Math 581 Exam 2 is Thursday, Oct. 21, 2:00-3:15 NO NOTES. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON THIS HANDOUT!
37) Fix (Ω, \mathcal{F}, P). A simple random variable (SRV) is a function $X: \Omega \rightarrow \mathbb{R}$ such that the range of X is finite and $\{X=x\}=\{\omega: X(\omega)=x\} \in \mathcal{F} \forall x \in \mathbb{R}$. Hence X is a discrete RV with finite support. Note that $X=\sum_{i=1}^{n} x_{i} I_{A_{i}}$ is a SRV if each $A_{i} \in \mathcal{F}$.
38) Suppose events A_{1}, \ldots, A_{n} are disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$. Let $X=\sum_{i=1}^{n} x_{i} I_{A_{i}}$. Then the expected value of X is $E(X)=\sum_{i=1}^{n} x_{i} P\left(A_{i}\right)=\sum_{x} x P(X=x)$ which is a finite sum since X is a SRV. The middle term is useful for proofs. For this SRV, $E(X)$ exists and is unique. In the second sum, the x need to be the distinct values in the range of X.
39) Suppose SRV X takes on distinct values x_{1}, \ldots, x_{m}. Then $X=\sum_{i=1}^{m} x_{i} I_{B_{i}}$ where the $B_{i}=\left\{X=x_{i}\right\}$ are disjoint with $\bigcup_{i=1}^{n} B_{i}=\Omega$. Hence a SRV has the form of 38) with $A_{i}=B_{i}$ and $n=m$.
40) Th. Let X_{n}, X and Y be SRVs.
a) $-\infty<E(X)<\infty$
b) linearity: $E(a X+b Y)=a E(X)+b E(Y)$
c) If $X \leq Y$, then $E(X) \leq E(Y)$
d) If $\left\{X_{n}\right\}$ is uniformly bounded and $X=\lim _{n} X_{n}$ on a set of probability 1 , then $E(X)=\lim _{n} E\left(X_{n}\right)$.
e) If t is a real valued function, then $E[t(X)]=\sum_{x} t(x) P(X=x)$
f) If X is nonnegative, $X \geq 0$, then $E(X)=\sum_{i} P\left(X>x_{i}\right)=\int_{0}^{\infty}[1-F(x)] d x$.
41) For the theory of integration, assume the function f in the integrand is measurable where $f: \Omega \rightarrow \mathbb{R}$ and $(\Omega, \mathcal{F}, \mu)$ is a measure space.
42) A function $f: \Omega \rightarrow[-\infty, \infty]$ is a measurable function (or measurable or \mathcal{F} measurable or Borel measurable) if
i) $f^{-1}(B) \in \mathcal{F} \forall B \in \mathcal{B}(\mathbb{R})$,
ii) $f^{-1}(\{\infty\})=\{\omega: f(\omega=\infty\} \in \mathcal{F}$, and
iii) $f^{-1}(\{-\infty\})=\{\omega: f(\omega=-\infty\} \in \mathcal{F}$.
43) Def. Let $f: \Omega \rightarrow[0, \infty]$ be a nonnegative function. Then the integral
$\int f d \mu=\sup _{\left\{A_{i}\right\}} \sum_{i}\left(\inf f_{\omega \in A_{i}} f(\omega)\right) \mu\left(A_{i}\right)$ where $\left\{A_{i}\right\}$ is a finite \mathcal{F} decomposition.)
(A finite \mathcal{F} decomposition $(\mathcal{F}$ decomp of $\Omega)$ means that $A_{i} \in \mathcal{F}$ and $\Omega=\bigcup_{i=1}^{n} A_{i}$ for some n, and the A_{i} are disjoint.
44) Conventions for integration of a nonnegative function. a) $A_{i}=\emptyset$ implies that the \inf term $=\infty, \mathrm{b}) x(\infty)=\infty$ for $x>0$, and c) $0(\infty)=0$.
45) Theorem: Let $f \geq 0$ with $f(\omega)=\sum_{j=1}^{m} x_{j} I_{B_{j}}(\omega)$ where each $x_{j} \geq 0$ and $\left\{B_{j}\right\}$ is an \mathcal{F} decomp of Ω. Then $\int f d \mu=\sum_{j=1}^{m} x_{j} \mu\left(B_{j}\right)$.
46) If $f: \Omega \rightarrow[-\infty, \infty]$, then the positive part $f^{+}=f I(f \geq 0)=\max (f, 0)$, and the negative part $f^{-}=-f I(f \leq 0)=\max (-f, 0)=-\min (f, 0)$. Hence $f^{+}(\omega)=$ $f(\omega) I(f(\omega) \geq 0)$ and $f^{-}(\omega)=-f(\omega) I(f(\omega) \leq 0)$.

