
Math 581 Exam 2 is Thursday, Oct. 21, 2:00-3:15 NO NOTES. CHECK FORMULAS:
YOU ARE RESPONSIBLE FOR ANY ERRORS ON THIS HANDOUT!

37) Fix (Ω,F , P ). A simple random variable (SRV) is a function X : Ω → R such
that the range of X is finite and {X = x} = {ω : X(ω) = x} ∈ F ∀x ∈ R. Hence X is a
discrete RV with finite support. Note that X =

∑n

i=1 xiIAi
is a SRV if each Ai ∈ F .

38) Suppose events A1, ..., An are disjoint and
⋃n

i=1 Ai = Ω. Let X =
∑n

i=1 xiIAi
.

Then the expected value of X is E(X) =
n

∑

i=1

xiP (Ai) =
∑

x

xP (X = x) which is a finite

sum since X is a SRV. The middle term is useful for proofs. For this SRV, E(X) exists
and is unique. In the second sum, the x need to be the distinct values in the range of X.

39) Suppose SRV X takes on distinct values x1, ..., xm. Then X =
∑m

i=1 xiIBi
where

the Bi = {X = xi} are disjoint with
⋃n

i=1 Bi = Ω. Hence a SRV has the form of 38) with
Ai = Bi and n = m.

40) Th. Let Xn, X and Y be SRVs.
a) −∞ < E(X) < ∞
b) linearity: E(aX + bY ) = aE(X) + bE(Y )
c) If X ≤ Y , then E(X) ≤ E(Y )
d) If {Xn} is uniformly bounded and X = limn Xn on a set of probability 1, then
E(X) = limn E(Xn).
e) If t is a real valued function, then E[t(X)] =

∑

x t(x)P (X = x)
f) If X is nonnegative, X ≥ 0, then E(X) =

∑

i P (X > xi) =
∫ ∞

0
[1 − F (x)]dx.

41) For the theory of integration, assume the function f in the integrand is
measurable where f : Ω → R and (Ω,F , µ) is a measure space.

42) A function f : Ω → [−∞,∞] is a measurable function (or measurable or F
measurable or Borel measurable) if
i) f−1(B) ∈ F ∀B ∈ B(R),
ii) f−1({∞}) = {ω : f(ω = ∞} ∈ F , and
iii) f−1({−∞}) = {ω : f(ω = −∞} ∈ F .

43) Def. Let f : Ω → [0,∞] be a nonnegative function. Then the integral
∫

fdµ = sup{Ai}

∑

i

(infω∈Ai
f(ω))µ(Ai) where {Ai} is a finite F decomposition.)

(A finite F decomposition (F decomp of Ω) means that Ai ∈ F and Ω =
⋃n

i=1 Ai for
some n, and the Ai are disjoint.

44) Conventions for integration of a nonnegative function. a) Ai = ∅ implies that the
inf term = ∞, b) x(∞) = ∞ for x > 0, and c) 0(∞) = 0.

45) Theorem: Let f ≥ 0 with f(ω) =
∑m

j=1 xjIBj
(ω)where each xj ≥ 0 and {Bj} is

an F decomp of Ω. Then
∫

fdµ =
∑m

j=1 xjµ(Bj).
46) If f : Ω → [−∞,∞], then the positive part f+ = fI(f ≥ 0) = max(f, 0), and

the negative part f− = −fI(f ≤ 0) = max(−f, 0) = −min(f, 0). Hence f+(ω) =
f(ω)I(f(ω) ≥ 0) and f−(ω) = −f(ω)I(f(ω) ≤ 0).

Here I(f ≥ 0) = I(0 ≤ f ≤ ∞) while I(f(ω) ≤ 0) = I(−∞ ≤ f ≤ 0). If f is
measurable, then f+ ≥ 0, f− ≥ 0 are both measurable, f = f+ − f−, and |f | = f+ + f−.

