Math 581 Exam 2 is Thursday, Oct. 21, 2:00-3:15 NO NOTES. CHECK FORMULAS:
YOU ARE RESPONSIBLE FOR ANY ERRORS ON THIS HANDOUT!

37) Fix (Q,F,P). A simple random variable (SRV) is a function X : Q — R such
that the range of X is finite and {X =2} ={w: X(w) =2} € F Vx € R. Hence X is a
discrete RV with finite support. Note that X = Z?:l x;l4, is a SRV if each A; € F.

38) Suppose events A, ..., A, are disjoint and U?_l A= Q. Let X =Y 0 xila,.

Then the expected value of X is F(X Z x; P Z xP(X ) which is a finite

sum since X is a SRV. The middle term is useful for proofs For this SRV, E(X) exists
and is unique. In the second sum, the x need to be the distinct values in the range of X.
39) Suppose SRV X takes on distinct values @1, ..., Zm. Then X = Y 2,15, where
the B; = {X = z;} are disjoint with (J;_, B; = Q. Hence a SRV has the form of 38) with
Az:Bz and n = m.
40) Th. Let X,,, X and Y be SRVs.
a) —oo < B(X) < o0
b) linearity: E(aX +bY) =aE(X) +bE(Y)
c) If X <Y, then E(X) < E(Y)
d) If {X,} is uniformly bounded and X = lim, X,, on a set of probability 1, then
E(X) =lim, £(X,).
e) If ¢ is a real valued function, then E[t(X)] = > t(z)P ( =)
f) If X is nonnegative, X > 0, then E(X) = >, P(X > x;) = [[°[1 — )]dz.
41) For the theory of integration, assume the function f in the mtegrand is
measurable where f: Q — R and (£, F, ) is a measure space.
42) A function f : Q — [—o00,00] is a measurable function (or measurable or F
measurable or Borel measurable) if
i) f7(B) € FVB € B(R),
ii) f1({oo}) = {w: f(w =00} € F, and
iii) f1({—o0}) ={w: f(w = —x} € F.
43) Def. Let f: Q — [0, 00] be a nonnegative function. Then the integral

/fd,u = supa} Z(z’nfweAif(w))u(Ai) where {A;} is a finite F decomposition.)

(A finite F decomposition (F decomp of ) means that A; € F and Q = |J;_, A; for
some n, and the A; are disjoint.

44) Conventions for integration of a nonnegative function. a) A; = () implies that the
inf term = oo, b) z(c0) = oo for z > 0, and ¢) 0(cc) = 0.

45) Theorem: Let f > 0 with f(w) = >_"", #;/p,(w)where each z; > 0 and {B;} is
an F decomp of Q. Then [ fdu = 3", x;u(B;).

46) If f : Q — [—o00, 0], then the positive part f* = fI(f > 0) = maxz(f,0), and
the negative part f~ = —fI(f < 0) = maz(—f,0) = —min(f,0). Hence f*(w) =
fI(f(w) = 0) and f~(w) = = f(w)I(f(w) <0).

Here I(f > 0) = I(0 < f < o0) while I(f(w) < 0) = I(—oc0 < f < 0). If fis
measurable, then f* >0, f~ > 0 are both measurable, f = f*— f~ and |f| = fT+ f~.

47) Convention: 0o — 0o = —o0 + 0o is undefined.

48) Def: Let f: Q — [—o0, 00].



i) The integral [ fdu = [ ffdu— [ f~dpu.
ii) The integral is defined unless it involves co — oo.
iii) The function f is integrable if both | fTdu and [ f~du are finite. Thus [ fdp € R
if f is integrable.
49) A property holds almost everywhere (ae), if the property holds for w outside
a set of measure 0, i.e. the property holds on a set A such that u(A¢) = 0. If pis a
probability measure P, then P(A) = 1 while P(A¢) = 0.
50) Theorem: suppose f and g are both nonnegative.
i) If f =0 ae, then [ fdu =0.
i) If u({w: f(w) > 0}) >0, then [ fdu > 0.
iii) If [ fdp < oo, then f < oo ae.
iv) If f < g ae, then [ fdu < [ gdp.
v) If f =g ae, then [ fdu = [ gdu.