Here $I(f \geq 0)=I(0 \leq f \leq \infty)$ while $I(f(\omega) \leq 0)=I(-\infty \leq f \leq 0)$. If f is measurable, then $f^{+} \geq 0, f^{-} \geq 0$ are both measurable, $f=f^{+}-f^{-}$, and $|f|=f^{+}+f^{-}$.
47) Convention: $\infty-\infty=-\infty+\infty$ is undefined.
48) Def: Let $f: \Omega \rightarrow[-\infty, \infty]$.
i) The integral $\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu$.
ii) The integral is defined unless it involves $\infty-\infty$.
iii) The function f is integrable if both $\int f^{+} d \mu$ and $\int f^{-} d \mu$ are finite. Thus $\int f d \mu \in \mathbb{R}$ if f is integrable.
49) A property holds almost everywhere (ae), if the property holds for ω outside a set of measure 0 , i.e. the property holds on a set A such that $\mu\left(A^{c}\right)=0$. If μ is a probability measure P, then $P(A)=1$ while $P\left(A^{c}\right)=0$.
50) Theorem: suppose f and g are both nonnegative.
i) If $f=0 \mathrm{ae}$, then $\int f d \mu=0$.
ii) If $\mu(\{\omega: f(\omega)>0\})>0$, then $\int f d \mu>0$.
iii) If $\int f d \mu<\infty$, then $f<\infty$ ae.
iv) If $f \leq g$ ae, then $\int f d \mu \leq \int g d \mu$.
v) If $f=g$ ae, then $\int f d \mu=\int g d \mu$.
51) Theorem: i) f is integrable iff $\int|f| d \mu<\infty$.
ii) monotonicity: If f and g are integrable and $f \leq g$ ae, then $\int f d \mu \leq \int g d \mu$.
iii) linearity: If f and g are integrable and $a, b \in \mathbb{R}$, then $a f+b g$ is integrable with $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
iv) Monotone Convergence Theorem (MCT): If $0 \leq f_{n} \uparrow f$ ae, then $\int f_{n} d \mu \uparrow \int f d \mu$.
v) Fatou's Lemma: For nonnegative $f_{n}, \int \operatorname{limin} f_{n} f_{n} d \mu \leq \operatorname{limin} f_{n} \int f_{n} d \mu$.
vi) Lebesgue's Dominated Convergence Theorem (LDCT): If the $\left|f_{n}\right| \leq g$ ae where g is integrable, and if $f_{n} \rightarrow f$ ae, then f and f_{n} are integrable and $\int f_{n} d \mu \rightarrow \int f d \mu$.
vii) Bounded Convergence Theorem (BCT): If $\mu(\Omega)<\infty$ and the f_{n} are uniformly bounded, then $f_{n} \rightarrow f$ ae implies $\int f_{n} d \mu \rightarrow \int f d \mu$.
viii) If $f_{n} \geq 0$ then $\int \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu$.
ix) If $\sum_{n=1}^{\infty} \int\left|f_{n}\right| d \mu<\infty$, then $\int \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu$.
x) If f and g are integrable, then $\left|\int f d \mu-\int g d \mu\right| \leq \int|f-g| d \mu$.
52) Consequences: a) linearity implies $\int \sum_{n=1}^{k} f_{n} d \mu=\sum_{n=1}^{k} \int f_{n} d \mu$: i.e., the integral and finite sum operators can be interchanged
b) MCT, LDCT, and BCT give conditions where the limit and \int can be interchanged: $\lim _{n} \int f_{n} d \mu=\int \lim _{n} f_{n} d \mu=\int f d \mu$
c) 51) viii) and ix) give conditions where the infinite sum $\sum_{n=1}^{\infty}$ and the integral \int can be interchanged: $\int \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu$.
53) A common technique is to show the result is true for indicators. Extend to simple functions by linearity, and then to nonnegative function by a monotone passage of the limit. Use $f=f^{+}-f^{-}$for general functions.
54) Induction Theorem: If $R(n)$ is a statement for each $n \in \mathbb{N}$ such that a) $\mathrm{R}(1)$ is true, and b) for each $k \in \mathbb{N}$, if $R(k)$ is true, then $R(k+1)$ is true, then $R(n)$ is true for each $n \in \mathbb{N}$.

Note that $\infty \notin \mathbb{N}$. Induction can be used with linearity to prove 52) a), but induction generally does not work for 52) c).
55) Def. If $A \in \mathcal{F}$, then $\int_{A} f d \mu=\int f I_{A} d \mu$.
56) If $\mu(A)=0$, then $\int_{A} f d \mu=0$.
57) If $\mu: \mathcal{F} \rightarrow[0, \infty]$ is a measure and $f \geq 0$, then
a) $\nu(A)=\int_{A} f d \mu$ is a measure on \mathcal{F}.
b) If $\int_{\Omega} f d \mu=1$, then $P(A)=\int_{A} f d \mu$ is a probability measure on \mathcal{F}.
58) For expected values, assume (Ω, \mathcal{F}, P) is fixed, and the random variables are measurable wrt \mathcal{F}.
59) We can define the expected value to be $E(X)=\int X d P$ as the special case of integration where the measure $\mu=P$ is a probability measure, or we can use a definition that ignores most measure theory.
60) Def. Let $X \geq 0$ be a nonnegative RV.
a) $E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right)=\int X d P \leq \infty$ where the X_{n} are nonnegative SRVs with $0 \leq X_{n} \uparrow X$.
b) The expectation of X over an event A is $E\left(X I_{A}\right)$.