47) Convention: ∞−∞ = −∞+ ∞ is undefined.
48) Def: Let f : Ω → [−∞,∞].
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i) The integral
∫

fdµ =
∫

f+dµ −
∫

f−dµ.
ii) The integral is defined unless it involves ∞−∞.
iii) The function f is integrable if both

∫

f+dµ and
∫

f−dµ are finite. Thus
∫

fdµ ∈ R

if f is integrable.
49) A property holds almost everywhere (ae), if the property holds for ω outside

a set of measure 0, i.e. the property holds on a set A such that µ(Ac) = 0. If µ is a
probability measure P , then P (A) = 1 while P (Ac) = 0.

50) Theorem: suppose f and g are both nonnegative.
i) If f = 0 ae, then

∫

fdµ = 0.
ii) If µ({ω : f(ω) > 0}) > 0, then

∫

fdµ > 0.
iii) If

∫

fdµ < ∞, then f < ∞ ae.
iv) If f ≤ g ae, then

∫

fdµ ≤
∫

gdµ.
v) If f = g ae, then

∫

fdµ =
∫

gdµ.

51) Theorem: i) f is integrable iff
∫

|f |dµ < ∞.
ii) monotonicity: If f and g are integrable and f ≤ g ae, then

∫

fdµ ≤
∫

gdµ.
iii) linearity: If f and g are integrable and a, b ∈ R, then af + bg is integrable with
∫

(af + bg)dµ = a
∫

fdµ + b
∫

gdµ.
iv) Monotone Convergence Theorem (MCT): If 0 ≤ fn ↑ f ae, then

∫

fndµ ↑
∫

fdµ.
v) Fatou’s Lemma: For nonnegative fn,

∫

liminfn fndµ ≤ liminfn

∫

fndµ.
vi) Lebesgue’s Dominated Convergence Theorem (LDCT): If the |fn| ≤ g ae where
g is integrable, and if fn → f ae, then f and fn are integrable and

∫

fndµ →
∫

fdµ.
vii) Bounded Convergence Theorem (BCT): If µ(Ω) < ∞ and the fn are uniformly
bounded, then fn → f ae implies

∫

fndµ →
∫

fdµ.
viii) If fn ≥ 0 then

∫
∑∞

n=1 fndµ =
∑∞

n=1

∫

fndµ.
ix) If

∑∞
n=1

∫

|fn|dµ < ∞, then
∫

∑∞
n=1 fndµ =

∑∞
n=1

∫

fndµ.
x) If f and g are integrable, then |

∫

fdµ −
∫

gdµ| ≤
∫

|f − g|dµ.

52) Consequences: a) linearity implies
∫

∑k

n=1 fndµ =
∑k

n=1

∫

fndµ: i.e., the integral
and finite sum operators can be interchanged
b) MCT, LDCT, and BCT give conditions where the limit and

∫

can be interchanged:
limn

∫

fndµ =
∫

limn fndµ =
∫

fdµ
c) 51) viii) and ix) give conditions where the infinite sum

∑∞
n=1 and the integral

∫

can
be interchanged:

∫
∑∞

n=1 fndµ =
∑∞

n=1

∫

fndµ.
53) A common technique is to show the result is true for indicators. Extend to simple

functions by linearity, and then to nonnegative function by a monotone passage of the
limit. Use f = f+ − f− for general functions.

54) Induction Theorem: If R(n) is a statement for each n ∈ N such that a) R(1) is
true, and b) for each k ∈ N, if R(k) is true, then R(k + 1) is true,
then R(n) is true for each n ∈ N.

Note that ∞ 6∈ N. Induction can be used with linearity to prove 52) a), but induction
generally does not work for 52) c).

55) Def. If A ∈ F , then
∫

A
fdµ =

∫

fIAdµ.
56) If µ(A) = 0, then

∫

A
fdµ = 0.

57) If µ : F → [0,∞] is a measure and f ≥ 0, then
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a) ν(A) =
∫

A
fdµ is a measure on F .

b) If
∫

Ω
fdµ = 1, then P (A) =

∫

A
fdµ is a probability measure on F .

58) For expected values, assume (Ω,F , P ) is fixed, and the random variables are
measurable wrt F .

59) We can define the expected value to be E(X) =
∫

XdP as the special case of
integration where the measure µ = P is a probability measure, or we can use a definition
that ignores most measure theory.

