
Math 501 Exam 1 is Wednesday, Feb. 19, 3:00-3:50 NO NOTES. CHECK FORMU-
LAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON THIS HANDOUT!

1) The universal set X is the set of all elements under consideration. Subsets of X
are of interest. The empty set is ∅. Let A ⊆ X and B ⊆ X. Then the complement

of A is Ac = {x ∈ X : x 6∈ A} =∼ A = X − A. The difference B − A = {x : x ∈ B
and x 6∈ A} = B ∩ Ac. The symmetric difference A 4 B = (A ∩ Bc) ∪ (B ∩ Ac) = set of
all points that belong to one or the other of both sets but not to both. [Ac]c = A and
∅ = Xc.

2) Def. Let Λ be a nonempty index set of sets Aλ ⊆ X. Then {Aλ}λ∈Λ is an indexed
family of sets.

a) The union
⋃

λ∈Λ
Aλ = {x ∈ X : x ∈ Aλ for at least one λ ∈ Λ}.

b) The intersection
⋂

λ∈Λ
Aλ = {x ∈ X : x ∈ Aλ for all λ ∈ Λ}.

Notation: a) Often “∈ X” will be omitted. Hence
{x ∈ X : x ∈ Aλ for all λ ∈ Λ} = {x : x ∈ Aλ for all λ ∈ Λ}.

b) Often Λ = N = {i}∞i=1 = {1, 2, ..., } = the set of positive integers = the set of
natural numbers. Then

⋃

λ∈N
Aλ =

⋃∞

i=1
Ai, and

⋂

λ∈N
Aλ =

⋂∞

i=1
Ai.

c) If Λ = {i}∞i=m = {m, (m + 1), ..., } = the set of integers ≥ m, then
⋃

λ∈Λ
Aλ =

⋃∞

i=m Ai, and
⋂

λ∈Λ
Aλ =

⋂∞

i=m Ai.

Warning: Since ∞ is not an integer, there is no set A∞ in
⋃∞

i=m Ai or
⋂∞

i=m Ai.

3) One way to prove A = B is to prove A ⊆ B and B ⊆ A. This technique is
equivalent to i) showing that if x ∈ A, then x ∈ B, and ii) showing that if x ∈ B, then
x ∈ A. A second way to prove A = B is to show x ∈ A iff x ∈ B where “iff” means “if
and only if.”

4) De Morgan’s Laws: Let Λ be a nonempty index set of sets Aλ ⊆ Ω.
i) [ ∪λ∈ΛAλ]

c = ∩λ∈ΛAc
λ. ii) [ ∩λ∈ΛAλ]

c = ∪λ∈ΛAc
λ. iii) [ ∩∞

i=1Ai]
c = ∪∞

i=1A
c
i .

iv) [ ∪∞
i=1Ai]

c = ∩∞
i=1A

c
i . v) [A ∪ B]c = Ac ∩ Bc. vi) [A ∩ B]c = Ac ∪ Bc.

5) Let f : X → Y be a function where X is the domain of f .
The range of f is the set {y ∈ Y : ∃x 3 y = f(x)}.
The function f is onto Y of the range of f = Y .
The function f is one to one if f(x1) = f(x2) implies x1 = x2.

6) Let f : X → Y , A ⊆ X, and B ⊆ Y .
i) Def. The image under f of A is the set

f [A] = {y ∈ Y : y = f(x) for some x ∈ A}.
ii) Def. The inverse image of B is the set

f−1[B] = {x ∈ X : f(x) ∈ B}.
Warning: f [A] and f−1[B] are sets that depends on the function f . The inverse

function need not exist.
7) Theorem: Let Aλ be sets for λ ∈ Λ.

a) f [∪λ∈ΛAλ] = ∪λ∈Λf [Aλ]. b) f [∩λ∈ΛAλ] ⊆ ∩λ∈Λf [Aλ]. c) f−1[∪λ∈ΛAλ] = ∪λ∈Λf−1[Aλ].
d) f−1[∩λ∈ΛAλ] = ∩λ∈Λf−1[Aλ]. e) f−1[Ac] = [f−1[A]]c.

