1) Suppose that the joint probability function $p(y_1, y_2)$ of Y_1 and Y_2 is and is tabled as shown. Find the marginal probability function $p_{Y_1}(y_1)$ for Y_1 .

$p(y_1, y_2)$		1	y_2	3	4	
F (31732)		0.1	0.2	0.1	0.05	,45
y_1	15	0.05	0.05	0.07	0.03	*50
	20	0.08	0.10	0.15	0.02	35

Py, (31) .45 ,20 .35

2) The IQ test scores X used for admission by MENSA are normally distributed with mean $\mu = 100$ and standard deviation $\sigma = 16$.

a) What is the score such that 2% of scores are higher?

b) Find the probability that X will be less than 92.

$$\frac{1}{92100}$$
 $\frac{92-100}{5-0.50}$ $\frac{1}{-0.5}$ $\frac{1}{3085}$

- 3) Suppose that the spring ACT exam is standardized to have mean $\mu=22$ and standard deviation $\sigma=3$. You may assume that the scores follow a normal curve.
 - a) About what proportion of students will have scores between 22 and 28?

$$P(22 < x < 28) = 8(6 < 2 < 2.0) = .9772 - .5 = [0.4772]$$

b) What ACT score is such that 67% of all ACT scores are worse?

X*= M+ 02*= 22+3 (44) = [23.22]

4) Suppose that the joint pdf of the random variables Y_1 and Y_2 is given by

a) Find c. $1 = C \int_0^3 \int_0^1 y_1^2 y_2 \, dy_1 \, y_2 = C \int_0^3 \left[\frac{3}{3} \right]_0^1 \left[\frac{9}{3} dy_2 - C \int_0^2 \frac{4y_2}{3} \, dy_3 \right]$

$$= \frac{c_{\frac{3}{2}}}{6} \left[\frac{3}{6} - \frac{c_{\frac{9}{6}}}{6} - 1 \text{ or } C - \left[\frac{6}{4} - \frac{2}{3} \right] = 0.6667 \right]$$

251=50 1397 45042 dy, = c/0 512 [2]03]dy, = c/0 2 2304, = c/0 2 2304, = c/0 32 [2]03]dy, = c/0 2 2304,

b) Find the marginal pdf of Y_1 . Include the support.

 $f_{Y_1}(y_1) = \int_0^3 f(y_1 y_2) dy_2 = \int_0^3 f(y_1^2 y_2) dy_2 = \int_0$

So [fy, (9,1=3.9,2,0=4,=1)

28