60) Def. Let X ≥ 0 be a nonnegative RV.

a) E(X) = limn→∞E(Xn) =

∫

XdP ≤ ∞ where the Xn are nonnegative SRVs with

0 ≤ Xn ↑ X.
b) The expectation of X over an event A is E(XIA).

There are several equivalent ways to define integrals and expected values. Hence
E(X) can also be defined as in 43) with µ replaced by P and f replaced by X : Ω → R.

61) Theorem: Let X, Y be nonnegative random variables.
a) For X, Y ≥ 0 and a, b ≥ 0, E(aX + bY ) = aE(X) + bE(Y ).
b) If X ≤ Y ae, then E(X) ≤ E(Y ).

By induction, if the aiXi ≥ 0, then E(
∑n

i=1 aiXi) =
∑n

i=1 E(aiXi): the expected
value of a finite sum of nonnegative RVs is the sum of the expected values.

62) For a random variable X : Ω → (−∞,∞), then the positive part X+ =
XI(X ≥ 0) = max(X, 0), and the negative part X− = −XI(X ≤ 0) = max(−X, 0) =
−min(X, 0). Hence X = X+ − X−, and |X| = X+ + X−. Random variables are real
functions: ±∞ are not allowed.

63) Def: Let the random variable X : Ω → (−∞,∞).
i) The expected value E(X) =

∫

XdP =
∫

X+dP −
∫

X−dP = E(X+) − E(X−).
ii) The expected value is defined unless it involves ∞−∞.
iii) The random variable X is integrable if E[|X|] < ∞. Thus E(X) ∈ R if X is
integrable.

64) Theorem: i) X is integrable iff both E[X+] and E[X−] are finite.
ii) monotonicity: If X and Y are integrable and X ≤ Y ae, then E(X) ≤ E(Y ).
iii) linearity: If X and Y are integrable and a, b ∈ R, then aX + bY is integrable with
E(aX + bY ) = aE(X) + bE(Y ).
iv) Monotone Convergence Theorem (MCT): If 0 ≤ Xn ↑ X ae, then
E(Xn) ↑ E(X).
v) Fatou’s Lemma: For RVs Xn ≥ 0, E[lim infn Xn] ≤ lim infn E[Xn].
vi) Lebesgue’s Dominated Convergence Theorem (LDCT): If the |Xn| ≤ Y ae
where Y is integrable, and if Xn → X ae, then X and Xn are integrable and E(Xn) →
E(X).
vii) Bounded Convergence Theorem (BCT): If the Xn are uniformly bounded, then
Xn → X ae implies E(Xn) → E(X).
viii) If Xn ≥ 0 then E(

∑∞
n=1 Xn) =

∑∞
n=1 E(Xn).

ix) If
∑∞

n=1 E(|Xn|) < ∞, then E(
∑∞

n=1 Xn) =
∑∞

n=1 E(Xn).
x) If X and Y are integrable, then |E(X) − E(Y )| ≤ E[|X − Y |].

65) Consequences: a) linearity implies E(
∑k

n=1 anXn) =
∑k

n=1 anE(Xn): i.e., the
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expectation and finite sum operators can be interchanged, or the expectation of a finite
sum is the sum of the expectations if the Xn are integrable.
b) MCT, LDCT, and BCT give conditions where the limit and E can be interchanged:
limn E(Xn) = E[limn Xn] = E(X)
c) 64) viii) and ix) give conditions where the infinite sum

∑∞
n=1 and the expected value

can be interchanged: E[
∑∞

n=1 Xn] =
∑∞

n=1 E(Xn).
66) Given (Ω,F , P ), the collection of all integrable random vectors or RVs is denoted

by L1 = L1(Ω,F , P ).
67) Let X be a 1×k random vector with cdf FX (t) = F (t) = P (X1 ≤ t1, ..., Xk ≤ tk).

Then the Lebesgue Stieltjes integral E[h(X)] =
∫

h(t)dF (t) provided the expected value
exists, and the integral is a linear operator with respect to both h and F . If X is a random
variable, then E[h(X)] =

∫

h(t)dF (t). If W = h(X) is integrable or if W = h(X) ≥ 0,
then the expected value exists. Here h : R

k → R
j with 1 ≤ j ≤ k.

