Math 581 Exam 2 is Thursday, Oct. 21, 2:00-3:15 NO NOTES. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON THIS HANDOUT!

37) Fix (Ω, \mathcal{F}, P) . A simple random variable (SRV) is a function $X : \Omega \to \mathbb{R}$ such that the range of X is finite and $\{X = x\} = \{\omega : X(\omega) = x\} \in \mathcal{F} \ \forall x \in \mathbb{R}$. Hence X is a discrete RV with finite support. Note that $X = \sum_{i=1}^{n} x_i I_{A_i}$ is a SRV if each $A_i \in \mathcal{F}$. 38) Suppose events $A_1, ..., A_n$ are disjoint and $\bigcup_{i=1}^{n} A_i = \Omega$. Let $X = \sum_{i=1}^{n} x_i I_{A_i}$.

Then the expected value of X is $E(X) = \sum_{i=1}^{n} x_i P(A_i) = \sum_{x} x P(X = x)$ which is a finite

sum since X is a SRV. The middle term is useful for proofs. For this SRV, E(X) exists and is unique. In the second sum, the x need to be the distinct values in the range of X.

39) Suppose SRV X takes on distinct values $x_1, ..., x_m$. Then $X = \sum_{i=1}^m x_i I_{B_i}$ where the $B_i = \{X = x_i\}$ are disjoint with $\bigcup_{i=1}^n B_i = \Omega$. Hence a SRV has the form of 38) with $A_i = B_i$ and n = m.

40) Th. Let X_n, X and Y be SRVs.

a) $-\infty < E(X) < \infty$

b) linearity: E(aX + bY) = aE(X) + bE(Y)

c) If $X \leq Y$, then $E(X) \leq E(Y)$

d) If $\{X_n\}$ is uniformly bounded and $X = \lim_n X_n$ on a set of probability 1, then $E(X) = \lim_{n \to \infty} E(X_n).$

e) If t is a real valued function, then $E[t(X)] = \sum_{x} t(x)P(X = x)$ f) If X is nonnegative, $X \ge 0$, then $E(X) = \sum_{i} P(X > x_i) = \int_0^\infty [1 - F(x)] dx$.

41) For the theory of integration, assume the function f in the integrand is measurable where $f: \Omega \to \mathbb{R}$ and $(\Omega, \mathcal{F}, \mu)$ is a measure space.

42) A function $f: \Omega \to [-\infty, \infty]$ is a measurable function (or measurable or \mathcal{F} measurable or Borel measurable) if

i) $f^{-1}(B) \in \mathcal{F} \ \forall B \in \mathcal{B}(\mathbb{R}),$

ii) $f^{-1}(\{\infty\}) = \{\omega : f(\omega = \infty\} \in \mathcal{F}, \text{ and }$

iii) $f^{-1}(\{-\infty\}) = \{\omega : f(\omega = -\infty\} \in \mathcal{F}.$

43) Def. Let $f: \Omega \to [0, \infty]$ be a nonnegative function. Then the **integral** $\int f d\mu = \sup_{\{A_i\}} \sum_{i} (inf_{\omega \in A_i} f(\omega)) \mu(A_i) \text{ where } \{A_i\} \text{ is a finite } \mathcal{F} \text{ decomposition.})$

(A finite \mathcal{F} decomposition (\mathcal{F} decomp of Ω) means that $A_i \in \mathcal{F}$ and $\Omega = \bigcup_{i=1}^n A_i$ for some n, and the A_i are disjoint.

44) Conventions for integration of a nonnegative function. a) $A_i = \emptyset$ implies that the inf term = ∞ , b) $x(\infty) = \infty$ for x > 0, and c) $0(\infty) = 0$.

45) Theorem: Let $f \ge 0$ with $f(\omega) = \sum_{j=1}^{m} x_j I_{B_j}(\omega)$ where each $x_j \ge 0$ and $\{B_j\}$ is an \mathcal{F} decomp of Ω . Then $\int f d\mu = \sum_{j=1}^{m} x_j \mu(B_j)$.

46) If $f: \Omega \to [-\infty, \infty]$, then the **positive part** $f^+ = fI(f \ge 0) = max(f, 0)$, and the negative part $f^- = -fI(f \le 0) = max(-f, 0) = -min(f, 0)$. Hence $f^+(\omega) =$ $f(\omega)I(f(\omega) \ge 0)$ and $f^{-}(\omega) = -f(\omega)I(f(\omega) \le 0).$

Here $I(f \ge 0) = I(0 \le f \le \infty)$ while $I(f(\omega) \le 0) = I(-\infty \le f \le 0)$. If f is measurable, then $f^+ \ge 0$, $f^- \ge 0$ are both measurable, $f = f^+ - f^-$, and $|f| = f^+ + f^-$.