There are several equivalent ways to define integrals and expected values. Hence $E(X)$ can also be defined as in 43) with μ replaced by P and f replaced by $X: \Omega \rightarrow \mathbb{R}$.
61) Theorem: Let X, Y be nonnegative random variables.
a) For $X, Y \geq 0$ and $a, b \geq 0, E(a X+b Y)=a E(X)+b E(Y)$.
b) If $X \leq Y$ ae, then $E(X) \leq E(Y)$.

By induction, if the $a_{i} X_{i} \geq 0$, then $E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right)$: the expected value of a finite sum of nonnegative RVs is the sum of the expected values.
62) For a random variable $X: \Omega \rightarrow(-\infty, \infty)$, then the positive part $X^{+}=$ $X I(X \geq 0)=\max (X, 0)$, and the negative part $X^{-}=-X I(X \leq 0)=\max (-X, 0)=$ $-\min (X, 0)$. Hence $X=X^{+}-X^{-}$, and $|X|=X^{+}+X^{-}$. Random variables are real functions: $\pm \infty$ are not allowed.
63) Def: Let the random variable $X: \Omega \rightarrow(-\infty, \infty)$.
i) The expected value $E(X)=\int X d P=\int X^{+} d P-\int X^{-} d P=E\left(X^{+}\right)-E\left(X^{-}\right)$.
ii) The expected value is defined unless it involves $\infty-\infty$.
iii) The random variable X is integrable if $E[|X|]<\infty$. Thus $E(X) \in \mathbb{R}$ if X is integrable.
64) Theorem: i) X is integrable iff both $E\left[X^{+}\right]$and $E\left[X^{-}\right]$are finite.
ii) monotonicity: If X and Y are integrable and $X \leq Y$ ae, then $E(X) \leq E(Y)$.
iii) linearity: If X and Y are integrable and $a, b \in \mathbb{R}$, then $a X+b Y$ is integrable with $E(a X+b Y)=a E(X)+b E(Y)$.
iv) Monotone Convergence Theorem (MCT): If $0 \leq X_{n} \uparrow X$ ae, then $E\left(X_{n}\right) \uparrow E(X)$.
v) Fatou's Lemma: For RVs $X_{n} \geq 0, E\left[\liminf _{n} X_{n}\right] \leq \liminf _{n} E\left[X_{n}\right]$.
vi) Lebesgue's Dominated Convergence Theorem (LDCT): If the $\left|X_{n}\right| \leq Y$ ae where Y is integrable, and if $X_{n} \rightarrow X$ ae, then X and X_{n} are integrable and $E\left(X_{n}\right) \rightarrow$ $E(X)$.
vii) Bounded Convergence Theorem (BCT): If the X_{n} are uniformly bounded, then $X_{n} \rightarrow X$ ae implies $E\left(X_{n}\right) \rightarrow E(X)$.
viii) If $X_{n} \geq 0$ then $E\left(\sum_{n=1}^{\infty} X_{n}\right)=\sum_{n=1}^{\infty} E\left(X_{n}\right)$.
ix) If $\sum_{n=1}^{\infty} E\left(\left|X_{n}\right|\right)<\infty$, then $E\left(\sum_{n=1}^{\infty} X_{n}\right)=\sum_{n=1}^{\infty} E\left(X_{n}\right)$.
x) If X and Y are integrable, then $|E(X)-E(Y)| \leq E[|X-Y|]$.
65) Consequences: a) linearity implies $E\left(\sum_{n=1}^{k} a_{n} X_{n}\right)=\sum_{n=1}^{k} a_{n} E\left(X_{n}\right)$: i.e., the
expectation and finite sum operators can be interchanged, or the expectation of a finite sum is the sum of the expectations if the X_{n} are integrable.
b) MCT, LDCT, and BCT give conditions where the limit and E can be interchanged: $\lim _{n} E\left(X_{n}\right)=E\left[\lim _{n} X_{n}\right]=E(X)$
c) 64) viii) and ix) give conditions where the infinite sum $\sum_{n=1}^{\infty}$ and the expected value can be interchanged: $E\left[\sum_{n=1}^{\infty} X_{n}\right]=\sum_{n=1}^{\infty} E\left(X_{n}\right)$.
66) Given (Ω, \mathcal{F}, P), the collection of all integrable random vectors or RVs is denoted by $L^{1}=L^{1}(\Omega, \mathcal{F}, P)$.
67) Let \boldsymbol{X} be a $1 \times k$ random vector with $\operatorname{cdf} F_{\boldsymbol{X}}(\boldsymbol{t})=F(\boldsymbol{t})=P\left(X_{1} \leq t_{1}, \ldots, X_{k} \leq t_{k}\right)$. Then the Lebesgue Stieltjes integral $E[h(\boldsymbol{X})]=\int h(\boldsymbol{t}) d F(\boldsymbol{t})$ provided the expected value exists, and the integral is a linear operator with respect to both h and F. If X is a random variable, then $E[h(X)]=\int h(t) d F(t)$. If $W=h(X)$ is integrable or if $W=h(X) \geq 0$, then the expected value exists. Here $h: \mathbb{R}^{k} \rightarrow \mathbb{R}^{j}$ with $1 \leq j \leq k$.
68) The distribution of a $1 \times k$ random vector \boldsymbol{X} is a mixture distribution if the cdf of \boldsymbol{X} is