68) The distribution of a 1 × k random vector X is a mixture distribution if the
cdf of X is

FX (t) =

J
∑

j=1

πjFU j
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and FU j
(t) is

the cdf of a 1× k random vector U j. Then X has a mixture distribution of the U j with
probabilities πj. If X is a random variable, then

FX(t) =
J

∑

j=1

πjFUj
(t).

69) Expected Value Theorem: Assume all expected values exist. Let dx =
dx1dx2...dxk. Let X be the support of X = {x : f(x) > 0} or {x : p(x) > 0}.
a) If X has (joint) pdf f(x), then E[h(X)] =

∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x)f(x) dx =

∫

· · ·
∫

X
h(x)f(x) dx.

Hence E[X] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
xf(x) dx =

∫

· · ·
∫

X
xf(x) dx.

b) If X has pdf f(x), then E[h(X)] =
∫ ∞

−∞
h(x)f(x) dx =

∫

X
h(x)f(x) dx. Hence

E[X] =
∫ ∞

−∞
xf(x) dx =

∫

X
xf(x) dx.

c) If X has (joint) pmf p(x), then E[h(X)] =
∑

x1
· · ·∑xk

h(x)p(x) =
∑

x∈Rk h(x)p(x) =
∑

x∈X h(x)p(x). Hence E[X] =
∑

x1
· · ·∑xk

xp(x) =
∑

x∈Rk xp(x) =
∑

x∈X xp(x).
d) If X has pmf p(x), then E[h(X)] =

∑

x h(x)p(x) =
∑

x∈X h(x)p(x). Hence
E[X] =

∑

x xp(x) =
∑

x∈X xp(x).
e) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the
E(h(U j)) exist. Then

E[h(X)] =
J

∑

j=1

πjE[h(U j)] and E(X) =
J

∑

j=1

πjE[U j].

f) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the E(h(Uj))
exist. Then

E[h(X)] =
J

∑

j=1

πjE[h(Uj)] and E(X) =
J

∑

j=1

πjE[Uj].
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This theorem is easy to prove if the U j are continuous random vectors with (joint)
probability density functions (pdfs) fU j

(t). Then X is a continuous random vector with

pdf

fX (t) =
J

∑

j=1

πjfU j
(t), and E[h(X)] =

∫ ∞

−∞

· · ·
∫ ∞

−∞

h(t)fX (t)dt

=

J
∑

j=1

πj

∫ ∞

−∞

· · ·
∫ ∞

−∞

h(t)fU j
(t)dt =

J
∑

j=1

πjE[h(U j)]

where E[h(U j)] is the expectation with respect to the random vector U j .
Alternatively, with respect to a Lebesgue Stieltjes integral, E[h(X)] =

∫

h(t)dF (t)
provided the expected value exists, and the integral is a linear operator with respect to
both h and F . Hence for a mixture distribution, E[h(X)] =

∫

h(t)dF (t) =

∫

h(t) d

[

J
∑

j=1

πjFU j
(t)

]

=
J

∑

j=1

πj

∫

h(t)dFU j
(t) =

J
∑

j=1

πjE[h(U j)].

70) Fix (Ω,F , P ). Let the induced probability PX = PF be PX(B) = P [X−1(B)]
for any B ∈ B(R). Then (R,B(R), PX) is a probability space. If X is a 1 × k random
vector, then the induced probability PX = PF be PX (B) = P [X−1(B)] for any
B ∈ B(Rk). Then (Rk,B(Rk), PX ) is a probability space.

Then E[h(X)] =
∫

h(X) dP =
∫

h(x) dF (x) = EF [h] =
∫

h dPX . Then E[h(X)] =
∫

h(X) dP =
∫

h(x) dF (x) = EF [h] =
∫

h dPX . Here W = h(X) is a RV wrt (Ω,F , P ),
while Z = h is a RV wrt (R,B(R), PX).