8) Def. Let X 6= ∅. A nonempty class C of subsets of X is an algebra on X (or field)
if a1) A, B ∈ C ⇒ A ∪ B ∈ C
a2) A ∈ C ⇒ Ac ∈ C.
An algebra is closed under complements, finite intersections, and finite unions. X, ∅ ∈ C.
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9) Know: Def. Let X 6= ∅. A nonempty class F of subsets of X is a σ−algebra on
X (or σ−field) if i) A1, A2, ... ∈ F ⇒ ∪∞

i=1Ai ∈ F .
ii) A ∈ F ⇒ Ac ∈ F .
Note that i) and ii) mean that a σ-algebra is an algebra. A σ−algebra is closed under
countable unions, countable intersections, and complementation. The term “on X” is
often understood and omitted. Common error: Use n instead of ∞ in i).

10) Def. Let A be a class of subsets of X 6= ∅. The σ−algebra generated by A,
denoted by σ(A) is the intersection of all σ−algebras containing A. Then σ(A) is the
smallest σ−algebra containing A.

11) Def. Let A be the class of all open intervals (a, b) in [0,1]. Then σ(A) = B[0, 1]
is the Borel σ−algebra on [0,1].
Fact: B[0, 1] = σ(A) where A is the class of all closed intervals in [0,1], or A is the class
of all intervals of the form (a, b] in [0,1], or A is the class of all intervals of the form [a, b)
in [0,1].

12) Def. An ↑ A means A1 ⊆ A2 ⊆ · · · and A = ∪∞
i=1Ai.

An ↓ A means A1 ⊇ A2 ⊇ · · · and A = ∩∞
i=1Ai. See 16).

13) Def. Let An be a sequence of sets.
lim An = limsupn An = ∩∞

n=1 ∪
∞
k=n Ak = {x : x ∈ An for infinitely many An}.

lim An = liminfn An = ∪∞
n=1 ∩

∞
k=n Ak = {x : x ∈ An for all but finitely many An}.

If An ∈ F , then lim An, lim An ∈ F . Also, liminfn An ⊆ limsupn An.
14) Def. If liminfn An = limsupn An, then limn An = A = liminfn An =

limsupn An, written An → A. (The subscript n is sometimes omitted.)
15) Theorem. Let An be a sequence of F sets.

a) lim An, lim An ∈ F .
b) If limn An exists, then limn An = A ∈ F .
c) liminfn An ⊆ limsupn An.
d) (limsupn An)

c = liminfn Ac
n.

e) (liminfn An)
c = limsupn Ac

n.

Proof. a) Cn = ∪∞
k=nAk ∈ F for each n. Hence ∩∞

n=1Cn = lim An ∈ F . Bn =
∩∞

k=nAk ∈ F for each n. Hence ∪∞
n=1Bn = lim An ∈ F .

b) Follows from a).
c) If x ∈ An for all but finitely many An, then x ∈ An for all but infinitely many An.

Hence if x ∈ liminfn An then ω ∈ limsupn An. Thus liminfn An ⊆ limsupn An.
d) By De Morgan’s laws applied twice, (limsupn An)

c = [∩∞
n=1Cn]c = ∪∞

n=1C
c
n =

liminfnA
c
n where Cn is given in a).

e) By De Morgan’s laws applied twice, (liminfn An)
c = [∪∞

n=1Bn]c = ∩∞
n=1B

c
n =

limsupnA
c
n where Bn is given in a). �

Remark 1.6. a) If limsupn An ⊆ A ⊆ liminfn An, then limnAn = A by Theorem
in point 15).
b) Bn = ∩∞

k=nAk ↑ lim An. Thus limn→∞ ∩∞
k=n Ak = lim An.

c) Cn = ∪∞
k=nAk ↓ limAn. Thus limn→∞ ∪∞

k=n Ak = lim An, and lim An = ∩∞
n=1Cn.

d) Do not treat convergence of sets like convergence of functions. An → A
iff limsupn An = liminfn An which implies that if ω ∈ An for infinitely many n, then
ω ∈ An for all but finitely many n.
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e) Warning: Students who have not figured out the examples 16) and 17) tend to make
errors on similar problems.
f) Typically want to show that open, closed, and half open intervals can be written as
a countable union or countable intersection of intervals of another type. Then the Borel
σ-field B(R) = σ(C) where C is a class of intervals such as the class of all open intervals.