- 47) Convention: $\infty \infty = -\infty + \infty$ is undefined.
- 48) Def: Let $f: \Omega \to [-\infty, \infty]$.

i) The **integral** $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$.

ii) The integral is defined unless it involves $\infty - \infty$.

iii) The function f is **integrable** if both $\int f^+ d\mu$ and $\int f^- d\mu$ are finite. Thus $\int f d\mu \in \mathbb{R}$ if f is integrable.

49) A property holds **almost everywhere** (ae), if the property holds for ω outside a set of measure 0, i.e. the property holds on a set A such that $\mu(A^c) = 0$. If μ is a probability measure P, then P(A) = 1 while $P(A^c) = 0$.

50) Theorem: suppose f and g are both nonnegative.

i) If f = 0 ae, then $\int f d\mu = 0$.

ii) If $\mu(\{\omega : f(\omega) > 0\}) > 0$, then $\int f d\mu > 0$.

- iii) If $\int f d\mu < \infty$, then $f < \infty$ ae.
- iv) If $f \leq g$ as, then $\int f d\mu \leq \int g d\mu$.
- v) If f = g as, then $\int f d\mu = \int g d\mu$.

51) Theorem: i) f is integrable iff $\int |f| d\mu < \infty$.

ii) monotonicity: If f and g are integrable and $f \leq g$ as, then $\int f d\mu \leq \int g d\mu$.

iii) **linearity**: If f and g are integrable and $a, b \in \mathbb{R}$, then af + bg is integrable with $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu.$

iv) Monotone Convergence Theorem (MCT): If $0 \leq f_n \uparrow f$ as, then $\int f_n d\mu \uparrow \int f d\mu$. v) Fatou's Lemma: For nonnegative f_n , $\int limin f_n f_n d\mu \leq limin f_n \int f_n d\mu$.

vi) Lebesgue's Dominated Convergence Theorem (LDCT): If the $|f_n| \leq g$ as where g is integrable, and if $f_n \to f$ as, then f and f_n are integrable and $\int f_n d\mu \to \int f d\mu$.

vii) Bounded Convergence Theorem (BCT): If $\mu(\Omega) < \infty$ and the f_n are uniformly bounded, then $f_n \to f$ as implies $\int f_n d\mu \to \int f d\mu$.

viii) If
$$f_n \ge 0$$
 then $\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$.

ix) If $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$, then $\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$.

x) If f and g are integrable, then $\left| \int f d\mu - \int g d\mu \right| \leq \int |f - g| d\mu$. 52) Consequences: a) linearity implies $\int \sum_{n=1}^{k} f_n d\mu = \sum_{n=1}^{k} \int f_n d\mu$: i.e., the integral and finite sum operators can be interchanged

b) MCT, LDCT, and BCT give conditions where the limit and \int can be interchanged: $\lim_{n \to \infty} \int f_n d\mu = \int \lim_{n \to \infty} f_n d\mu = \int f d\mu$

c) 51) viii) and ix) give conditions where the infinite sum $\sum_{n=1}^{\infty}$ and the integral \int can be interchanged: $\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$.

53) A common technique is to show the result is true for indicators. Extend to simple functions by linearity, and then to nonnegative function by a monotone passage of the limit. Use $f = f^+ - f^-$ for general functions.

54) Induction Theorem: If R(n) is a statement for each $n \in \mathbb{N}$ such that a) R(1) is true, and b) for each $k \in \mathbb{N}$, if R(k) is true, then R(k+1) is true, then R(n) is true for each $n \in \mathbb{N}$.

Note that $\infty \notin \mathbb{N}$. Induction can be used with linearity to prove 52) a), but induction generally does not work for 52) c).

- 55) Def. If $A \in \mathcal{F}$, then $\int_A f d\mu = \int f I_A d\mu$.
- 56) If $\mu(A) = 0$, then $\int_{A} f d\mu = 0$.
- 57) If $\mu: \mathcal{F} \to [0,\infty]$ is a measure and $f \geq 0$, then

a) $\nu(A) = \int_A f d\mu$ is a measure on \mathcal{F} .

b) If $\int_{\Omega} f d\mu = 1$, then $P(A) = \int_{A} f d\mu$ is a probability measure on \mathcal{F} .