$$
F_{\boldsymbol{X}}(\boldsymbol{t})=\sum_{j=1}^{J} \pi_{j} F_{\boldsymbol{U}_{j}}(\boldsymbol{t})
$$

where the probabilities π_{j} satisfy $0 \leq \pi_{j} \leq 1$ and $\sum_{j=1}^{J} \pi_{j}=1, J \geq 2$, and $F_{\boldsymbol{U}_{j}}(\boldsymbol{t})$ is the cdf of a $1 \times k$ random vector \boldsymbol{U}_{j}. Then \boldsymbol{X} has a mixture distribution of the \boldsymbol{U}_{j} with probabilities π_{j}. If X is a random variable, then

$$
F_{X}(t)=\sum_{j=1}^{J} \pi_{j} F_{U_{j}}(t)
$$

69) Expected Value Theorem: Assume all expected values exist. Let $d \boldsymbol{x}=$ $d x_{1} d x_{2} \ldots d x_{k}$. Let \mathcal{X} be the support of $\boldsymbol{X}=\{\boldsymbol{x}: f(\boldsymbol{x})>0\}$ or $\{\boldsymbol{x}: p(\boldsymbol{x})>0\}$.
a) If \boldsymbol{X} has (joint) pdf $f(\boldsymbol{x})$, then $E[h(\boldsymbol{X})]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}=\int \cdots \int_{\mathcal{X}} h(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}$. Hence $E[\boldsymbol{X}]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \boldsymbol{x} f(\boldsymbol{x}) d \boldsymbol{x}=\int \cdots \int_{\mathcal{X}}^{\infty} \boldsymbol{x} f(\boldsymbol{x}) d \boldsymbol{x}$.
b) If X has pdf $f(x)$, then $E[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x=\int_{\mathcal{X}} h(x) f(x) d x$. Hence $E[X]=\int_{-\infty}^{\infty} x f(x) d x=\int_{\mathcal{X}} x f(x) d x$.
c) If \boldsymbol{X} has (joint) $\operatorname{pmf} p(\boldsymbol{x})$, then $E[h(\boldsymbol{X})]=\sum_{x_{1}} \cdots \sum_{x_{k}} h(\boldsymbol{x}) p(\boldsymbol{x})=\sum_{\boldsymbol{x} \in \mathbb{R}^{k}} h(\boldsymbol{x}) p(\boldsymbol{x})=$ $\sum_{\boldsymbol{x} \in \mathcal{X}} h(\boldsymbol{x}) p(\boldsymbol{x})$. Hence $E[\boldsymbol{X}]=\sum_{x_{1}} \cdots \sum_{x_{k}} \boldsymbol{x} p(\boldsymbol{x})=\sum_{\boldsymbol{x} \in \mathbb{R}^{k}} \boldsymbol{x} p(\boldsymbol{x})=\sum_{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x} p(\boldsymbol{x})$.
d) If X has $\operatorname{pmf} p(x)$, then $E[h(X)]=\sum_{x} h(x) p(x)=\sum_{x \in \mathcal{X}} h(x) p(x)$. Hence
$E[X]=\sum_{x} x p(x)=\sum_{x \in \mathcal{X}} x p(x)$.
e) Suppose \boldsymbol{X} has a mixture distribution given by 68) and that $E(h(\boldsymbol{X}))$ and the $E\left(h\left(\boldsymbol{U}_{j}\right)\right)$ exist. Then

$$
E[h(\boldsymbol{X})]=\sum_{j=1}^{J} \pi_{j} E\left[h\left(\boldsymbol{U}_{j}\right)\right] \text { and } \mathrm{E}(\boldsymbol{X})=\sum_{\mathrm{j}=1}^{\mathrm{J}} \pi_{\mathrm{j}} \mathrm{E}\left[\boldsymbol{U}_{\mathrm{j}}\right] .
$$

f) Suppose X has a mixture distribution given by 68) and that $E(h(X))$ and the $E\left(h\left(U_{j}\right)\right)$ exist. Then

$$
E[h(X)]=\sum_{j=1}^{J} \pi_{j} E\left[h\left(U_{j}\right)\right] \text { and } \mathrm{E}(\mathrm{X})=\sum_{\mathrm{j}=1}^{\mathrm{J}} \pi_{\mathrm{j}} \mathrm{E}\left[\mathrm{U}_{\mathrm{j}}\right] .
$$

This theorem is easy to prove if the \boldsymbol{U}_{j} are continuous random vectors with (joint) probability density functions (pdfs) $f_{\boldsymbol{U}_{j}}(\boldsymbol{t})$. Then \boldsymbol{X} is a continuous random vector with pdf

