Math 483 HW 12 2023. Due Monday, Oct. 9. Quiz 5 is Friday, Oct 6. $\mathrm{E}(\mathrm{Y})$, $\mathrm{V}(\mathrm{Y})$, $\operatorname{mgf} \mathrm{m}(\mathrm{t})$ for discrete and continuous RVs, Normal table. Find the constant k such that $\int_{-\infty}^{\infty} k g\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=1$. Find marginal and conditional probability functions and pdf's. Exam 2 is on Thursday, Oct. 15, through section 5.3. Two pages, problems A)-E).
A) 5.72 Suppose that the joint distribution of Y_{1} and Y_{2} is given by the table below.

		y_{1}		
$p\left(y_{1}, y_{2}\right)$		0	1	2
y_{2}	0	$1 / 9$	$2 / 9$	$1 / 9$
	1	$2 / 9$	$2 / 9$	0
	2	$1 / 9$	0	0

a) Find $E\left(Y_{1}\right)$.
b) Find $V\left(Y_{1}\right)$.
c) Find $E\left(Y_{1}-Y_{2}\right)$.
comment: Find the marginals $p_{1}\left(y_{1}\right)$ and $p_{2}\left(y_{2}\right)$. Then find $E\left(Y_{1}\right), E\left(Y_{1}^{2}\right)$ and $E\left(Y_{2}\right)$.
B) 5.77 Let Y_{1} and Y_{2} have joint pdf

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
6\left(1-y_{2}\right), & \text { if } 0 \leq y_{1} \leq y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$.
b) Find $V\left(Y_{1}\right)$ and $V\left(Y_{2}\right)$.
c) Find $E\left(Y_{1}-3 Y_{2}\right)$.
comment: In HW 10, Ea), you showed that

$$
f_{Y_{1}}\left(y_{1}\right)=3\left(1-y_{1}\right)^{2}, \text { for } 0 \leq y_{1} \leq 1
$$

and is zero elsewhere. Use this marginal to find $E\left(Y_{1}\right)$ and $V\left(Y_{1}\right)$. You also showed that

$$
f_{Y_{2}}\left(y_{2}\right)=6 y_{2}\left(1-y_{2}\right), \text { for } 0 \leq y_{2} \leq 1
$$

and is zero elsewhere. Use this marginal to find $E\left(Y_{2}\right)$ and $V\left(Y_{2}\right)$.
C) 5.89 Suppose that the joint distribution of Y_{1} and Y_{2} is given by the table below. Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$.

		y_{1}		
$p\left(y_{1}, y_{2}\right)$		0	1	2
y_{2}	0	$1 / 9$	$2 / 9$	$1 / 9$
	1	$2 / 9$	$2 / 9$	0
	2	$1 / 9$	0	0

comment: In problem A), you found $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$. Now find $E\left(Y_{1} Y_{2}\right)$ and plug into the formula.
D) 5.91 Let Y_{1} and Y_{2} have joint pdf

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
4 y_{1} y_{2}, & \text { if } 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Show that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$.
comment: The easiest way to do this is to show that Y_{1} and Y_{2} are independent.
E) 5.92 Let Y_{1} and Y_{2} have joint pdf

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
6\left(1-y_{2}\right), & \text { if } 0 \leq y_{1} \leq y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$. Are Y_{1} and Y_{2} independent?
comment: In problem B), you found $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$. Find $E\left(Y_{1} Y_{2}\right)$ and plug into the formula.

