Math 480 HW 5 2022. Due Wed. Oct. 5. Q5 on Friday, Oct. 7, is like HW5. Final Wed., Dec. 14, 2:45-4:45.

- 1) The "adhesion" of a train follows a normal distribution with mean 0.37 and standard deviation SD 0.04.
 - a) What proportion of adhesions are higher than 0.40?
- b) What proportion of adhesions are between 0.40 and 0.50?
- c) Suppose an improved train has adhesion that follows a normal distribution with mean 0.41 and SD 0.02.
- i) What proportion of adhesions are higher than 0.40?
- ii) What proportion of adhesions are between 0.40 and 0.50? comment Answers near 0.2 and 0.7.
- 2) IQ scores are approximately normally distributed with mean $\mu = 100$ and standard deviation $\sigma = 15$.
 - a) What IQ scores fall in the lowest 25% of the distribution?
- b) How high an IQ score is needed to be in the highest 5%? comment backwards: Draw the Z curve 1st, find z*, then solve for x*. Answers near 90 and 125.
- 3) The heights of women aged 20 to 29 are approximately $N(64, (2.7)^2)$ so the SD $\sigma = 2.7$. Men of the same age have heights approximately $N(69.3, (2.8)^2)$ so the SD $\sigma = 2.8$. What percent of young women are taller than the mean height of young men? comment See comment for 1). Want P(X > 69.3) which is near 0.02.
- 4) The lower and upper deciles are points that mark off the lowest 10% and highest 10%. On a pdf, these are the points with areas 0.1 and 0.9 to the left under the curve. What are the lower and upper deciles of the $N(64, (2.7)^2)$ distribution?
 - comment See comment for 2).
- 5) Suppose that the joint probability function $p(y_1, y_2)$ of Y_1 and Y_2 is and is tabled as shown.

			y_2		
$p(y_1,y_2)$		1	2	3	4
	1	0.062	0.192	0.176	0.210
y_1	2	0.006	0.011	0.008	0.210 0.006
	3	0.083	0.115	0.070	0.061

- a) Find the marginal probability function $p_{Y_1}(y_1)$ for Y_1 .
- b) Find $E(Y_1)$.
- 6) Suppose that the joint pdf of the random variables Y_1 and Y_2 is given by

$$f(y_1, y_2) = \begin{cases} c \ y_1 y_2, & \text{if } 0 \le y_1 \le 1, 0 \le y_2 \le 3 \\ 0, & \text{otherwise.} \end{cases}$$

- a) Find c.
- b) Find the marginal pdf of Y_1 . Include the support.
- c) Find $E(Y_1)$.

- 7) Suppose $Y \sim \text{geometric}(0.5)$.
- a) Find E(Y).
- b) Find V(Y).
- c) Find P(Y=2).

Hint: Page 2 of the exam 1 review is useful.

- 8) Suppose $Y \sim EXP(2)$.
- a) Find E(Y).
- b) Find V(Y).
- c) Find P(Y > 2).

Hint: Page 1 of the exam 1 review is useful.

- 9) Suppose $Y \sim U(0, 10)$.
- a) Find E(Y).
- b) Find V(Y).
- c) Find P(Y > 2).

Hint: Page 1 of the exam 1 review is useful.

- 10) Suppose $Y \sim Gamma(\alpha = 2, \lambda = 2)$.
- a) Find E(Y).
- b) Find V(Y).

Hint: Page 1 of the exam 1 review is useful.