58) For expected values, assume (Ω, \mathcal{F}, P) is fixed, and the random variables are measurable wrt \mathcal{F} .

59) We can define the expected value to be $E(X) = \int X dP$ as the special case of integration where the measure $\mu = P$ is a probability measure, or we can use a definition that ignores most measure theory.

60) Def. Let $X \ge 0$ be a nonnegative RV.

a) $E(X) = \lim_{n \to \infty} E(X_n) = \int X dP \leq \infty$ where the X_n are nonnegative SRVs with $0 \leq X_n \uparrow X.$

b) The expectation of X over an event A is $E(XI_A)$.

There are several equivalent ways to define integrals and expected values. Hence E(X) can also be defined as in 43) with μ replaced by P and f replaced by $X: \Omega \to \mathbb{R}$.

61) Theorem: Let X, Y be nonnegative random variables. a) For $X, Y \ge 0$ and $a, b \ge 0$, E(aX + bY) = aE(X) + bE(Y).

b) If $X \leq Y$ ae, then $E(X) \leq E(Y)$.

By induction, if the $a_i X_i \ge 0$, then $E(\sum_{i=1}^n a_i X_i) = \sum_{i=1}^n E(a_i X_i)$: the expected value of a finite sum of nonnegative RVs is the sum of the expected values.

62) For a random variable $X : \Omega \to (-\infty, \infty)$, then the **positive part** $X^+ =$ $XI(X \ge 0) = max(X, 0)$, and the negative part $X^- = -XI(X \le 0) = max(-X, 0) =$ -min(X,0). Hence $X = X^+ - X^-$, and $|X| = X^+ + X^-$. Random variables are real functions: $\pm \infty$ are not allowed.

63) Def: Let the random variable $X : \Omega \to (-\infty, \infty)$.

i) The expected value $E(X) = \int X dP = \int X^+ dP - \int X^- dP = E(X^+) - E(X^-)$.

ii) The expected value is defined unless it involves $\infty - \infty$.

iii) The random variable X is **integrable** if $E[|X|] < \infty$. Thus $E(X) \in \mathbb{R}$ if X is integrable.

64) Theorem: i) X is integrable iff both $E[X^+]$ and $E[X^-]$ are finite.

ii) monotonicity: If X and Y are integrable and $X \leq Y$ as, then $E(X) \leq E(Y)$.

iii) **linearity**: If X and Y are integrable and $a, b \in \mathbb{R}$, then aX + bY is integrable with E(aX + bY) = aE(X) + bE(Y).

iv) Monotone Convergence Theorem (MCT): If $0 \leq X_n \uparrow X$ ae, then $E(X_n) \uparrow E(X).$

v) Fatou's Lemma: For RVs $X_n \ge 0$, $E[\liminf_n X_n] \le \liminf_n E[X_n]$.

vi) Lebesgue's Dominated Convergence Theorem (LDCT): If the $|X_n| \leq Y$ as where Y is integrable, and if $X_n \to X$ as, then X and X_n are integrable and $E(X_n) \to X$ E(X).

vii) Bounded Convergence Theorem (BCT): If the X_n are uniformly bounded, then $X_n \to X$ as implies $E(X_n) \to E(X)$.

viii) If $X_n \ge 0$ then $E(\sum_{n=1}^{\infty} X_n) = \sum_{n=1}^{\infty} E(X_n)$. ix) If $\sum_{n=1}^{\infty} E(|X_n|) < \infty$, then $E(\sum_{n=1}^{\infty} X_n) = \sum_{n=1}^{\infty} E(X_n)$. x) If X and Y are integrable, then $|E(X) - E(Y)| \le E[|X - Y|]$. 65) Consequences: a) linearity implies $E(\sum_{n=1}^{k} a_n X_n) = \sum_{n=1}^{k} a_n E(X_n)$: i.e., the

expectation and finite sum operators can be interchanged, or the expectation of a finite sum is the sum of the expectations if the X_n are integrable.

b) MCT, LDCT, and BCT give conditions where the limit and E can be interchanged: $\lim_{n} E(X_n) = E[\lim_{n} X_n] = E(X)$

c) 64) viii) and ix) give conditions where the infinite sum $\sum_{n=1}^{\infty}$ and the expected value can be interchanged: $E[\sum_{n=1}^{\infty} X_n] = \sum_{n=1}^{\infty} E(X_n)$.

66) Given (Ω, \mathcal{F}, P) , the collection of all integrable random vectors or RVs is denoted by $L^1 = L^1(\Omega, \mathcal{F}, P)$.

