
Exam 2 is Wed. March 22. You are allowed 10 sheets of notes and a calculator.
The exam covers HW1-3 and Q1-3, but emphasis is on HW4-6 and Q4-6.

18) The Cox proportional hazards regression (PH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
′

xi

(t) = exp(β′xi)h0(t)

where h0(t) is the unknown baseline function and exp(β′xi) is the hazard ratio.

For now, assume that the PH model is appropriate, although this assump-
tion should be checked before performing inference.

19) The sufficient predictor SP = β′xj =
∑p

i=1 βixij.

variable Estimate Std. Error Est/SE or (Est/SE)2 p-value

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 for H0: β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p for H0: βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

Shown above is output in symbols from and SAS and R . The estimated coefficient
is β̂j. The Wald chi square = X2

o,j while p and “pr > chisqu” are both p-values.

20) The estimated sufficient predictor ESP = β̂
′
xj =

∑p
i=1 β̂ixij. Given β̂ from output

and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) = exp(β̂
′
x)ĥo(t) where

exp(β̂
′
x) is the estimated hazard ratio. See HW4.1cd.

For tests, the p–value is an important quantity. Recall that H0 is rejected if the
p–value < δ. A p–value between 0.07 and 1.0 provides little evidence that H0 should
be rejected, a p–value between 0.01 and 0.07 provides moderate evidence and a p–value
less than 0.01 provides strong statistical evidence that H0 should be rejected. Statistical
evidence is not necessarily practical evidence, and reporting the p–value along with a
statement of the strength of the evidence is more informative than stating that the p–
value is less than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.
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21) See HW4 1ef, 2a. The Wald confidence interval (CI) for βj can also be obtained
from the output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j).

22) See HW4 1gh, 2b, 3b. Investigators also sometimes test whether a predictor Xj

is needed in the model given that the other k − 1 nontrivial predictors are in the model
with a 4 step Wald test of hypotheses:
i) State the hypotheses H0: βj = 0 HA: βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from output or use
the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical sentence
restating your conclusion in terms of the story problem.

If H0 is rejected, then conclude that Xj is needed in the PH survival model given that
the other p − 1 predictors are in the model. If you fail to reject H0, then conclude that
Xj is not needed in the PH survival model given that the other p − 1 predictors are in
the model. Note that Xj could be a very useful PH survival predictor, but may not be
needed if other predictors are added to the model.

For a PH, often 3 models are of interest: the full model that uses all p of the
predictors xT = (xT

R, xT
O), the reduced model that uses the r predictors xR, and the

null model that uses none of the predictors.
The partial likelihood ratio test (PLRT) is used to test whether β = 0. If this is the

case, then the predictors are not needed in the PH model (so survival times Y x). If
H0 : β = 0 is not rejected, then the Kaplan Meier estimator should be used. If Ho is
rejected, use the PH model.

23) See HW4 2c, 3c. The 4 step PLRT is
i) H0 : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 log L(none)]− [−2 log L(full)] is often obtained from

output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribution with p

degrees of freedom. The p–value is often obtained from output.
iv) Reject H0 if the p–value < δ and conclude that there is a PH survival relationship

between Y and the predictors x. If p–value ≥ δ, then fail to reject Ho and conclude that
there is not a PH survival relationship between Y and the predictors x.

Some SAS output for the PLRT is shown next. R output is above 20).

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square

-2 LOG L 596.651 551.1888 45.463 with 3 DF (p=0.0001)

-2 log L(None) -2 log L(Full) X^2(N|F)
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Let the full model be

SP = β1x1 + · · · + βpxp = βT x = α + βT
RxR + βT

OxO.

let the reduced model

SP = βR1xR1 + · · · + βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and xO denotes
the vector of p − r predictors that are in the full model but not the reduced model.

