. See HW2 2c).

time survival SDF_LCL SDF_UCL

0 1.0 1.0 1.0

50 0.7594 0.65666 0.86213 so the 95% CI for S(50) is (0.65666,0.86213)

Let Y ∗

i = Ti = min(Yi, Zi) where Yi and Zi are independent. Let δi = I(Yi ≤ Zi) so
δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the
observed ordered survival times. Let γj = 1 if t(j) is uncensored and 0, otherwise. Let
t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct survival times corresponding to the
t(j) with γj = 1. Let di = number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n
then there are no ties. If m < n and some di ≥ 2, then there are ties.

11) Let ni =
∑n

j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet censored just
before ti. Let di = # of events (deaths) at ti. The Kaplan Meier estimator = product

limit estimator of SY (ti) = P (Y > ti) is ŜK(0) = 1 and ŜK(ti) =
∏i

k=1(1 − dk

nk
) =

ŜK(ti−1)(1 − di

ni
). ŜK(t) is a step function with ŜK(t) = ŜK(ti−1) for ti−1 ≤ t < ti and

i = 1, ..., m. If t(n) is uncensored then tm = t(n) and ŜK(t) = 0 for t > tm. If t(n) is

censored, then ŜK(t) = ŜK(tm) for tm ≤ t ≤ t(n), but ŜK(t) is undefined for t > t(n).
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12) Know how to compute and plot Ŝk(ti) given the t(j) and γj or given the ti, ni and
di. Use a table like the one below. See HW3, 3a).

ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 n1 d1 ŜK(t1) = ŜK(t0)[1 −
d1

n1

]

t2 n2 d2 ŜK(t2) = ŜK(t1)[1 −
d2

n2

]

...
...

...
...

tj nj dj ŜK(tj) = ŜK(tj−1)[1 −
dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK(tm−1) = ŜK(tm−2)[1 −
dm−1

nm−1

]

tm nm dm ŜK(tm) = 0 = ŜK(tm−1)[1 −
dm

nm
]

13) Know how to find a 95% CI for SY (ti) based on ŜK(ti) using output: the 95% CI
is ŜK(ti) ± 1.96 SE[ŜK(ti)]. The R output below gives ti, ni, di, ŜK(ti), SE(ŜK(ti)) and
the 95% CI for SY (36) is (0.7782, 1). See HW3.3c).

time n.risk n.event survival std.err lower 95% CI upper 95% CI

36 13 1 0.923 0.0739 0.7782 1.000

14) In general, a 95% CI for SY (ti) is Ŝ(ti)± 1.96 SE[Ŝ(ti)]. If the lower endpoint of
the CI is negative, round it up to 0. If the upper endpoint of the CI is greater than 1,
round it down to 1. Do not use impossible values of SY (t). See HW3.2de).

15) Let P (Y ≤ t(p)) = p for 0 < p < 1. Be able to get t(p) and 95% CIs for t(p) from
SAS output for p = 0.25, 0.5, 0.75. See HW3.2b) and c).

Quartile estimates

Percent point estimate lower upper

75 . 220.0 . CI not given

50 210.00 63.00 1296.00 t(.5) approx 210 and 95%CI is (63,1296)

25 63.00 18.00 195.00 t(.25) approx 63 and 95% CI is (18,195)

16) R plots the KM survival estimator along with the pointwise 95% CIs for SY (t).
If we guess a distribution for Y , say Y ∼ W, with a formula for SW (t), then the guessed
SW (ti) can be added to the plot. If roughly 95% of the SW (ti) fall within the bands,
then Y ∼ W may be reasonable. For example, if W ∼ EXP (1), use SW (t) = exp(−t).
If W ∼ EXP (λ), then SW (t) = exp(−λt). Recall that E(W ) = 1/λ.

17) If limt→∞ tSY (t) → 0, then E(Y ) =
∫

∞

0 tfY (t)dt =
∫

∞

0 SY (t)dt. Hence an estimate
of the mean Ê(Y ) can be obtained from the area under Ŝ(t).
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