1) Let \mathcal{A} be a class of subsets of X. The σ -algebra generated by \mathcal{A} , denoted by $\sigma(\mathcal{A})$, is the intersection of all σ -algebras containing \mathcal{A} . Prove that $\sigma(\mathcal{A})$ is a σ -algebra.

Proof. i) Let $\sigma(\mathcal{A}) = \bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ where Λ is the collection of σ -algebras \mathcal{F}_{λ} that contain \mathcal{A} . Then Λ is nonempty since the σ -algebra of all subsets of X is in Λ .

ii) If $A_1, A_2, \ldots \in \sigma(\mathcal{A})$, then $A_1, A_2, \ldots \in \mathcal{F}_{\lambda}$ for each $\lambda \in \Lambda$. Hence $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_{\lambda}$ for each $\lambda \in \Lambda$. Thus $\bigcup_{i=1}^{\infty} A_i \in \sigma(\mathcal{A})$.

iii) If $A \in \sigma(\mathcal{A})$, then $A \in \mathcal{F}_{\lambda}$ for each $\lambda \in \Lambda$. Hence $A^c \in \mathcal{F}_{\lambda}$ for each $\lambda \in \Lambda$. Thus $A^c \in \sigma(\mathcal{A})$. \Box