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{t}) & =\sum_{j=1}^{J} \pi_{j} f_{\boldsymbol{U}_{j}}(\boldsymbol{t}), \text { and } \mathrm{E}[\mathrm{~h}(\boldsymbol{X})]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{h}(\boldsymbol{t}) \mathrm{f} \boldsymbol{X}^{(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}} \\
& =\sum_{j=1}^{J} \pi_{j} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(\boldsymbol{t}) f_{\boldsymbol{U}_{j}}(\boldsymbol{t}) d \boldsymbol{t}=\sum_{j=1}^{J} \pi_{j} E\left[h\left(\boldsymbol{U}_{j}\right)\right]
\end{aligned}
$$

where $E\left[h\left(\boldsymbol{U}_{j}\right)\right]$ is the expectation with respect to the random vector \boldsymbol{U}_{j}.
Alternatively, with respect to a Lebesgue Stieltjes integral, $E[h(\boldsymbol{X})]=\int h(\boldsymbol{t}) d F(\boldsymbol{t})$ provided the expected value exists, and the integral is a linear operator with respect to both h and F. Hence for a mixture distribution, $E[h(\boldsymbol{X})]=\int h(\boldsymbol{t}) d F(\boldsymbol{t})=$

$$
\int h(\boldsymbol{t}) d\left[\sum_{j=1}^{J} \pi_{j} F_{\boldsymbol{U}_{j}}(\boldsymbol{t})\right]=\sum_{j=1}^{J} \pi_{j} \int h(\boldsymbol{t}) d F_{\boldsymbol{U}_{j}}(\boldsymbol{t})=\sum_{j=1}^{J} \pi_{j} E\left[h\left(\boldsymbol{U}_{j}\right)\right] .
$$

70) Fix (Ω, \mathcal{F}, P). Let the induced probability $P_{X}=P_{F}$ be $P_{X}(B)=P\left[X^{-1}(B)\right]$ for any $B \in \mathcal{B}(\mathbb{R})$. Then $\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$ is a probability space. If \boldsymbol{X} is a $1 \times k$ random vector, then the induced probability $P_{\boldsymbol{X}}=P_{F}$ be $P_{\boldsymbol{X}}(B)=P\left[\boldsymbol{X}^{-1}(B)\right]$ for any $B \in \mathcal{B}\left(\mathbb{R}^{k}\right)$. Then $\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right), P_{\boldsymbol{X}}\right)$ is a probability space.

