Math 483 HW 14 2023. Due Thursday, Oct. 19. HARD HW! Two pages, problems A) -H$)$.
A) 6.23: Let Y have pdf

$$
f(y)=\left\{\begin{array}{cc}
2(1-y), & \text { if } 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

In HW13 C) you used the method of distribution functions to find the pdfs of a), b) and c). Now use the method of transformations to
a) find the pdf of $U_{1}=2 Y-1$.
b) Find the pdf of $U_{2}=1-2 Y$.
c) Find the pdf of $U_{3}=Y^{2}$.
comment for A)-D): Don't forget the support. Use formula on p. 313. See ex. 6.6 and 6.7. For B) and D) the distribution is probably exponential.
B) 6.26a: If Y has a Weibull pdf with $\alpha>0$ and $m>0$, then

$$
f(y)=\left\{\begin{array}{cc}
\frac{1}{\alpha} m y^{m-1} e^{-y^{m} / \alpha}, & \text { if } y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the pdf of $U=Y^{m}$.
C) 6.32: Suppose Y has a uniform distribution on the interval [1,5]. Find the pdf of $U=2 Y^{2}+3$ using the method of transformations.
D) 6.34a: If Y has a Rayleigh pdf with $\theta>0$, then

$$
f(y)=\left\{\begin{array}{cc}
\left(\frac{2 y}{\theta}\right) e^{-y^{2} / \theta}, & \text { if } y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the pdf of $U=Y^{2}$.
E) 6.40: Suppose that Y_{1} and Y_{2} are independent, standard normal random variables. Find the pdf of $U=Y_{1}^{2}+Y_{2}^{2}$.
comment: Use theorem 6.4 with $\mu_{i}=0, \sigma_{i}^{2}=1$ and $\mathrm{n}=2$.
F) 6.53a: Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent binomial random variables with n_{i} trials and probability of success given by p_{i} for $i=1, \ldots, n$.
a) If all of the n_{i} 's are equal to m and all of the p_{i} 's are equal to p, find the distribution of $\sum_{i=1}^{n} Y_{i}$.
comment: Get the mgf from the back of the book and use theorem 6.2. See ex. 6.12 and the proof of theorem 6.3.
G) 6.54a: Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent Poisson random variables with means $\lambda_{1}, \ldots, \lambda_{n}$, respectively. Find the distribution of $\sum_{i=1}^{n} Y_{i}$.
comment: Get the mgf from the back of the book and use theorem 6.2. See ex. 6.12 and the proof of theorem 6.3.
H) 6.57: Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random variables such that each Y_{i} has a gamma distribution with parameters α_{i} and β. Prove that $U=Y_{1}+\cdots+Y_{n}$ has a gamma distribution with parameters $\alpha_{1}+\cdots+\alpha_{n}$ and β.
comment: Get the mgf from the back of the book and use theorem 6.2. See ex. 6.12 and the proof of theorem 6.3.