67) Let X be a $1 \times k$ random vector with $\operatorname{cdf} F_X(t) = F(t) = P(X_1 \leq t_1, ..., X_k \leq t_k)$. Then the Lebesgue Stieltjes integral $E[h(X)] = \int h(t) dF(t)$ provided the expected value exists, and the integral is a linear operator with respect to both h and F. If X is a random variable, then $E[h(X)] = \int h(t) dF(t)$. If W = h(X) is integrable or if $W = h(X) \geq 0$, then the expected value exists. Here $h : \mathbb{R}^k \to \mathbb{R}^j$ with $1 \leq j \leq k$.

68) The distribution of a $1 \times k$ random vector \boldsymbol{X} is a **mixture distribution** if the cdf of \boldsymbol{X} is

$$F_{\boldsymbol{X}}(\boldsymbol{t}) = \sum_{j=1}^{J} \pi_j F_{\boldsymbol{U}_j}(\boldsymbol{t})$$

where the probabilities π_j satisfy $0 \leq \pi_j \leq 1$ and $\sum_{j=1}^J \pi_j = 1$, $J \geq 2$, and $F_{U_j}(t)$ is the cdf of a $1 \times k$ random vector U_j . Then X has a mixture distribution of the U_j with probabilities π_j . If X is a random variable, then

$$F_X(t) = \sum_{j=1}^J \pi_j F_{U_j}(t).$$

69) **Expected Value Theorem:** Assume all expected values exist. Let $d\mathbf{x} = dx_1 dx_2 \dots dx_k$. Let \mathcal{X} be the support of $\mathbf{X} = \{\mathbf{x} : f(\mathbf{x}) > 0\}$ or $\{\mathbf{x} : p(\mathbf{x}) > 0\}$. a) If \mathbf{X} has (joint) pdf $f(\mathbf{x})$, then $E[h(\mathbf{X})] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \int \dots \int_{\mathcal{X}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$. Hence $E[\mathbf{X}] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \int \dots \int_{\mathcal{X}} \mathbf{x} f(\mathbf{x}) d\mathbf{x}$. b) If X has pdf f(x), then $E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx = \int_{\mathcal{X}} h(x) f(x) dx$. Hence $E[X] = \int_{-\infty}^{\infty} xf(x) dx = \int_{\mathcal{X}} xf(x) dx$. c) If \mathbf{X} has (joint) pmf $p(\mathbf{x})$, then $E[h(\mathbf{X})] = \sum_{x_1} \dots \sum_{x_k} h(\mathbf{x}) p(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} h(\mathbf{x}) p(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} h(\mathbf{x}) p(\mathbf{x})$. Hence $E[\mathbf{X}] = \sum_{x_1} \dots \sum_{x_k} xp(\mathbf{x}) = \sum_{x \in \mathcal{X}} xp(\mathbf{x})$. d) If X has pmf p(x), then $E[h(X)] = \sum_x h(x) p(x) = \sum_{x \in \mathcal{X}} h(x) p(x)$. Hence $E[X] = \sum_x xp(x) = \sum_{x \in \mathcal{X}} xp(x)$.

e) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the $E(h(U_j))$ exist. Then

$$E[h(\boldsymbol{X})] = \sum_{j=1}^{J} \pi_j E[h(\boldsymbol{U}_j)] \text{ and } E(\boldsymbol{X}) = \sum_{j=1}^{J} \pi_j E[\boldsymbol{U}_j].$$

f) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the $E(h(U_j))$ exist. Then

$$E[h(X)] = \sum_{j=1}^{J} \pi_j E[h(U_j)] \text{ and } E(X) = \sum_{j=1}^{J} \pi_j E[U_j].$$

This theorem is easy to prove if the U_j are continuous random vectors with (joint) probability density functions (pdfs) $f_{U_j}(t)$. Then X is a continuous random vector with pdf

$$f_{\boldsymbol{X}}(\boldsymbol{t}) = \sum_{j=1}^{J} \pi_j f_{\boldsymbol{U}_j}(\boldsymbol{t}), \text{ and } \operatorname{E}[\operatorname{h}(\boldsymbol{X})] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \operatorname{h}(\boldsymbol{t}) \operatorname{f}_{\boldsymbol{X}}(\boldsymbol{t}) \mathrm{d}\boldsymbol{t}$$
$$= \sum_{j=1}^{J} \pi_j \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(\boldsymbol{t}) f_{\boldsymbol{U}_j}(\boldsymbol{t}) \mathrm{d}\boldsymbol{t} = \sum_{j=1}^{J} \pi_j E[h(\boldsymbol{U}_j)]$$

where $E[h(\boldsymbol{U}_{j})]$ is the expectation with respect to the random vector \boldsymbol{U}_{j} .