Assume that the full model is useful. Then we want to test H0: the reduced model
is good (can be used instead of the full model, so xO is not needed in the model given
xR is in the model) versus HA: use the full model (the full model is significantly better
than the reduced model). Fit the full model and the reduced model to get X2(N |F ) and
X2(N |R) where X2(N |F ) is used in the PLRT to test whether β = 0 and X2(N |R) is
used in the PLRT to test whether βR = 0 (treating the reduced model as the model in
the PLRT).

variable Estimate Std. Error Est/SE or (Est/SE)2 p-value

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 for Ho: β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p for Ho: βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for Ho: β = 0

variable Estimate Std. Error Est/SE or (Est/SE)2 p-value

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 for H0: β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) X2
o,r = z2

o,r for Ho: βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for H0: βR = 0
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The output shown on p. 3 in symbols, can be used to perform the change in PLR
test. For simplicity, the reduced model used in the output is xR = (x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F ) −X2(N |R) =

[−2 log L(none)] − [−2 log L(full)] − ([−2 log L(none)] − [−2 log L(red)]) =

[−2 log L(red)] − [−2 log L(full)] = −2 log

(

L(red)

L(full)

)

.

24) See HW 5.1: The 4 step change in PLR test is
i) H0: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F )−X2(N |R) = [−2 log L(red)]− [−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square distribution with

p − r degrees of freedom.
iv) Reject H0 if the p–value < δ and conclude that the full model should be used. If

p–value ≥ δ, then fail to reject H0 and conclude that the reduced model is good.

If the reduced model leaves out a single variable xi, then the change in PLR test
becomes H0 : βi = 0 versus HA : βi 6= 0. This change in partial likelihood ratio test
is a competitor of the Wald test. The change in PLRT is usually better than the Wald
test if the sample size n is not large, but the Wald test is currently easier for software
to produce. For large n the test statistics from the two tests tend to be very similar
(asymptotically equivalent tests).

25) If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi versus

ESP = β̂
T
xi should be highly correlated with the identity line with unit slope and zero

intercept.

A factor A is a variable that takes on a categories called levels. Suppose A has a
categories c1, ..., ca. Then the factor is incorporated into the PH model by using a − 1
indicator variables xjA = 1 if A = cj and xAj = 0 otherwise, where the 1st indicator
variable is omitted, eg, use x2A, ..., xaA. Each indicator has 1 degree of freedom. Hence
the degrees of freedom of the a− 1 indicator variables associated with the factor is a− 1.

The xj corresponding to variates (variables that take on numerical values) or to
indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a factor include
products for all indicator variables of the factor.

If an interaction is in the model, also include the corresponding main effects. For
example, if x1x3 is in the model, also include the main effects x1 and x2.
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26) Let the survival times Ti = min(Yi, Zi), and let γi = 1 if Ti = Yi (uncensored)
and γi = 0 if Ti = Zi (censored). For PH models, an ET plot, or ESSP, is a plot of the
ESP vs T with plotting symbol 0 for censored cases and + for uncensored cases. If the
ESP is a good estimator of the SP and hSP (t) = exp(SP )h0(t), then the hazard increases
and survival decreases as the ESP increases. See HW5 4ab.

27) The slice survival plot divides the ESP into J groups of roughly the same size.
For each group j, ŜPHj(t) is computed using the x corresponding to the largest ESP in
the 1st J − 1 groups and the x corresponding to the smallest ESP in the Jth group.
The Kaplan Meier estimator ŜKMj(t) is computed from the survival times in the jth

group. For each group, ŜPHj(t) is plotted and ŜKMj(ti) as circles at the deaths ti. The
proportional hazards assumption is reasonable if the circles track the curve well in each
of the J plots. If pointwise CI bands are added to the plot, then ŜKMj tracks ŜPHj well
if most of the plotted circles do not fall very far outside the pointwise CI bands. See
HW5 4d.

Variable selection is closely related to the change in PLR test for a reduced model.
You are seeking a subset I of the variables to keep in the model. The AIC(I) statistic
is used as an aid in backward elimination and forward selection. The full model and the
model with the smallest AIC are always of interest. Create a full model. The full model
has a −2 log(L) at least as small as that of any submodel. The full model is a submodel.