Then $E[h(\boldsymbol{X})]=\int h(\boldsymbol{X}) d P=\int h(\boldsymbol{x}) d F(\boldsymbol{x})=E_{F}[h]=\int h d P_{\boldsymbol{X}}$. Then $E[h(X)]=$ $\int h(X) d P=\int h(x) d F(x)=E_{F}[h]=\int h d P_{X}$. Here $W=h(X)$ is a RV wrt (Ω, \mathcal{F}, P), while $Z=h$ is a $\operatorname{RV} \operatorname{wrt}\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$.
71) Let $X: \Omega \rightarrow \mathbb{R}$. Let $A, B, B_{n} \in \mathcal{B}(\mathbb{R})$.
i) If $A \subseteq B$, then $X^{-1}(A) \subseteq X^{-1}(B)$.
ii) $X^{-1}\left(\cup_{n} B_{n}\right)=\cup_{n} X^{-1}\left(B_{n}\right)$.
iii) $X^{-1}\left(\cap_{n} B_{n}\right)=\cap_{n} X^{-1}\left(B_{n}\right)$.
iv) If A and B are disjoint, then $X^{-1}(A)$ and $X^{-1}(B)$ are disjoint.
v) $X^{-1}\left(B^{c}\right)=\left[X^{-1}(B)\right]^{c}$.
(The unions and intersections in ii) and iii) can be finite, countable or uncountable.)
72) Theorem: $\operatorname{Fix}(\Omega, \mathcal{F}, P)$. Let $X: \Omega \rightarrow \mathbb{R}$. X is a measurable function iff X is a RV iff any one of the following conditions holds.
i) $X^{-1}(B)=\{\omega \in \Omega: X(\omega) \in B\} \in \mathcal{F} \quad \forall B \in \mathcal{B}(\mathbb{R})$.
ii) $X^{-1}((-\infty, t])=\{X \leq t\}=\{\omega \in \Omega: X(\omega) \leq t\} \in \mathcal{F} \forall t \in \mathbb{R}$.
iii) $X^{-1}((-\infty, t))=\{X<t\}=\{\omega \in \Omega: X(\omega)<t\} \in \mathcal{F} \forall t \in \mathbb{R}$.
iv) $X^{-1}([t, \infty))=\{X \geq t\}=\{\omega \in \Omega: X(\omega) \geq t\} \in \mathcal{F} \forall t \in \mathbb{R}$.
v) $X^{-1}((t, \infty))=\{X>t\}=\{\omega \in \Omega: X(\omega)>t\} \in \mathcal{F} \forall t \in \mathbb{R}$.
73) Theorem: Let X, Y, and X_{i} be RVs on (Ω, \mathcal{F}, P).
a) $a X+b Y$ is a RV for any $a, b \in \mathbb{R}$. Hence $\sum_{i=1}^{n} X_{i}$ is a RV.
b) $\max (X, Y)$ is a RV. Hence $\max \left(X_{1}, \ldots, X_{n}\right)$ is a RV.
c) $\min (X, Y)$ is a RV. Hence $\min \left(X_{1}, \ldots, X_{n}\right)$ is a RV.
d) $X Y$ is a RV. Hence $X_{1} \cdots X_{n}$ is a RV.
e) X / Y is a RV if $Y(\omega) \neq 0 \forall \omega \in \Omega$.
f) $\sup _{n} X_{n}$ is a RV.
g) $i n f_{n} X_{n}$ is a RV.
h) $\limsup _{n} X_{n}$ is a RV.
i) $\liminf _{n} X_{n}$ is a RV.
j) If $\lim _{n} X_{n}=X$, then X is a RV.
k) If $\lim _{m} \sum_{n=1}^{m} X_{n}=\sum_{n=1}^{\infty} X_{n}=X$, then X is a RV.
l) If $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is measurable, then $Y=h\left(X_{1}, \ldots, X_{n}\right)$ is a RV .
m) If $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, then h is measurable and $Y=h\left(X_{1}, \ldots, X_{n}\right)$ is a RV.
n) If $h: \mathbb{R} \rightarrow \mathbb{R}$ is monotone, then h is measurable and $h(X)$ is a RV.
74) Let $f(x) \geq 0$ be a Lebesgue integrable pdf of a RV with cdf F. Then $P_{X}(B)=$ $P_{F}(B)=\int_{B} f(x) d x$ wrt Lebesgue integration. So many probability distributions can be obtained with Lebesgue integration.
75) RVs X_{1}, \ldots, X_{k} are independent if $P\left(X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right)=\prod_{i=1}^{n} P\left(X_{i} \in\right.$ B_{i}) for any $B_{1}, \ldots, B_{k} \in \mathcal{B}(\mathbb{R})$ iff $F_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{k}}\left(x_{k}\right)$ for any real x_{1}, \ldots, x_{k} iff $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{k}\right)$ are independent $\left(\forall A_{i} \in \sigma\left(X_{i}\right), A_{1}, \ldots, A_{k}\right.$ are independent). An infinite collection of RVs X_{1}, X_{2}, \ldots is independent if any finite subset is independent. If pdfs exist, X_{1}, \ldots, X_{k} are independent iff $f_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{k}}\left(x_{k}\right)$ for any real x_{1}, \ldots, x_{k}. If pmfs exist, X_{1}, \ldots, X_{k} are independent iff $p_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=$ $p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{k}}\left(x_{k}\right)$ for any real x_{1}, \ldots, x_{k}. Recall that the σ-field $\sigma(X)=\left\{X^{-1}(B): B \in\right.$ $\mathcal{B}(\mathbb{R}\}$.
76) Suppose X_{1}, \ldots, X_{n} are independent and $g_{i}\left(X_{i}\right)$ is a function of X_{i} alone. Then $E\left[g_{1}\left(x_{1}\right) \cdots g_{n}\left(X_{i}\right)\right]=E\left[\prod_{i=1}^{n} g_{i}\left(X_{i}\right)\right]=\prod_{i=1}^{n} E\left[g_{i}\left(X_{i}\right)\right]$ provided the expected values exist.
77) Let $\left(\Omega_{1}, \mathcal{F}_{1}, P_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, P_{2}\right)$ be two probability spaces. The Cartesian product $=$ cross product $\Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \Omega_{1} \in \Omega_{1}, \Omega_{2} \in \Omega_{2}\right\}$. The product of \mathcal{F}_{1} and \mathcal{F}_{2}, denoted by $\mathcal{F}_{1} \times \mathcal{F}_{2}$, is the σ-field $\sigma(\mathcal{A})$ where $\mathcal{A}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}\right\}$ is the collection of all cross products $A_{1} \times A_{2}$ of events in \mathcal{F}_{1} and \mathcal{F}_{2}.
78) Theorem: There is a unique probability measure $P=P_{1} \times P_{2}$, called the product of P_{1} and P_{2} or the product probability measure, such that $P\left(A_{1} \times A_{2}\right)=P_{1}\left(A_{1}\right) P_{2}\left(A_{2}\right)$ for all $A_{1} \in \mathcal{F}_{1}$ and $A_{2} \in \mathcal{F}_{2}$.
79) The product probability space is $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}, P_{1} \times P_{2}\right)$.
80) 77)-79) can be extended to $\left(\Omega_{i}, \mathcal{F}_{i}, P_{i}\right)$ for $i=1, \ldots, n$. Denote $P_{1} \times \cdots \times P_{n}$ by $\prod_{i=1}^{n} P_{i}, \mathcal{F}_{1} \times \cdots \times \mathcal{F}_{n}$ by $\prod_{i=1}^{n} \mathcal{F}_{i}$, and $\Omega_{1} \times \cdots \times \Omega_{n}$ by $\prod_{i=1}^{n} \Omega_{i}$. If $\left(\Omega_{i}, \mathcal{F}_{i}, P_{i}\right)=$ $\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{i}\right)$, then the product probability space is $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right), \prod_{i=1}^{n} P_{i}\right)$. If $\left(\Omega_{i}, \mathcal{F}_{i}, P_{i}\right)=$ $\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X_{i}}\right)$, then the product probability space is $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right), \prod_{i=1}^{n} P_{X_{i}}\right)$.
81) Let independent X_{i} be defined on $\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X_{i}}\right)$. Then the product probability space $(\Omega, \mathcal{F}, P)=\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right), \prod_{i=1}^{n} P_{X_{i}}\right)$ is the probability space for $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$.
82) Let $\int f d \mu=\int f(x) d \mu(x)$. Then the double integral