Alternatively, with respect to a Lebesgue Stieltjes integral, $E[h(\mathbf{X})] = \int h(\mathbf{t}) dF(\mathbf{t})$ provided the expected value exists, and the integral is a linear operator with respect to both h and F. Hence for a mixture distribution, $E[h(\mathbf{X})] = \int h(\mathbf{t}) dF(\mathbf{t}) =$

$$\int h(\boldsymbol{t}) \ d\left[\sum_{j=1}^{J} \pi_j F_{\boldsymbol{U}_j}(\boldsymbol{t})\right] = \sum_{j=1}^{J} \pi_j \int h(\boldsymbol{t}) dF_{\boldsymbol{U}_j}(\boldsymbol{t}) = \sum_{j=1}^{J} \pi_j E[h(\boldsymbol{U}_j)].$$

70) Fix (Ω, \mathcal{F}, P) . Let the **induced probability** $P_X = P_F$ be $P_X(B) = P[X^{-1}(B)]$ for any $B \in \mathcal{B}(\mathbb{R})$. Then $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_X)$ is a probability space. If X is a $1 \times k$ random vector, then the **induced probability** $P_X = P_F$ be $P_X(B) = P[X^{-1}(B)]$ for any $B \in \mathcal{B}(\mathbb{R}^k)$. Then $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k), P_X)$ is a probability space.

Then $E[h(\mathbf{X})] = \int h(\mathbf{X}) dP = \int h(\mathbf{x}) dF(\mathbf{x}) = E_F[h] = \int h dP_{\mathbf{X}}$. Then $E[h(X)] = \int h(X) dP = \int h(x) dF(x) = E_F[h] = \int h dP_X$. Here W = h(X) is a RV wrt (Ω, \mathcal{F}, P) , while Z = h is a RV wrt $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_X)$.

71) Let $X : \Omega \to \mathbb{R}$. Let $A, B, B_n \in \mathcal{B}(\mathbb{R})$. i) If $A \subseteq B$, then $X^{-1}(A) \subseteq X^{-1}(B)$. ii) $X^{-1}(\cup_n B_n) = \cup_n X^{-1}(B_n)$. iii) $X^{-1}(\cap_n B_n) = \cap_n X^{-1}(B_n)$.

iv) If A and B are disjoint, then $X^{-1}(A)$ and $X^{-1}(B)$ are disjoint.

v) $X^{-1}(B^c) = [X^{-1}(B)]^c$.

(The unions and intersections in ii) and iii) can be finite, countable or uncountable.)

72) Theorem: Fix (Ω, \mathcal{F}, P) . Let $X : \Omega \to \mathbb{R}$. X is a measurable function iff X is a RV iff any one of the following conditions holds.

i) $X^{-1}(B) = \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F} \ \forall B \in \mathcal{B}(\mathbb{R}).$

ii) $X^{-1}((-\infty, t]) = \{X \le t\} = \{\omega \in \Omega : X(\omega) \le t\} \in \mathcal{F} \ \forall t \in \mathbb{R}.$

iii) $X^{-1}((-\infty, t)) = \{X < t\} = \{\omega \in \Omega : X(\omega) < t\} \in \mathcal{F} \ \forall t \in \mathbb{R}.$

iv) $X^{-1}([t,\infty)) = \{X \ge t\} = \{\omega \in \Omega : X(\omega) \ge t\} \in \mathcal{F} \ \forall t \in \mathbb{R}.$

v) $X^{-1}((t,\infty)) = \{X > t\} = \{\omega \in \Omega : X(\omega) > t\} \in \mathcal{F} \ \forall t \in \mathbb{R}.$ 73) Theorem: Let X, Y, and X_i be RVs on (Ω, \mathcal{F}, P) .

a) aX + bY is a RV for any $a, b \in \mathbb{R}$. Hence $\sum_{i=1}^{n} X_i$ is a RV.

- b) $\max(X, Y)$ is a RV. Hence $\max(X_1, ..., X_n)$ is a RV.
- c) $\min(X, Y)$ is a RV. Hence $\min(X_1, ..., X_n)$ is a RV.
- d) XY is a RV. Hence $X_1 \cdots X_n$ is a RV.
- e) X/Y is a RV if $Y(\omega) \neq 0 \ \forall \ \omega \in \Omega$.

f) $sup_n X_n$ is a RV.

g) $inf_n X_n$ is a RV.