16) Example. Prove the following results.
a) A1 ⊆ A2 ⊆ · · · implies that An ↑ A = ∪∞

n=1An.
b) A1 ⊇ A2 ⊇ · · · implies that An ↓ A = ∩∞

n=1An.
Proof. a) For each n, A = ∪∞

k=nAk. Thus limsup An = ∩∞
n=1A = A. For each n,

∩∞
k=nAk = An. Thus liminf An = ∪∞

n=1An = A.
b) For each n, ∪∞

k=nAk = An. Thus limsup An = ∩∞
n=1An = A. For each n, ∩∞

k=nAk =
A. Thus liminf An = ∪∞

n=1A = A.

17) Example. Simplify the following sets where a < b. Answers might be (a, b), [a, b),
(a, b], [a, b], [a, a] = {a}, (a, a) = ∅.

a) I =
∞
⋂

n=1

(

a, b +
1

n

)

, b) I =
∞
⋃

n=1

(

a, b −
1

n

]

, c) I =
∞
⋃

n=1

[

a +
1

n
, b −

1

n

]

,

d) I =
∞
⋂

n=1

[

a, b +
1

n

)

, e) I =
∞
⋂

n=1

[

a, a +
1

n

)

, f) I =
∞
⋃

n=1

[

a, b−
1

n

]

.

Solution. a) I = (a, b] =
∞
⋂

n=1

(

a, b +
1

n

)

=
∞
⋂

n=1

An where An ↓ I . Note that

(a, b] ⊆ A =
∞
⋂

n=1

(

a, b +
1

n

)

since b ∈

(

a, b +
1

n

)

∀n. For any ε > 0, (a, b + ε] 6⊆ A since

b + 1/n < b + ε for large enough n. Note that b + 1/n → b, but sets are not functions.
(A common error is to say I = (a, b).)

b) I = (a, b) =
∞
⋃

n=1

(

a, b−
1

n

]

=
∞
⋃

n=1

An where An ↑ I . Note that b 6∈
∞
⋃

n=1

(

a, b −
1

n

]

= A

since b 6∈

(

a, b −
1

n

]

∀n and since n ∈ N so n = ∞ never occurs. Note that

(

a, b−
1

n

]

=

∅ if b − 1/n ≤ a. For any ε > 0 such that b − ε > a, it follows that (a, b − ε] ∈ A since
b − 1/n > b − ε for large enough n, say n > Nε. Thus b − ε ∈ A all but finitely many
times.

c) I = (a, b) =
∞
⋃

n=1

[

a +
1

n
, b −

1

n

]

=
∞
⋃

n=1

An where An ↑ I . Note that a, b 6∈ A = I since

a, b 6∈

[

a +
1

n
, b −

1

n

]

∀n ∈ N. Then the proof is similar to that of b).

d) I = [a, b] =
∞
⋂

n=1

[

a, b +
1

n

)

=
∞
⋂

n=1

An where An ↓ I . This proof is similar to that of a).

e) I = [a, a] = {a} =
∞
⋂

n=1

[

a, a +
1

n

)

=
∞
⋂

n=1

An where An ↓ I . Note that a ∈ A = I , but

a + ε 6∈ A ∀ε > 0.
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f) I = [a, b) =

∞
⋃

n=1

[

a, b−
1

n

]

=

∞
⋃

n=1

An where An ↑ I . This proof is similar to that of b).

Chapter 2:
18) Let S ⊆ R. Then d is an upper bound for S if for each x ∈ S, x ≤ d. Then

c = sup S = supx∈S x is the least upper bound for S if sup S is an upper bound for
S, and if sup S ≤ d for any upper bound for S. Similarly, a is a lower bound for S if
for each x ∈ S, x ≥ a. Then b = inf S = infx∈S x is the greatest lower bound for S if
inf S is a lower bound for S, and if inf S ≥ a for any lower bound for S. Both sup S
and inf S are unique when they exist.
Facts: I) sup S = c ∈ R iff i) ∀x ∈ S, x ≤ c, ii) ∀ε > 0, ∃x0 ∈ S 3 c − ε < x0 ≤ c.
II) inf S = b ∈ R iff i) ∀x ∈ S, x ≥ b, ii) ∀ε > 0, ∃x0 ∈ S 3 b ≤ x0 < b + ε.