71) Let X : Ω → R. Let A, B, Bn ∈ B(R).
i) If A ⊆ B, then X−1(A) ⊆ X−1(B).
ii) X−1(∪nBn) = ∪nX

−1(Bn).
iii) X−1(∩nBn) = ∩nX−1(Bn).
iv) If A and B are disjoint, then X−1(A) and X−1(B) are disjoint.
v) X−1(Bc) = [X−1(B)]c.
(The unions and intersections in ii) and iii) can be finite, countable or uncountable.)

72) Theorem: Fix (Ω,F , P ). Let X : Ω → R. X is a measurable function iff X is a
RV iff any one of the following conditions holds.
i) X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F ∀ B ∈ B(R).
ii) X−1((−∞, t]) = {X ≤ t} = {ω ∈ Ω : X(ω) ≤ t} ∈ F ∀t ∈ R.
iii) X−1((−∞, t)) = {X < t} = {ω ∈ Ω : X(ω) < t} ∈ F ∀t ∈ R.
iv) X−1([t,∞)) = {X ≥ t} = {ω ∈ Ω : X(ω) ≥ t} ∈ F ∀t ∈ R.
v) X−1((t,∞)) = {X > t} = {ω ∈ Ω : X(ω) > t} ∈ F ∀t ∈ R.

73) Theorem: Let X, Y , and Xi be RVs on (Ω,F , P ).
a) aX + bY is a RV for any a, b ∈ R. Hence

∑n

i=1 Xi is a RV.
b) max(X, Y ) is a RV. Hence max(X1, ..., Xn) is a RV.
c) min(X, Y ) is a RV. Hence min(X1, ..., Xn) is a RV.
d) XY is a RV. Hence X1 · · ·Xn is a RV.
e) X/Y is a RV if Y (ω) 6= 0 ∀ ω ∈ Ω.
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f) supn Xn is a RV.
g) infn Xn is a RV.
h) limsupn Xn is a RV.
i) liminfn Xn is a RV.
j) If limnXn = X, then X is a RV.
k) If limm

∑m
n=1 Xn =

∑∞
n=1 Xn = X, then X is a RV.

l) If h : R
n → R is measurable, then Y = h(X1, ..., Xn) is a RV.

m) If h : R
n → R is continuous, then h is measurable and Y = h(X1, ..., Xn) is a RV.

n) If h : R → R is monotone, then h is measurable and h(X) is a RV.
74) Let f(x) ≥ 0 be a Lebesgue integrable pdf of a RV with cdf F . Then PX(B) =

PF (B) =
∫

B
f(x)dx wrt Lebesgue integration. So many probability distributions can be

obtained with Lebesgue integration.
75) RVs X1, ..., Xk are independent if P (X1 ∈ B1, ..., Xk ∈ Bk) =

∏n

i=1 P (Xi ∈
Bi) for any B1, ..., Bk ∈ B(R) iff FX1,...,Xk

(x1, ..., xk) = FX1
(x1) · · ·FXk

(xk) for any real
x1, ..., xk iff σ(X1), ..., σ(Xk) are independent (∀Ai ∈ σ(Xi), A1, ..., Ak are independent).
An infinite collection of RVs X1, X2, ... is independent if any finite subset is independent.
If pdfs exist, X1, ..., Xk are independent iff fX1,...,Xk

(x1, ..., xk) = fX1
(x1) · · · fXk

(xk) for
any real x1, ..., xk. If pmfs exist, X1, ..., Xk are independent iff pX1,...,Xk

(x1, ..., xk) =
pX1

(x1) · · · pXk
(xk) for any real x1, ..., xk. Recall that the σ-field σ(X) = {X−1(B) : B ∈

B(R}.
76) Suppose X1, ..., Xn are independent and gi(Xi) is a function of Xi alone. Then

E[g1(x1) · · · gn(Xi)] = E[
∏n

i=1 gi(Xi)] =
∏n

i=1 E[gi(Xi)] provided the expected values
exist.

77) Let (Ω1,F1, P1) and (Ω2,F2, P2) be two probability spaces. The Cartesian prod-
uct = cross product Ω1 × Ω2 = {(ω1, ω2) : Ω1 ∈ Ω1, Ω2 ∈ Ω2}. The product of F1 and
F2, denoted by F1 × F2, is the σ-field σ(A) where A = {A1 × A2 : A1 ∈ F1, A2 ∈ F2} is
the collection of all cross products A1 × A2 of events in F1 and F2.