Backward elimination starts with the full model with p variables and the predictor
that optimizes some criterion is deleted. Then there are p − 1 variables left and the
predictor that optimizes some criterion is deleted. This process continues for models
with p − 2, p − 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the predictor that
optimizes some criterion is added. Then there is p variable in the model and the predictor
that optimizes some criterion is added. This process continues for models with 2, 3, ..., p−
2 and p − 1 predictors. Both forward selection and backward elimination result in a
sequence of p models {x∗

1}, {x
∗
1, x

∗
2}, ..., {x

∗
1, x

∗
2, ..., x

∗
p−1}, {x

∗
1, x

∗
2, ..., x

∗
p} = full model.

Consider models I with rI predictors. Often the criterion is the minimum value of
−2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2rI .

Heuristically, backward elimination tries to delete the variable that will increase the
−2 log(L) the least. An increase in −2 log(L) greater than 4 (if the predictor has 1
degree of freedom) may be troubling in that a good predictor may have been deleted.
In practice, the backward elimination program may delete the variable such that the
submodel I with k predictors has 1) the smallest AIC(I), 2) the smallest −2 log(L(β̂I))
or 3) the biggest p–value (preferably from a change in PLR test but possibly from a
Wald test) in the test H0 : βi = 0 versus HA βi 6= 0 where the current model with k + 1
variables is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease the −2
log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor has 1 degree of
freedom) may be troubling in that a bad predictor may have been added. In practice,
the forward selection program may add the variable such that the submodel I with k
predictors has 1) the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the smallest
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p–value (preferably from a change in PLR test but possibly from a Wald test) in the test
H0 : βi = 0 versus HA : βi 6= 0 where the current model with k − 1 terms plus the
predictor xi is treated as the full model (for all variables xi not yet in the model).

28) If an interaction (eg x3x7x9) is in the submodel, then the main effects (x3, x7, and
x9) should be in the submodel.

29) If xi+1, xi+2, ..., xi+a−1 are the a − 1 indictor variables corresponding to factor A,
submodel I should either contain none or all of the a − 1 indictor variables.

30) Given a list of submodels along with the number of predictors and AIC, be able
to find the “best starting submodel” II (the initial submodel to look at). Let Imin be
the minimum AIC model. Then II is the submodel with the fewest predictors such
that AIC(II) ≤ AIC(Imin) + 2 (for a given number of predictors rI , only consider the
submodel with the smallest AIC). Also look at models Ij with fewer predictors than II

such that AIC(Ij) ≤ AIC(Imin) + 7.
31) Submodels I with more predictors than Imin should not be used.
32) Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.
33) Assume n > 5p, that the full PH model is reasonable and all predictors are

equally important. The following rules of thumb for a good PH submodel I are in
roughly decreasing order of importance. (But for factors with a − 1 indicators, modify
ix) and x) so that the indicator with the smallest pvalue is examined.)
i) Do not use more predictors than the min AIC model Imin.
ii) The slice survival plots for I looks like the slice survival plot for the full model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs ESP cluster tightly about the identity
line.
v) Want pvalue ≥ 0.01 for the change in PLR test that uses I as the reduced model. (So
for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors rI ≤ n/10.
vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with pvalues > 0.05.
x) Want few predictors with pvalues between 0.01 and 0.05.

34) Suppose that the full model is good and is stored in M1. Let M2, M3, M4, and
M5 be candidate submodels found after forward selection, backward elimination, etc.
Typically one of the submodels is the min(AIC) model. Given a list of properties of each
submodel, be able to pick out the “best starting submodel.”
Tips: i) submodels with more predictors then the min(AIC) submodel have too many
predictors.
ii) The best starting submodel II has AIC(II) ≤ AIC(Imin) + 2.
iii) Submodels I with AIC(I) > AIC(Imin) + 2 are not the best starting submodel.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too few predictors.
v) The full model may be the best starting submodel if it is the min(AIC) model and
M2–M5 satisfy iii). Similarly, then min(AIC) model may be the best starting submodel.

35) In addition to the best starting submodel II , submodels I with fewer predictors
than II and AIC(I) ≤ AIC(Imin) + 7 are worth considering. See HW6 1i.
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