Math 483 HW 6 2023. Due Monday, Sept. 18. EXAM 1 is THURSDAY, Sept. 14. Two pages A)-J).

A college degree, calculus and this class should prepare you for the first actuary exam. Many people with math or engineering degrees become actuaries. Actuaries assign prices to future risks. Some websites about the actuary profession are http://www.beanactuary.org/ www.casact.org www.soa.org www.actuary.org and www.aspa.org.

Some "Calculus refresher" texts include Adams, Hass and Thompson (1998): How to Ace Calculus; Ash and Ash (1993): The Calculus Tutoring Book; Ayres: Shaum's Outline Of Theory and Problems of Differential and Integral Calculus; Banner (2007): The Calculus Lifesaver; Bleau (2002): Forgotten Calculus; Downing Calculus the Easy Way; Huettenmueller Business Calculus Demystified; Kelly The Complete Idiot's Guide to Calculus, Ryan (2003): Calculus for Dummies; Thompson and Gardner (1998):Calculus Made Easy. Ch. 1 of the following URL is useful for counting.
http://www.math.uiuc.edu/~ash/Discrete.html
A) 3.66a Suppose that Y is a random variable with a geometric distribution. Show that $\sum_{y} p(y)=\sum_{y=1}^{\infty} q^{y-1} p=1$.
comment: $\sum_{y=1}^{\infty} p(y)=p q^{-1} \sum_{y=1}^{\infty} q^{y}$. Use the geometric series, p. 67 or p. 836.
B) 3.70a An oil prospector will drill a succession of holes in a given area to find a productive well. The probability that he is successful on a given trial is 0.2. What is the probability that the third hole drilled is the first to yield a productive well?
comment: See p. 115 and ex. 3.13. Remember that $q=1$ - p.
C) 3.82 Refer to problem B). The prospector drills holes until he finds a productive well. How many holes would the prospector expect to drill?
comment: Find the expected value using p. 116.
D) 3.121a Let Y denote a Poisson random variable with mean $\lambda=2$. Find $P(Y=4)$.
comment: See p. 132.
E) 3.131 The number of knots in a type of wood has a Poisson distribution with an average of 1.5 knots in 10 cubic feet of wood. Find the probability that a 10 cubic block of wood has at most one knot.
comment: "At most one" means $\mathrm{p}(0)+\mathrm{p}(1)$.
F) 3.146 If Y has a binomial distribution with n trials and probability of success p, then the moment generating function for Y is

$$
m(t)=\left(p e^{t}+q\right)^{n}
$$

where $q=1-p$. Differentiate the moment generating function to find $E(Y)$ and $E\left(Y^{2}\right)$. Then find $V(Y)$.
comment: Follow the Poisson lambda example done in class. Use p. 139-140.
G) 3.155ab Let $m(t)=(1 / 6) e^{t}+(2 / 6) e^{2 t}+(3 / 6) e^{3 t}$. Find the following:
a) $E(Y)$.
b) $V(Y)$.
comment: Use p. 139-140.
H) 4.8abd Suppose that Y has density function

$$
f(y)=\left\{\begin{array}{cc}
k y(1-y), & \text { if } 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find the value of k that makes $f(y)$ a probability density function.
b) Find $P(0.4 \leq Y \leq 1)$.
d) Find $P(Y \leq 0.4 \mid Y \leq 0.8)$.
comment: Find k so that f integrates to 1, use p. 164 and 52.
I) 4.11abd Suppose that Y has density function

$$
f(y)=\left\{\begin{array}{cc}
c y, & \text { if } 0 \leq y \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find the value of c that makes $f(y)$ a probability density function.
b) Find $F(y)$.
d) Use $F(y)$ to find $P(1 \leq Y \leq 2)$.
comment: a) Find k so that f integrates to 1 , use p. 164 and 52. b) Follow ex. 4.3. d) See p. 164 .
J) 4.12acd The length of time to failure (in hundreds of hours) for a transistor is a random variable Y with distribution function give by

$$
F(y)=\left\{\begin{array}{cc}
0, & y<0 \\
1-e^{-y^{2}}, & y \geq 0
\end{array}\right.
$$

a) Show that $F(y)$ has the properties of a distribution function.
c) Find $f(y)$.
d) Find the probability that the transistor operates at least 200 hours.
comment: a) See p. 160. c) See p. 161. d) Complement rule may help. Since Y is in hundreds of hours, want $\mathrm{P}(\mathrm{Y}$ greater than or equal to 2$)$.