$$
\begin{gathered}
\iint_{\Omega_{1} \times \Omega_{2}} f\left(x_{1}, x_{2}\right) d\left[P_{1} \times P_{2}\left(x_{1}, x_{2}\right)\right]= \\
\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d P_{2}\left(x_{2}\right)\right] d P_{1}\left(x_{1}\right)=\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) d P_{1}\left(x_{1}\right)\right] d P_{2}\left(x_{2}\right)
\end{gathered}
$$

The last two equations are known as iterated integrals.
83) Fubini's Theorem: a) Assume $f \geq 0$. Then $\int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) d P_{1}\left(x_{1}\right)$ is measurable $\mathcal{F}_{2}, \int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d P_{2}\left(x_{2}\right)$ is measurable \mathcal{F}_{1}, and 82) holds.
b) Assume f is integrable wrt $P_{1} \times P_{2}$, then $\int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) d P_{1}\left(x_{1}\right)$ is finite ae and measurable \mathcal{F}_{2} ae, $\int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d P_{2}\left(x_{2}\right)$ is finite ae and measurable \mathcal{F}_{1} ae, and 82) holds.

Note: Part 83 a) is also known as Tonelli's theorem or the Fubini-Tonelli theorem. The double integral is often written as $\int_{\Omega_{1} \times \Omega_{2}}$. Note that $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ (at least ae). Fubini's theorem for product probability measures shows double integrals can be calculated with iterated integrals if $X_{1} \Perp X_{2}$, and the theorem is sometimes stated as below.
84) Fubini's Theorem for product probability measures: If f is measurable, then
$\int_{\Omega_{1} \times \Omega_{2}} f d\left[P_{1} \times P_{2}\right]=\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d P_{2}\left(x_{2}\right)\right] d P_{1}\left(x_{1}\right)=\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) d P_{1}\left(x_{1}\right)\right] d P_{2}\left(x_{2}\right)$
provided that either a) $f \geq 0$, or b) $\int_{\Omega_{1} \times \Omega_{2}}|f| d\left[P_{1} \times P_{2}\right]<\infty$.
85) A product measure μ satisfies $\mu\left(\prod_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \mu\left(A_{i}\right)$.
86) Fubini's Theorem for product measures: If f is measurable, then
$\int_{\Omega_{1} \times \Omega_{2}} f d\left[\mu_{1} \times \mu_{2}\right]=\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d \mu_{2}\left(x_{2}\right)\right] d \mu_{1}\left(x_{1}\right)=\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right)\right] d \mu_{2}\left(x_{2}\right)$
provided that the μ_{i} are σ-finite and either a) $f \geq 0$, or b) $\int_{\Omega_{1} \times \Omega_{2}}|f| d\left[\mu_{1} \times \mu_{2}\right]<\infty$.
Note: the Lebesgue measure is σ-finite on \mathbb{R} and the counting measure μ_{C} is σ-finite if Ω is countable, where $\mu_{C}(A)=$ the number of points in set A. Let λ be the Legesgue measure on \mathbb{R}^{2} and μ_{L} the Lebesgue measure on \mathbb{R}. The $\lambda(A \times B)=\mu_{L}(A) \mu_{L}(B)$ is a product measure. Let ν be the counting measure on \mathbb{Z}^{2} and μ_{C} the counting measure on \mathbb{Z}. Then $\nu(A \times B)=\mu_{C}(A) \mu_{C}(B)$ is a product measure.
87) Fubini's Theorem for Lebesgue Integrals: Let $C=\{(x, y): a \leq x \leq b, c \leq$ $y \leq d\}=[a, b] \times[c, d]$. Let $g(x, y)$ be measurable and Lebesgue integrable. Then

$$
\iint_{C} g(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} g(x, y) d x\right] d y=\int_{a}^{b}\left[\int_{c}^{d} g(x, y) d y\right] d x
$$

