
Exam 3 is Wed. April 26. You are allowed 13 sheets of notes and a calculator.
The exam covers HW7-10 and Q7-9. Numbers refer to types of problems on exam. See
the last page for the final: Tuesday, May 9, 2:45-4:45.

If there are important predictors such as treatment that must be in the submodel,
either force the variable selection procedures to contain the important predictors or do
variable selection on the less important predictors and then add the important predictors
to the submodel.

A scatterplot is a plot of xi vs. xj. A scatterplot matrix is an array of scatterplots.
It is used to examine the marginal relationships of the predictors. Variables with outliers,
missing values or strong nonlinearities may be so bad that they should not be included
in the full model.

36) Suppose that all values of the variable x are positive. The log rule says add
log(x) to the full model if max(xi)/min(xi) > 10.

37) Suppose the PH model contains x1, ..., xp. Leave out xj, find the martingale
residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If the curve is linear
then xj has the correct funtional form. If the curve looks like t(xj) (eg (xj)

2), then replace
xj by t(xj), find the martingale residuals, plot t(xj) vs the residuals and check that the
loess curve is linear. See HW7 1ab.

38) Let the scaled Schoenfeld residual for the jth variable xj be r∗pj + β̂j. Plot the
death times ti vs the scaled residuals and add the loess curve. If the loess curve is
approximately horizontal for each of the p plots, then the PH assumption is reasonable.
Alternatively, fit a line to each plot and test that each of the p slopes is equal to 0. The R
function cox.zph makes both the plots and tests. See HW7 1cd. For the output below,
the PH assumption is reasonable since the Global pval = 0.349 > δ = 0.05. If the Global
pvalue < δ = 0.05, then the PH assumption is unreasonable.

cox.zph(lung.fit2)

rho chisq p

pph.ecog 0.05189 0.3905 0.532

ph.karno 0.14216 2.2081 0.137

pat.karno 0.04773 0.3812 0.537

wt.loss 0.00857 0.0131 0.909

GLOBAL NA 4.4476 0.349

39) Suppose the observed survival times T1, ..., Tn are a censored data set from an
Exponential (λ) distribution. Let Ti = Y ∗

i . Let δi = 0 if the case is censored and let
δi = 1, otherwise. Let r =

∑n
i=1 δi = the number of uncensored cases. Then the MLE

λ̂ = r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y ∗
i . A 95% CI for λ is λ̂ ± 1.96λ̂/

√
r. See HW8 1.

40) The Weibull proportional hazards regression (WPH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
′

W
xi

(t) = exp(β′
Wxi)h0(t)

where h0(t) = h0(t|θ) = λγtγ−1 is the baseline function. So Y |SP ∼ W (λ exp(SP ), γ).

1



For now, assume that the WPH model is appropriate, although this as-
sumption should be checked before performing inference.

Shown below is output in symbols from SAS and R . The estimated coefficient is β̂j.
The Wald chi square = X2

o,j while p and “pr > chisqu” are both p-values.

For SAS only.
log likelihood log L(none)

variable Estimate Std. Error Est/SE or (Est/SE)2 p-value
intercept

scale
Weibull shape

For SAS or R

variable Estimate Std. Error Est/SE or (Est/SE)2 p-value
intercept

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 for Ho: β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p for Ho: βp = 0
scale or log scale

Weibull shape or scale

For the full model, SAS will have Log Likelihood = log L(full).
For the full model, R will have log L(full), log L (none) and

chisq = [-2 log L(none)] - [-2 log L(full)] on p degrees of freedom with pvalue

Replace full by reduced for the reduced model.

The SAS and R log likelihood, log L, differ by a constant.