- h) $limsup_n X_n$ is a RV.
- i) $liminf_n X_n$ is a RV.
- j) If $lim_n X_n = X$, then X is a RV.

k) If $\lim_{m} \sum_{n=1}^{m} X_n = \sum_{n=1}^{\infty} X_n = X$, then X is a RV.

- 1) If $h : \mathbb{R}^n \to \mathbb{R}$ is measurable, then $Y = h(X_1, ..., X_n)$ is a RV.
- m) If $h : \mathbb{R}^n \to \mathbb{R}$ is continuous, then h is measurable and $Y = h(X_1, ..., X_n)$ is a RV.
- n) If $h : \mathbb{R} \to \mathbb{R}$ is monotone, then h is measurable and h(X) is a RV.

74) Let $f(x) \ge 0$ be a Lebesgue integrable pdf of a RV with cdf F. Then $P_X(B) = P_F(B) = \int_B f(x) dx$ wrt Lebesgue integration. So many probability distributions can be obtained with Lebesgue integration.

75) RVs $X_1, ..., X_k$ are **independent** if $P(X_1 \in B_1, ..., X_k \in B_k) = \prod_{i=1}^n P(X_i \in B_i)$ for any $B_1, ..., B_k \in \mathcal{B}(\mathbb{R})$ iff $F_{X_1,...,X_k}(x_1, ..., x_k) = F_{X_1}(x_1) \cdots F_{X_k}(x_k)$ for any real $x_1, ..., x_k$ iff $\sigma(X_1), ..., \sigma(X_k)$ are independent ($\forall A_i \in \sigma(X_i), A_1, ..., A_k$ are independent). An infinite collection of RVs $X_1, X_2, ...$ is **independent** if any finite subset is independent. If pdfs exist, $X_1, ..., X_k$ are independent iff $f_{X_1,...,X_k}(x_1, ..., x_k) = f_{X_1}(x_1) \cdots f_{X_k}(x_k)$ for any real $x_1, ..., x_k$. If pmfs exist, $X_1, ..., X_k$ are independent iff $p_{X_1,...,X_k}(x_1, ..., x_k) = p_{X_1}(x_1) \cdots p_{X_k}(x_k)$ for any real $x_1, ..., x_k$. Recall that the σ -field $\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}(\mathbb{R}\}$.

76) Suppose $X_1, ..., X_n$ are independent and $g_i(X_i)$ is a function of X_i alone. Then $E[g_1(x_1)\cdots g_n(X_i)] = E[\prod_{i=1}^n g_i(X_i)] = \prod_{i=1}^n E[g_i(X_i)]$ provided the expected values exist.

77) Let $(\Omega_1, \mathcal{F}_1, P_1)$ and $(\Omega_2, \mathcal{F}_2, P_2)$ be two probability spaces. The **Cartesian prod**uct = cross product $\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \Omega_1 \in \Omega_1, \Omega_2 \in \Omega_2\}$. The product of \mathcal{F}_1 and \mathcal{F}_2 , denoted by $\mathcal{F}_1 \times \mathcal{F}_2$, is the σ -field $\sigma(\mathcal{A})$ where $\mathcal{A} = \{A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$ is the collection of all cross products $A_1 \times A_2$ of events in \mathcal{F}_1 and \mathcal{F}_2 .

78) Theorem: There is a unique probability measure $P = P_1 \times P_2$, called the product of P_1 and P_2 or the product probability measure, such that $P(A_1 \times A_2) = P_1(A_1)P_2(A_2)$ for all $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$.

79) The product probability space is $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, P_1 \times P_2)$.

80) 77)-79) can be extended to $(\Omega_i, \mathcal{F}_i, P_i)$ for i = 1, ..., n. Denote $P_1 \times \cdots \times P_n$ by $\prod_{i=1}^n P_i, \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$ by $\prod_{i=1}^n \mathcal{F}_i$, and $\Omega_1 \times \cdots \times \Omega_n$ by $\prod_{i=1}^n \Omega_i$. If $(\Omega_i, \mathcal{F}_i, P_i) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), P_i)$, then the product probability space is $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \prod_{i=1}^n P_i)$. If $(\Omega_i, \mathcal{F}_i, P_i) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X_i})$, then the product probability space is $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \prod_{i=1}^n P_{X_i})$.