88) The result in 87) can be extended to where the limits of integration are infinite and to $n \geq 2$ integrals. Using $g(x, y)=h(x, y) f(x, y)$ where f is a pdf gives $E[h(X, Y)]$. Note that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (at least ae).
89) (Lindeberg-Lévy) Central Limit Theorem (CLT): Let X_{1}, \ldots, X_{n} be iid with $E(X)=\mu$ and $V(X)=\sigma^{2}$. Then $\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)$.
90) If F_{n} and F are cdfs, then F_{n} converges weakly to F, written $F_{n} \xrightarrow{W} F$, if $\lim _{n} F_{n}(x)=F(x)$ at every continuity point of X.
91) Let $\left\{Z_{n}, n=1,2, \ldots\right\}$ be a sequence of random variables with cdfs F_{n}, and let X be a random variable with cdf F . Then Z_{n} converges in distribution to X, written

$$
Z_{n} \xrightarrow{D} X,
$$

or Z_{n} converges in law to X, written $Z_{n} \xrightarrow{L} X$, if

$$
\lim _{n \rightarrow \infty} F_{n}(t)=F(t)
$$

at each continuity point t of F . The distribution of X is called the limiting distribution or the asymptotic distribution of Z_{n}.

Notes: a) If $X_{n} \xrightarrow{D} X$, then the limiting distribution (the distribution of X) does not depend on n.

$$
\text { b) } Z_{n}=\sqrt{n}\left(\frac{\bar{X}_{n}-\mu}{\sigma}\right)=\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right)=\left(\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma}\right)
$$

is the z-score of \bar{X}_{n} (and the z-score of $\sum_{i=1}^{n} X_{i}$), and $Z_{n} \xrightarrow{D} N(0,1)$. c) Two applications of the CLT are to give the limiting distribution of $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ and the limiting distribution of $\sqrt{n}\left(X_{n} / n-\mu_{Y}\right)$ for a random variable X_{n} such that $X_{n}=\sum_{i=1}^{n} Y_{i}$ where the Y_{i} are iid with $E(Y)=\mu_{Y}$ and $V(Y)=\sigma_{Y}^{2}$. See point 92) below. d) $X_{n} \xrightarrow{D} X$ is equivalent to $F_{X_{n}}$ converges weakly to F_{X}.
92) Theorem: a) If Y_{1}, \ldots, Y_{n} are iid binomial $\operatorname{BIN}(k, \rho)$ random variables, then $X_{n}=$ $\sum_{i=1}^{n} Y_{i} \sim \operatorname{BIN}(\mathrm{nk}, \rho)$. Note that $E\left(Y_{i}\right)=k \rho$ and $V\left(Y_{i}\right)=k \rho(1-\rho)$.
b) Denote a chi-square χ_{p}^{2} random variable by $\chi^{2}(p)$. If Y_{1}, \ldots, Y_{n} are iid χ_{p}^{2}, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim \chi_{n p}^{2}$. Note that $E\left(Y_{i}\right)=p$ and $V\left(Y_{i}\right)=2 p$.
c) If Y_{1}, \ldots, Y_{n} are iid exponential $\operatorname{EXP}(\beta) \sim G(1, \beta)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim G(n, \beta)$. Note that $E\left(Y_{i}\right)=1 / \beta$ and $V\left(Y_{i}\right)=1 / \beta^{2}$.
d) If Y_{1}, \ldots, Y_{n} are iid gamma $G(\alpha, \beta)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim G(n \alpha, \beta)$. Note that $E\left(Y_{i}\right)=\alpha / \beta$ and $V\left(Y_{i}\right)=\alpha / \beta^{2}$.
e) If Y_{1}, \ldots, Y_{n} are iid $N\left(\mu, \sigma^{2}\right)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim N\left(n \mu, n \sigma^{2}\right)$. Note that $E\left(Y_{i}\right)=\mu$ and $V\left(Y_{i}\right)=\sigma^{2}$.
f) If Y_{1}, \ldots, Y_{n} are iid Poisson $\operatorname{POIS}(\theta)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim \operatorname{POIS}(\mathrm{n} \theta)$. Note that $E\left(Y_{i}\right)=V\left(Y_{i}\right)=\theta$.
g) If Y_{1}, \ldots, Y_{n} are iid inverse Gaussian $I G(\theta, \lambda)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim I G\left(n \theta, n^{2} \lambda\right)$. Note that $E\left(Y_{i}\right)=\theta$ and $V\left(Y_{i}\right)=\theta^{3} / \lambda$.
h) If Y_{1}, \ldots, Y_{n} are iid geometric $\operatorname{geom}(p) \sim \mathrm{NB}(1, \mathrm{p})$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim \mathrm{NB}(\mathrm{n}, \mathrm{p})$. Note that $E\left(Y_{i}\right)=(1-p) / p$ and $V\left(Y_{i}\right)=(1-p) / p^{2}$.
i) If Y_{1}, \ldots, Y_{n} are iid negative binomial $N B(r, \rho)$, then $X_{n}=\sum_{i=1}^{n} Y_{i} \sim N B(n r, \rho)$. Note that $E\left(Y_{i}\right)=r(1-p) / p$ and $V\left(Y_{i}\right)=r(1-p) / p^{2}$.