SAS Log Likelihood = -29.7672 null model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.1110 0.2927 590.12 < 0.0001

Weibull Scale 1 1225.4 358.7

Weibull Shape 1 1.1081 0.2810

SAS Log Likelihood = -29.1775 reduced model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.3838 0.4370 285.45 < 0.0001

treat 1 -0.5593 0.5292 1.12 0.2906

Scale 1 0.8857 0.2227

Weibull Shape 1 1.1291 0.2840

SAS Log Likelihood = -20.5631 full model

variable df Estimate SE chi square pr > chisqu

intercept 1 11.5483 1.1970 93.07 < 0.0001

age 1 -0.0790 0.0198 15.97 < 0.0001

2



treat 1 -0.5615 0.3399 2.73 0.0986

Scale 1 0.5489 0.1291

Weibull Shape 1 1.8218 0.4286

R reduced model Value Std. Error z p

(Intercept) 7.384 0.437 16.895 4.87e-64

treat -0.559 0.529 -1.057 2.91e-01

Log(scale) -0.121 0.251 -0.483 6.29e-01

Scale= 0.886

Loglik(model)= -97.4 Loglik(intercept only)= -98

Chisq= 1.18 on 1 degrees of freedom, p= 0.28

R full model Value Std. Error z p

(Intercept) 11.548 1.1970 9.65 5.04e-22

treat -0.561 0.3399 -1.65 9.86e-02

age -0.079 0.0198 -4.00 6.43e-05

Log(scale) -0.600 0.2353 -2.55 1.08e-02

Scale= 0.549

Loglik(model)= -88.7 Loglik(intercept only)= -98

Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

41) Instead of fitting the WHP model of 40), R and SAS fit an accelerated failure
time model log(Yi) = α + β′xi + σεi where Var(εi) = 1 and the εi are iid from a smallest
extreme value distribution. Also β 6= βW from 40). Then intercept corresponds to α
and scale to σ. Hence intercept, shape, Weibull shape, scale and log(scale) are not
predictors x1, ..., xp.

α̂ and β̂ are MLEs found from the censored data (Ti, δi, xi) not from (Yi, xi).

42) Let log(Ti) = α̂+β̂
′
xi+ri. A log censored response (LCR) plot is a plot of α̂+β̂

′
xi

vs log(Ti) with plotting symbol 0 for censored cases and + for uncensored cases. The
vertical deviations from the identity line = ri. The least squares line based on the +’s is
also added to the line and should have slope not too far from 1, especially if γ ≥ 1. The
plotted points should be linear with roughly constant variance. The censoring and long
left tails of the smallest extreme value distribution make judging linearity and detecting
outliers from the left tail difficult. Try to ignore the bottom of the plot where there are
few cases when assessing linearity.

43) Given β̂ from output and given x, be able to find ESP = β̂
′
x =

∑p
i=1 β̂ixi =

β̂1x1 + · · · + β̂pxp.

44) A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j).

45) 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from output or use
the standard normal table.
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iv) If pval < δ, reject Ho and conclude that xj is needed in the Weibull survival model
given that the other p − 1 predictors are in the model. If pval ≥ δ, fail to reject Ho,
and conclude that the values of xj do not affect the WPH survival model given that the
other p − 1 predictors are in the model. (Or state that there is not enough evidence to
conclude that the values of xj affect the WPH survival model.)

46) The 4 step likelihood ratio test LRT is
i) Ho : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 log L(none)]− [−2 log L(full)] is often obtained from

output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribution with p

degrees of freedom. The p–value is often obtained from output.
iv) Reject H0 if the p–value < δ and conclude that there is a WPH survival relationship

between Y and the predictors x. If p–value ≥ δ, then fail to reject H0, and conclude
that the values of the predictors x do not (significantly) affect the WPH survival model.
(Or state that there is not enough evidence to conclude that the values of x affect the
WPH survival model.)

47) The 4 step change in LR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F )−X2(N |R) = [−2 log L(red)]− [−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square distribution with

p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should be used.

If p–value ≥ δ, then fail to reject Ho and conclude that the reduced model is good (the
values of xO do not affect the survival model, or there is not enough evidence to conclude
that the values of xO affect the survival model).

