Math 480 HW 7 2022. Due Wed. Oct. 19. Q7 on Friday Oct. 21. The final is Wednesday, Dec. 14, 2:45-4:45.

1) Suppose X_1 and X_2 are independent, that $X_1 \sim \text{Poisson}(\lambda = 1)$, and $X_2 \sim \text{Poisson}(\lambda = 2)$. Consider $U = X_1 + X_2$.

- a) What is the distribution of U?
- b) What is the mgf of $U = X_1 + X_2$?
- c) For integer $k \ge 0$, find $P(X_1 + X_2 = k)$.
- d) Find $P(X_1 + X_2 \ge 2)$.
- e) Let $Y = 2X_1 5X_2$. Find i) the mean Y and ii) the variance of Y.

2) Suppose X has a distribution with mgf $\phi_X(t) = e^{5t+10t^2}$.

- a) What is the distribution of X?
- b) Let X_i , $i \ge 1$ be iid with the same distribution as X.
- i) What is the distribution of $\sum_{i=1}^{10} X_i$?

ii) State or find the limit $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$. Justify your answer (which theorem applies)? 3) Let Y_1 and Y_2 have joint pdf

$$f(y_1, y_2) = \begin{cases} 6(1 - y_2), & \text{if } 0 \le y_1 \le y_2 \le 1\\ 0, & \text{otherwise.} \end{cases}$$

The marginal pdfs are

$$f_{Y_1}(y_1) = 3(1-y_1)^2$$
, for $0 \le y_1 \le 1$

and

$$f_{Y_2}(y_2) = 6y_2(1-y_2), \text{ for } 0 \le y_2 \le 1$$

where the marginal pdfs are zero elsewhere.

- a) Find the conditional pdf of Y_1 given $Y_2 = y_2$.
- b) Find the conditional pdf of Y_2 given $Y_1 = y_1$.
- For a), be very careful about the domain of y_1 .

For b), be very careful about the domain of y_2 .

4) Let Y_1 and Y_2 have joint pdf

$$f(y_1, y_2) = \begin{cases} 4y_1y_2, & \text{if } 0 \le y_1 \le 1, \ 0 \le y_2 \le 1\\ 0, & \text{otherwise.} \end{cases}$$

The marginal pdfs are

$$f_{Y_1}(y_1) = 2y_1$$
, for $0 \le y_1 \le 1$

and

$$f_{Y_2}(y_2) = 2y_2$$
, for $0 \le y_2 \le 1$

where the marginal pdfs are zero elsewhere. Find the conditional pdf of Y_2 given $Y_1 = y_1$. Hint: if $Y_1 \perp Y_2$, then the conditional pdf is the marginal pdf, but show using the formula. 5) Suppose the joint pmf is table below where

 $Y_1 = \begin{cases} 0, & \text{if no belt used} \\ 1, & \text{if adult belt used} \\ 2, & \text{if car-seat belt used.} \end{cases} \text{ and } Y_2 = \begin{cases} 0, & \text{if child survived} \\ 1, & \text{otherwise} \end{cases}$

			y_2	
$p(y_1, y_2)$		0	1	total
	0	0.38	0.17	0.55
y_1	1	0.14	0.02	0.16
	2	0.24	0.05	0.29
	total	0.76	0.24	1.00

a) Give the marginal probability mass function for Y_2 .

b) Give the conditional probability mass function for Y_1 given $Y_2 = 0$.

6) Assume that \overline{Y} is computed from a random sample of size n = 4 drawn from a highly skewed population with mean $\mu = 12$ and standard deviation $\sigma = 1.6$. If possible, find $P(11.8 < \overline{Y})$.

7) Assume that \overline{Y} is computed from a random sample of size n = 4 drawn from a normal population with mean $\mu = 12$ and standard deviation $\sigma = 1.6$. If possible, find $P(11.8 < \overline{Y})$.

R Problem: If you email me the *R* output, put your name on the Word file. As described on HW4, the *R* code for Math 480 homework is at (http://parker.ad.siu.edu/Olive/M480Rhw.txt). Copy and paste the source command near the top of this file into *R* to get the *R* programs cltsim and cltsim2 needed for the homework. A histogram is a pdf estimator.

Near the lower left icon, search for *Word*, etc. To get a plot in *Word*: click on the plot in R and press the *Ctrl* and c keys as the same time. Then click on *Word* and press the *Ctrl* and v keys as the same time (or use the menu command "Paste" in *Word*). My office is right next to the Math computer lab. Come in for help if the R problem takes more than a few minutes to do.

8) a) Copy and paste the R commands for this part into R. The function is used to illustrate the central limit theorem when the data $Y_1, ..., Y_n$ are iid from an exponential distribution. The function generates a data set of size n and computes \overline{Y}_1 from the data set. This step is repeated nruns = 1000 times. The output is a vector $(\overline{Y}_1, \overline{Y}_2, ..., \overline{Y}_{1000})$. A histogram of these means should resemble a symmetric normal density once n is large enough. The R commands will plot 4 histograms with n = 1, 5, 25 and 200. Save the plot in *Word*.

b) Explain how your plot illustrates the central limit theorem.

c) Copy and paste the *R* commands for this part into *R*. Now $Y_1, ..., Y_n$ are iid N(0,1) and $\overline{Y} \sim N(0, 1/n)$. The *R* commands will plot 4 histograms with n = 1, 5, 25 and 200. Save the plot in *Word*.

d) Explain how your plot illustrates the central limit theorem. (The horizontal scale should decrease as n increases.)