81) Let **independent** X_i be defined on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X_i})$. Then the product probability space $(\Omega, \mathcal{F}, P) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \prod_{i=1}^n P_{X_i})$ is the probability space for $\mathbf{X} = (X_1, ..., X_n)$. 82) Let $\int f d\mu = \int f(x) d\mu(x)$. Then the double integral

$$\int \int_{\Omega_1 \times \Omega_2} f(x_1, x_2) d[P_1 \times P_2(x_1, x_2)] =$$
$$\int_{\Omega_1} \left[\int_{\Omega_2} f(x_1, x_2) dP_2(x_2) \right] dP_1(x_1) = \int_{\Omega_2} \left[\int_{\Omega_1} f(x_1, x_2) dP_1(x_1) \right] dP_2(x_2)$$

The last two equations are known as iterated integrals.

83) Fubini's Theorem: a) Assume $f \ge 0$. Then $\int_{\Omega_1} f(x_1, x_2) dP_1(x_1)$ is measurable $\mathcal{F}_2, \int_{\Omega_2} f(x_1, x_2) dP_2(x_2)$ is measurable \mathcal{F}_1 , and 82) holds.

b) Assume f is integrable wrt $P_1 \times P_2$, then $\int_{\Omega_1} f(x_1, x_2) dP_1(x_1)$ is finite as and measurable \mathcal{F}_2 ae, $\int_{\Omega_2} f(x_1, x_2) dP_2(x_2)$ is finite as and measurable \mathcal{F}_1 as and 82) holds.

Note: Part 83 a) is also known as Tonelli's theorem or the Fubini-Tonelli theorem. The double integral is often written as $\int_{\Omega_1 \times \Omega_2}$. Note that $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ (at least ae). Fubini's theorem for product probability measures shows double integrals can be calculated with iterated integrals if $X_1 \perp X_2$, and the theorem is sometimes stated as below.

84) Fubini's Theorem for product probability measures: If f is measurable, then

$$\int_{\Omega_1 \times \Omega_2} fd[P_1 \times P_2] = \int_{\Omega_1} \left[\int_{\Omega_2} f(x_1, x_2) dP_2(x_2) \right] dP_1(x_1) = \int_{\Omega_2} \left[\int_{\Omega_1} f(x_1, x_2) dP_1(x_1) \right] dP_2(x_2) dP_2$$

provided that either a) $f \ge 0$, or b) $\int_{\Omega_1 \times \Omega_2} |f| d[P_1 \times P_2] < \infty$. 85) A **product measure** μ satisfies $\mu(\prod_{i=1}^n A_i) = \prod_{i=1}^n \mu(A_i)$.

- 86) Fubini's Theorem for product measures: If f is measurable, then

$$\int_{\Omega_1 \times \Omega_2} fd[\mu_1 \times \mu_2] = \int_{\Omega_1} \left[\int_{\Omega_2} f(x_1, x_2) d\mu_2(x_2) \right] d\mu_1(x_1) = \int_{\Omega_2} \left[\int_{\Omega_1} f(x_1, x_2) d\mu_1(x_1) \right] d\mu_2(x_2) d\mu_2$$

provided that the μ_i are σ -finite and either a) $f \ge 0$, or b) $\int_{\Omega_1 \times \Omega_2} |f| d[\mu_1 \times \mu_2] < \infty$.

Note: the Lebesgue measure is σ -finite on \mathbb{R} and the counting measure μ_C is σ -finite if Ω is countable, where $\mu_C(A)$ = the number of points in set A. Let λ be the Legesgue measure on \mathbb{R}^2 and μ_L the Lebesgue measure on \mathbb{R} . The $\lambda(A \times B) = \mu_L(A)\mu_L(B)$ is a product measure. Let ν be the counting measure on \mathbb{Z}^2 and μ_C the counting measure on Z. Then $\nu(A \times B) = \mu_C(A)\mu_C(B)$ is a product measure.

 $y \leq d$ = $[a, b] \times [c, d]$. Let g(x, y) be measurable and Lebesgue integrable. Then

$$\int \int_C g(x,y) dx dy = \int_c^d \left[\int_a^b g(x,y) dx \right] dy = \int_a^b \left[\int_c^d g(x,y) dy \right] dx.$$

88) The result in 87) can be extended to where the limits of integration are infinite and to $n \ge 2$ integrals. Using g(x, y) = h(x, y)f(x, y) where f is a pdf gives E[h(X, Y)]. Note that $q : \mathbb{R}^2 \to \mathbb{R}$ (at least ae).