48) R and SAS programs do not have a variable selection option, but the WPH model
is a PH model, so use SAS Cox PH variable selection to suggest good submodels. Then
fit each candidate with WPH software and check the WPH assumptions.

49) The accelerated failure time (AFT) model has log(Yi) = α + β′xi + σεi

where Var(εi) = 1 and the εi are iid from a location scale family.

If the Yi are Weibull, the εi are from a smallest extreme value distribution. The
Weibull regression model is both a proportional hazards model and an accelerated failure
time model.

If the Yi are lognormal, the εi are normal.
If the Yi are loglogistic, the εi are logistic.

50) Still use the log censored response (LCR) plot of 42). The LCR plot is easier to
use when the εi are normal or logistic since these are symmetric distributions.

51) For the AFT model, hi(t) = e−SP ho(t/e
SP ) and Si(t) = S0(t/ exp(SP )).

52) Inference for the AFT model is performed exactly in the same way as for the WPH
= Weibull AFT. See points 43) – 47). But the conclusion change slightly if the AFT is
not the Weibull AFT. In point 45, change (if necessary) “Weibull survival model” to the
appropriate model, eg “lognormal survival model”. In point 46, change (if necessary)
“WPH” to the appropriate model, eg “lognormal AFT”.
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In principle, the slice survival plot can be made for parametric AFT models, but the
programming may be difficult.

The loglogistic and lognormal AFT models are not PH models. The loglogistic AFT
is a proportional odds model.

53) Let βC correspond to the Cox regression and βA correspond to the AFT. An EE
plot is a plot of the parametric ESP vs a semiparamtric ESP with the identity line added
as a visual aid. The plotted points should follow the identity line with a correlation
tending to 1.0 as n → ∞.

54) For the Exponential regression model, σ = 1, and βC = −βA. The Exponential

EE plot is a plot of −ESPE = −β̂
′

Ax vs ESPC = β̂
′

Cx.

55) For the Weibull regression model, σ = 1, and βC = −βA/σ. The Weibull EE plot
is a plot of

−ESPW/σ̂ = − 1

σ̂
β̂

′

Ax vs ESPC = β̂
′

Cx.

56) The stratified proportional hazards regression (SPH) model is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′

xi

(t) = exp(β′xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j = 1, ..., J where
J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the J strata.
The same β is used for each group = stratum, but the baseline hazard functions differ.
Stratification can be useful if there are clusters of cases such that the observations within
the clusters are not independent. A common example is the variable study sites and the
stratification should be on site. Sometimes stratification is done on a categroical variable
such as gender.

57) Inference is done exactly as for the PH model. See points 20), 21), 22), 23), and
24). Except the conclusion is changed slightly: in 22) and 23) replace “PH” by “SPH”.

58) Time dependent variables xi(t) depend on time. In the PH model, the variables are
fixed: they do not depend on time. Let x(t) = (x1(t), ..., xp(t))

′ where xj(t) ≡ xj(0) = xj

for fixed variables.

The most common time dependent variables are i) a change in treatment and ii)
repeated measurements of the variable for the subject (eg monthly cholesterol level or
quarterly PSA level).

59) The generalized Cox regression (GCR) model is

h
Y |β

′

x(t)
(t) ≡ hx(t)(t) = exp(β′x(t))h0(t).

The baseline function h0(t) is the hazard function for subjects who have x(t) ≡ x(0) = 0,
that is, their variables are 0 at the time of origin and remain 0 through time.

60) Inference is done exactly as for the PH model. See points 21), 22), 23),
and 24). Except the conclusion is changed slightly: in 22) and 23) replace “PH”
by “GCR”.
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61) Suppose a PH model has been fit with predictors x1, ..., xp. To check the PH as-
sumption, let the PH model be the reduced GCR model and let the full GCR model have
x1, ..., xp, x1 log(t), ..., xp log(t) where xi log(t) is the interaction between xi and log(t). If
the “reduced model is good” (fail to reject Ho), then the PH assumption is reason-
able. Also look at the p Wald tests for xi log(t), but remember that if βk = 0 for all p
interactions, about δp = 0.05p or one in twenty will be incorrectly rejected if δ = 0.05.
See HW11.1.

