1) Suppose that the joint pmf of Y_1 and Y_2 is given by the table below.

			y_2	
$p(y_1,y_2)$.		0	1	
	0	0	1/2	1/2
y_1	1	1/2	0	1/2

a) Are Y_1 and Y_2 independent? Explain.

(NO) support is not a cross product

(or pool = 0 + Pylol Pyzol = 1 = = 4)

b) Find the marginal probability function $p_{Y_2}(y_2)$ for Y_2 .

c) $E(Y_1) = E(Y_2) = 0.5$. Find $Cov(Y_1, Y_2)$.

SO COUNTY LE YY2-EYEY = 0-33 - July - w 0,25

2) Suppose that the moment generating function (mgf) of a random variable Y is

$$\phi(t) = \frac{\log(1 - \theta e^t)}{\log(1 - \theta)}$$

for $t < -\log(\theta)$ where $\theta > 0$ is a known constant. Using the mgf $\phi(t)$, find $\phi'(t)$ and E(Y). Note that the denominator is a constant.

10g rule 7 10g (10) 1-00 1-00 1 50 E(Y/= 00/= 109(1-0) 1-0 (1-0) 109(-0) (0-1) 109(1-0)

Suppose that the joint pdf of the random variables Y_1 and Y_2 is given by

$$f(y_1, y_2) = 6y_1^2 y_2$$

if $0 < y_1 < 1$ and $0 < y_2 < 1$, and $f(y_1, y_2) = 0$, otherwise.

a) Are Y_1 and Y_2 independent? Explain.

(YES) (16,1/2) = 9 (31/h (82) = 3 31 (2 /2) = (62) 32 on cross product support (60) (60)

b) Find the marginal pdf of Y_1 . Include the support.

c) Find $E(Y_1)$. = $\int \phi_1 \left(\frac{1}{2} \left(\frac{$

-13 -0-75

d) Find $Cov(Y_1, Y_2)$.

| hordward | 12 12 EV EV2

2