19) Completeness Axiom: Every nonempty set S of real numbers which has an
upper bound has a least upper bound.

20) infx∈S x = −supx∈S − x. Thus any nonempty set S of real numbers which has
a lower bound has a greatest lower bound.

21) Let {xn}∞n=1 = {xn} be a sequence of real numbers.
a) xn ↑ x means x1 ≤ x2 ≤ · · · and xn → x. (nondecreasing sequence)
b) xn ↓ x means x1 ≥ x2 ≥ · · · and xn → x. (nonincreasing sequence)
(These monotone sequences have “limits” if ±∞ are allowed. So xn ↑ ∞ means the
sequence diverges to ∞, while xn ↓ ∞ means the sequence diverges to −∞. If x is a real
number, then x is the limit of the sequence.)

22) The limit superior and limit inferior of a sequence will be useful. The sequence
{an}

∞
n=1 = a1, a2, .... Let {an}

∞
n=m(= am, am+1, ...) be a sequence of numbers. Then

i) sup an = least upper bound of {an}, and
ii) inf an = greatest lower bound of {an}.

23) Def. Let {an}∞n=1 be a sequence.
a) The limit superior of the sequence limsupnan = limnan = limn supk≥n ak is the

limit of the nonincreasing sequence {supk≥j ak}∞j=1.
b) The limit inferior of the sequence liminfnan = limnan = limn infk≥nak is the limit

of the nondecreasing sequence {infk≥j ak}∞j=1.

24) Remark. a) Unlike the limit, limnan and limnan always exist when ±∞ are
allowed as limits, since limits of nondecreasing and nonincreasing sequences then exist.

b) limnan ≤ limnan

c) limnan = a iff limnan = limnan = a. Hence the limit of a sequence exists iff
limnan = limnan. Again, a = ±∞ is allowed.

d) Let lim∗
nan be limnan or limnan.

If an ≤ bn, then lim∗
nan ≤ lim∗

nbn.
If an < bn, then lim∗

nan ≤ lim∗
nbn.

If an ≥ bn, then lim∗
nan ≥ lim∗

nbn.
If an > bn, then lim∗

nan ≥ lim∗
nbn.

That is, when taking the liminf or limsup on both sides of a strict inequality, the < or
> must be replaced by ≤ or ≥.

A similar result holds for limits if both limits exist.
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e) limsupn(−an) = −liminfnan.
f) i) limsupnan = limnan is the limit of the nonincreasing sequence

sup
k≥m

ak, sup
k≥m+1

ak, ....

ii) liminfnan = limnan is the limit of the nondecreasing sequence

inf
k≥m

ak, inf
k≥m+1

ak, ....

iii)
limnan = inf

n
sup
k≥n

ak = lim
k→∞

sup(an, n ≥ k).

iv)
limnan = sup

n

inf
k≥n

ak = lim
k→∞

inf(an, n ≥ k).

v) If a limit point of a sequence {an} is any number, including ±∞, that is a limit of
some subsequence, then liminfnan and limsupnan are the inf and sup of the set of limit
points, often the smallest and largest limit points.

25) x0 ∈ R is a cluster point of {xn} if ∀ε > 0 and ∀N ∈ N, ∃n ≥ N 3 |xn − x0| < ε.
Thus infinitely many terms of the sequence {xn} are within ε of x0.
∞ is a cluster point of {xn} if given β > 0 and given N , ∃n ≥ N 3 xn > β. Thus
infinitely many terms of the sequence {xn} are > β.
−∞ is a cluster point of {xn} if given α < 0 and given N , ∃n ≥ N 3 xn < α. Thus
infinitely many terms of the sequence {xn} are < α.
A limit point is also called an accumulation point and a cluster point. If {xn} is a
bounded sequence, then lim xn = largest accumulation point (cluster point) of {xn},
and lim xn = smallest accumulation point of {xn}.
x0 ∈ R is a cluster point of {xn}

26) Warning: A common error is to take the limit of both sides of an equation
an = bn or of an inequality, e.g. an ≤ bn. Taking the limit is an error if the existence
of the limit has not been shown. If ±∞ are allowed, limnan and limnan always exits.
Hence the limnan or limnan of the above equation or inequality can be taken.
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