Let x1 = treatment.” There could be “no treatment effect” (fail to reject Ho: β1 = 0)
if there is a time dependent variable x2(t) that accounts for the treatment effect. Then
x2(t) has masked the treatment effect. For example, if x1 is 0 for a placebo and 1 for a
leukemia medicine and x2(t) is the white blood cell count, then for x1 = 1, x2(t) could
quickly become high and survival is high. But for x1 = 0, x2(t) and survival stay low.

62) A shortcut in R for the change in PLRT test from 24) in the Exam 2 review is to
use the anova function.

full <- coxph(Surv(alung[,1],alung[,2])~perf+age+ttoent+size+type+ttype+trt,

data=alung) #full model

red <- coxph(formula = Surv(alung[, 1], alung[, 2]) ~ perf +

size + ttype + trt, data = alung) #reduced model

anova(full,red)

loglik Chisq Df P(>|Chi|)

1 -87.608

2 -87.817 0.4189 3 0.9363

loglik Chisq Df P(>|Chi|)

1

2 X^2(R|F) pval for change in PLRT test

63) Consider predicting a future test value Yf given a p × 1 vector of predictors xf

and training data (Y1, x1), ..., (Yn, xn). A large sample 100(1 − δ)% prediction interval
(PI) for Yf has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by
1− δ as the sample size n → ∞. A large sample 100(1− δ)% PI is asymptotically optimal
if it has the shortest asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as
n → ∞ where [Ls, Us] is the population shorth: the shortest interval covering at least
100(1 − δ)% of the mass.

64) Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order statistics, and
let c be a positive integer. Compute Z(c) − Z(1), Z(c+1) − Z(2), ..., Z(n) − Z(n−c+1). Let
shorth(c) = [Z(s), Z(s+c−1)] correspond to the interval with the shortest length.

End Exam 3 Material
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Below is for Quiz 10 and the Final
65) The large sample 100(1 − δ)% shorth(c) CI uses the interval [T ∗

(1), T
∗
(c)], [T

∗
(2),

T ∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here c = min(B, dB[1− δ + 1.12

√

δ/B ] e).
The shorth CI is computed by applying the shorth PI to the bootstrap sample.

66) Estimate Std.Err 95% shorth CI

X1 -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

Given output such as that above, be able to find a CI for βi and β̂V S = β̂Imin,0. Note

that the CI for β3 is [0.992, 1.289] and β̂V S = β̂Imin,0 = (−42.4846, 0, 1.1707, 0, 0, 0.1467)T .
67) Given B bootstrap samples, be able to compute the statistic T ∗

i for each sample.
Usually the statistic is the sample mean or the sample median (middle value(s) of the

ordered sample). Then the sample mean of the T ∗
i is the bagging estimator T

∗
=

1

B

B
∑

i=1

T ∗
i .

The final, Tuesday May 9, 2:45-4:45, covers all 3 exams and all quizzes and home-
work: 22 sheets of notes. Inference and output for the semiparametric PH, SPH and
GCR models is done in the same way (except use PH, SPH or GCR in the appropriate
conclusion), but R and SAS output differ slightly. R output uses Z for Wald tests while
SAS uses Z2 = X2 (chisquare for pvalues).

Inference for accelerated failure time models is very similar to that of the PH model,
but the R and SAS output differ.

So you need to recognize four types of output for survival regression mod-
els: i) R output for semiparametric models, ii) SAS output for semiparametric models,
iii) R output for accelerated failure time (AFT) parametric regression models, and iv)
SAS output for AFT models.
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