78) Theorem: There is a unique probability measure P = P1 ×P2, called the product
of P1 and P2 or the product probability measure, such that P (A1 ×A2) = P1(A1)P2(A2)
for all A1 ∈ F1 and A2 ∈ F2.

79) The product probability space is (Ω1 ×Ω2,F1 × F2, P1 × P2).
80) 77)-79) can be extended to (Ωi,Fi, Pi) for i = 1, ..., n. Denote P1 × · · · × Pn

by
∏n

i=1 Pi, F1 × · · · × Fn by
∏n

i=1 Fi, and Ω1 × · · · × Ωn by
∏n

i=1 Ωi. If (Ωi,Fi, Pi) =
(R,B(R), Pi), then the product probability space is (Rn,B(Rn),

∏n

i=1 Pi). If (Ωi,Fi, Pi) =
(R,B(R), PXi

), then the product probability space is (Rn,B(Rn),
∏n

i=1 PXi
).

81) Let independent Xi be defined on (R,B(R), PXi
). Then the product probability

space (Ω,F , P ) = (Rn,B(Rn),
∏n

i=1 PXi
) is the probability space for X = (X1, ..., Xn).

82) Let
∫

fdµ =
∫

f(x)dµ(x). Then the double integral

∫ ∫

Ω1×Ω2

f(x1, x2)d[P1 × P2(x1, x2)] =

∫

Ω1

[
∫

Ω2

f(x1, x2)dP2(x2)

]

dP1(x1) =

∫

Ω2

[
∫

Ω1

f(x1, x2)dP1(x1)

]

dP2(x2).

The last two equations are known as iterated integrals.
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83) Fubini’s Theorem: a) Assume f ≥ 0. Then
∫

Ω1

f(x1, x2)dP1(x1) is measurable

F2,
∫

Ω2

f(x1, x2)dP2(x2) is measurable F1, and 82) holds.

b) Assume f is integrable wrt P1 × P2, then
∫

Ω1

f(x1, x2)dP1(x1) is finite ae and

measurable F2 ae,
∫

Ω2

f(x1, x2)dP2(x2) is finite ae and measurable F1 ae, and 82) holds.
Note: Part 83 a) is also known as Tonelli’s theorem or the Fubini-Tonelli theorem.

The double integral is often written as
∫

Ω1×Ω2

. Note that f : Ω1 × Ω2 → R (at least
ae). Fubini’s theorem for product probability measures shows double integrals can be
calculated with iterated integrals if X1 X2, and the theorem is sometimes stated as
below.

84) Fubini’s Theorem for product probability measures: If f is measurable,
then
∫

Ω1×Ω2

fd[P1×P2] =

∫

Ω1

[
∫

Ω2

f(x1, x2)dP2(x2)

]

dP1(x1) =

∫

Ω2

[
∫

Ω1

f(x1, x2)dP1(x1)

]

dP2(x2)

provided that either a) f ≥ 0, or b)
∫

Ω1×Ω2

|f |d[P1 × P2] < ∞.

85) A product measure µ satisfies µ(
∏n

i=1 Ai) =
∏n

i=1 µ(Ai).
86) Fubini’s Theorem for product measures: If f is measurable, then

∫

Ω1×Ω2

fd[µ1×µ2] =

∫

Ω1

[
∫

Ω2

f(x1, x2)dµ2(x2)

]

dµ1(x1) =

∫

Ω2

[
∫

Ω1

f(x1, x2)dµ1(x1)

]

dµ2(x2)

provided that the µi are σ-finite and either a) f ≥ 0, or b)
∫

Ω1×Ω2

|f |d[µ1 × µ2] < ∞.
Note: the Lebesgue measure is σ−finite on R and the counting measure µC is σ-finite

if Ω is countable, where µC(A) = the number of points in set A. Let λ be the Legesgue
measure on R

2 and µL the Lebesgue measure on R. The λ(A × B) = µL(A)µL(B) is a
product measure. Let ν be the counting measure on Z

2 and µC the counting measure on
Z. Then ν(A ×B) = µC(A)µC(B) is a product measure.

