Math 483 HW 9 2023. This is a HARD HW! Due Thursday, Sept. 28. Quiz 4 is Friday, Oct. 2. $\mathrm{E}(\mathrm{Y}), \mathrm{V}(\mathrm{Y})$, $\mathrm{mgf} \mathrm{m}(\mathrm{t})$ for discrete and continuous RVs, find c so $\mathrm{f}(\mathrm{y})=$ c $g(y)$ integrates to one, find probabilities given $f(y)$ or $F(y)$. Find $f(y)$ from $F(y)$ and vice verca. Normal table. Two Pages problems A)-G).
A) 4.111a Suppose that Y has a gamma distribution with parameters α and β. If a is any positive or negative value such that $\alpha+a>0$, show that

$$
E\left(Y^{a}\right)=\frac{\beta^{a} \Gamma(\alpha+a)}{\Gamma(\alpha)}
$$

comment: Use the kernel technique. Find the gamma pdf in the back of the book.
B) 4.133ab Consider a random variable Y with pdf

$$
f(y)=\left\{\begin{array}{cc}
c y^{2}(1-y)^{4}, & \text { if } 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find the value of c that makes $f(y)$ a pdf.
b) Find $E(Y)$.
comment: Match the pdf with the pdf of the beta distribution given in the back of the book. See p. 194. To find $\mathrm{E}(\mathrm{Y})$, use p. 195.
C) 4.136 Suppose that Y is an exponential random variable with pdf

$$
f(y)=\left\{\begin{array}{cc}
\left(\frac{1}{\theta}\right) e^{-y / \theta} & \text { if } y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find the moment generating function for Y (either by integrating or using the mgf of a Gamma distribution).
b) Use the answer from a) to find $E(Y)$ and $V(Y)$.
comment: See p. 202 and ex. 4.13 on p. 203. To find $\mathrm{E}(\mathrm{Y})$ and $\mathrm{E}\left(Y^{2}\right)$, use p. 139 (or the middle of p. 203).
D) 4.145 bc Suppose that Y has pdf

$$
f(y)=\left\{\begin{array}{cc}
e^{y}, & \text { if } y<0 \\
0, & \text { otherwise }
\end{array}\right.
$$

b) Find the moment generating function of Y using the fact that $e^{a y} / a$ is the antiderivative of $e^{a y}$ if $a>0$.
c) Using the mgf, find $V(Y)$.
E) 5.4 b Given below is the joint probability function associated with data obtained in a study of car accidents in which a child under age 5 was in the car and at least one fatality occurred. Define

$$
Y_{1}=\left\{\begin{array}{cc}
0, & \text { if child survived } \\
1, & \text { otherwise }
\end{array} \text { and } Y_{2}=\left\{\begin{array}{lc}
0, & \text { if no belt used } \\
1, & \text { if adult belt used } \\
2, & \text { if } \\
\text { car }- \text { seat belt used }
\end{array}\right.\right.
$$

Then Y_{1} is the number of fatalities per child and since children's car seats use two belts, Y_{2} is the number of seatbelts in use at the time of the accident.

			y_{1}	
$p\left(y_{1}, y_{2}\right)$		0	1	
y_{2}	0	0.38	0.17	0.55
	1	0.14	0.02	0.16
	2	0.24	0.05	0.29
		0.76	0.24	1.00

b) Find $F(1,2)$.
comment: See p. 226-227. Ignore the interpretation.
F) 5.9a Let Y_{1} and Y_{2} have joint pdf

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
k\left(1-y_{2}\right), & \text { if } 0 \leq y_{1} \leq y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Find the value of k.
comment: Use iterated integrals to evaluate the double integral.
G) 5.10a Let Y_{1} and Y_{2} have joint pdf

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{lc}
k, & \text { if } 0 \leq y_{1} \leq 2,0 \leq y_{2} \leq 1,2 y_{2} \leq y_{1} \\
0, & \text { otherwise }
\end{array}\right.
$$

That is, Y_{1} and Y_{2} are uniformly distributed over the region inside the triangle bounded by $y_{1}=2, y_{2}=0$ and $2 y_{2}=y_{1}$.
a) Find k.
comment: Use iterated integrals to evaluate the double integral or use geometry.