89) (Lindeberg-Lévy) Central Limit Theorem (CLT): Let $X_1, ..., X_n$ be iid with $E(X) = \mu$ and $V(X) = \sigma^2$. Then $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{D} N(0, \sigma^2)$.

90) If F_n and F are cdfs, then F_n converges weakly to F, written $F_n \xrightarrow{W} F$, if $lim_n F_n(x) = F(x)$ at every continuity point of X.

91) Let $\{Z_n, n = 1, 2, ...\}$ be a sequence of random variables with cdfs F_n , and let X be a random variable with cdf F. Then Z_n converges in distribution to X, written

$$Z_n \xrightarrow{D} X_s$$

or Z_n converges in law to X, written $Z_n \xrightarrow{L} X$, if

$$\lim_{n \to \infty} F_n(t) = F(t)$$

at each continuity point t of F. The distribution of X is called the **limiting distribution** or the **asymptotic distribution** of Z_n .

Notes: a) If $X_n \xrightarrow{D} X$, then the limiting distribution (the distribution of X) **does not** depend on n.

$$b)Z_n = \sqrt{n}\left(\frac{\overline{X}_n - \mu}{\sigma}\right) = \left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}\right) = \left(\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma}}\right)$$

is the z-score of \overline{X}_n (and the z-score of $\sum_{i=1}^n X_i$), and $Z_n \xrightarrow{D} N(0, 1)$. c) Two applications of the CLT are to give the limiting distribution of $\sqrt{n}(\overline{X}_n - \mu)$ and the limiting distribution of $\sqrt{n}(X_n/n - \mu_Y)$ for a random variable X_n such that $X_n = \sum_{i=1}^n Y_i$ where the Y_i are iid with $E(Y) = \mu_Y$ and $V(Y) = \sigma_Y^2$. See point 92) below. d) $X_n \xrightarrow{D} X$ is equivalent to F_{X_n} converges weakly to F_X .

92) Theorem: a) If $Y_1, ..., Y_n$ are iid binomial BIN (k, ρ) random variables, then $X_n = \sum_{i=1}^n Y_i \sim \text{BIN}(nk, \rho)$. Note that $E(Y_i) = k\rho$ and $V(Y_i) = k\rho(1-\rho)$.

b) Denote a chi–square χ_p^2 random variable by $\chi^2(p)$. If $Y_1, ..., Y_n$ are iid χ_p^2 , then $X_n = \sum_{i=1}^n Y_i \sim \chi_{np}^2$. Note that $E(Y_i) = p$ and $V(Y_i) = 2p$.

c) If $Y_1, ..., Y_n$ are iid exponential $\text{EXP}(\beta) \sim G(1, \beta)$, then $X_n = \sum_{i=1}^n Y_i \sim G(n, \beta)$. Note that $E(Y_i) = 1/\beta$ and $V(Y_i) = 1/\beta^2$.

d) If $Y_1, ..., Y_n$ are iid gamma $G(\alpha, \beta)$, then $X_n = \sum_{i=1}^n Y_i \sim G(n\alpha, \beta)$. Note that $E(Y_i) = \alpha/\beta$ and $V(Y_i) = \alpha/\beta^2$.

e) If $Y_1, ..., Y_n$ are iid $N(\mu, \sigma^2)$, then $X_n = \sum_{i=1}^n Y_i \sim N(n\mu, n\sigma^2)$. Note that $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2$.

f) If $Y_1, ..., Y_n$ are iid Poisson $POIS(\theta)$, then $X_n = \sum_{i=1}^n Y_i \sim POIS(n\theta)$. Note that $E(Y_i) = V(Y_i) = \theta$.

g) If $Y_1, ..., Y_n$ are iid inverse Gaussian $IG(\theta, \lambda)$, then $X_n = \sum_{i=1}^n Y_i \sim IG(n\theta, n^2\lambda)$. Note that $E(Y_i) = \theta$ and $V(Y_i) = \theta^3/\lambda$.

h) If $Y_1, ..., Y_n$ are iid geometric geom $(p) \sim \text{NB}(1, p)$, then $X_n = \sum_{i=1}^n Y_i \sim \text{NB}(n, p)$. Note that $E(Y_i) = (1-p)/p$ and $V(Y_i) = (1-p)/p^2$.

i) If $Y_1, ..., Y_n$ are iid negative binomial $NB(r, \rho)$, then $X_n = \sum_{i=1}^n Y_i \sim NB(nr, \rho)$. Note that $E(Y_i) = r(1-p)/p$ and $V(Y_i) = r(1-p)/p^2$.