87) Fubini’s Theorem for Lebesgue Integrals: Let C = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d} = [a, b]× [c, d]. Let g(x, y) be measurable and Lebesgue integrable. Then

∫ ∫

C

g(x, y)dxdy =

∫ d

c

[
∫ b

a

g(x, y)dx

]

dy =

∫ b

a

[
∫ d

c

g(x, y)dy

]

dx.

88) The result in 87) can be extended to where the limits of integration are infinite
and to n ≥ 2 integrals. Using g(x, y) = h(x, y)f(x, y) where f is a pdf gives E[h(X, Y )].
Note that g : R

2 → R (at least ae).
89) (Lindeberg-Lévy) Central Limit Theorem (CLT): Let X1, ..., Xn be iid with

E(X) = µ and V (X) = σ2. Then
√

n(Xn − µ)
D→ N(0, σ2).

90) If Fn and F are cdfs, then Fn converges weakly to F , written Fn
W→ F , if

limnFn(x) = F (x) at every continuity point of X.
91) Let {Zn, n = 1, 2, ...} be a sequence of random variables with cdfs Fn, and let X

be a random variable with cdf F. Then Zn converges in distribution to X, written

Zn
D→ X,
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or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting distribution
or the asymptotic distribution of Zn.

Notes: a) If Xn
D→ X, then the limiting distribution (the distribution of X) does not

depend on n.

b)Zn =
√

n

(

Xn − µ

σ

)

=

(

Xn − µ

σ/
√

n

)

=

(∑n
i=1 Xi − nµ√

nσ

)

is the z–score of Xn (and the z-score of
∑n

i=1 Xi), and Zn
D→ N(0, 1). c) Two applications

of the CLT are to give the limiting distribution of
√

n(Xn −µ) and the limiting distribu-
tion of

√
n(Xn/n − µY ) for a random variable Xn such that Xn =

∑n

i=1 Yi where the Yi

are iid with E(Y ) = µY and V (Y ) = σ2
Y . See point 92) below. d) Xn

D→ X is equivalent
to FXn converges weakly to FX.

92) Theorem: a) If Y1, ..., Yn are iid binomial BIN(k, ρ) random variables, then Xn =
∑n

i=1 Yi ∼ BIN(nk, ρ). Note that E(Yi) = kρ and V (Yi) = kρ(1 − ρ).
b) Denote a chi–square χ2

p random variable by χ2(p). If Y1, ..., Yn are iid χ2
p, then

Xn =
∑n

i=1 Yi ∼ χ2
np. Note that E(Yi) = p and V (Yi) = 2p.

c) If Y1, ..., Yn are iid exponential EXP(β) ∼ G(1, β), then Xn =
∑n

i=1 Yi ∼ G(n, β).
Note that E(Yi) = 1/β and V (Yi) = 1/β2.

d) If Y1, ..., Yn are iid gamma G(α, β), then Xn =
∑n

i=1 Yi ∼ G(nα, β). Note that
E(Yi) = α/β and V (Yi) = α/β2.

e) If Y1, ..., Yn are iid N(µ, σ2), then Xn =
∑n

i=1 Yi ∼ N(nµ, nσ2). Note that E(Yi) = µ
and V (Yi) = σ2.

f) If Y1, ..., Yn are iid Poisson POIS(θ), then Xn =
∑n

i=1 Yi ∼ POIS(nθ). Note that
E(Yi) = V (Yi) = θ.

g) If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ), then Xn =
∑n

i=1 Yi ∼ IG(nθ, n2λ).
Note that E(Yi) = θ and V (Yi) = θ3/λ.

h) If Y1, ..., Yn are iid geometric geom(p) ∼ NB(1, p), then Xn =
∑n

i=1 Yi ∼ NB(n, p).
Note that E(Yi) = (1 − p)/p and V (Yi) = (1 − p)/p2.

i) If Y1, ..., Yn are iid negative binomial NB(r, ρ), then Xn =
∑n

i=1 Yi ∼ NB(nr, ρ).
Note that E(Yi) = r(1 − p)/p and V (Yi) = r(1 − p)/p2.
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