51) Theorem: i) f is integrable iff [|f|dp < cc.
ii) monotonicity: If f and g are integrable and f < g ae, then [ fdu < [ gdpu.
iii) linearity: If f and g are integrable and a,b € R, then af + bg is integrable with
[(af +bg)du=a [ fdu+0b [ gdpu.
iv) Monotone Convergence Theorem (MCT): If 0 < f,, 1 f ae, then [ fodu 1 [ fdu.
v) Fatou’s Lemma: For nonnegative f,, [liminf, f.dp <liminf, [ fudu.
vi) Lebesgue’s Dominated Convergence Theorem (LDCT): If the |f,| < g ae where
g is integrable, and if f, — f ae, then f and f, are integrable and [ f.dp — [ fdu.
vii) Bounded Convergence Theorem (BCT): If u(2) < oo and the f,, are uniformly
bounded, then f, — f ae implies [ f,du — [ fdp.
viii) If f, > 0 then [ >0 fudp =" [ fadp.
) 16300, [ |fuldp < 00, then [ Yooc, fadi = S0, [ fudp
x) If f and g are integrable, then | [ fdu — [ gdu| < [|f — gldu.

52) Consequences: a) linearity implies [ 22:1 fadp = Zflzl [ fadu: i.e., the integral
and finite sum operators can be interchanged
b) MCT, LDCT, and BCT give conditions where the limit and | can be interchanged:

lim, [ fodp = [lim, fodp = [ fdu
¢) 51) viii) and ix) give conditions where the infinite sum > 7 and the integral [ can
be interchanged: [>°°7  fodu=>7 [ fudp.

53) A common technique is to show the result is true for indicators. Extend to simple
functions by linearity, and then to nonnegative function by a monotone passage of the
limit. Use f = f* — f~ for general functions.

54) Induction Theorem: If R(n) is a statement for each n € N such that a) R(1) is
true, and b) for each k£ € N, if R(k) is true, then R(k + 1) is true,
then R(n) is true for each n € N.

Note that co € N. Induction can be used with linearity to prove 52) a), but induction
generally does not work for 52) c).

55) Def. If A € F, then [, fdu = [ fladp.

56) If (A) =0, then [, fdu = 0.

57) If : F — [0, 00] is a measure and f > 0, then



a) v(A) = [, fdp is a measure on F.
b) If [, fdu =1, then P(A) = [, fdu is a probability measure on F.

58) For expected values, assume (€2, F, P) is fixed, and the random variables are
measurable wrt F.

59) We can define the expected value to be F(X) = [ XdP as the special case of
integration where the measure y = P is a probablhty measure, or we can use a definition
that ignores most measure theory.

60) Def. Let X > 0 be a nonnegative RV.

a) B(X) = limp—ooE(X,) = /XdP < oo where the X, are nonnegative SRVs with

0< X, TX.
b) The expectation of X over an event A is E(X1y).
There are several equivalent ways to define integrals and expected values. Hence
E(X) can also be defined as in 43) with p replaced by P and f replaced by X : Q@ — R.
61) Theorem: Let X,Y be nonnegative random variables.
a) For X, Y >0and a,b >0, E(aX +bY) =aE(X) +bE(Y).
b) If X <Y ae, then E(X) < E(Y).

By induction, if the a;X; > 0, then E(} " a;X;) = > ", E(a;X;): the expected
value of a finite sum of nonnegative RVs is the sum of the expected values.

62) For a random variable X : Q — (—00,00), then the positive part X+ =
XI(X >0) =maxz(X,0), and the negative part X~ = —XI(X <0) = maz(—X,0) =
—min(X,0). Hence X = XT — X~ and |X| = X* + X~. Random variables are real
functions: oo are not allowed.

63) Def: Let the random variable X : 2 — (—o00, 00).

i) The expected value E(X) = [ XdP = [X*dP — [ X dP=FE(X") - E(X").

ii) The expected value is defined unless it involves co — co.

iii) The random variable X is integrable if E[|X|] < oco. Thus E(X) € R if X is
integrable.

64) Theorem: i) X is integrable iff both E[X ] and E[X ] are finite.

ii) monotonicity: If X and Y are integrable and X <Y ae, then E(X) < E(Y).

iii) linearity: If X and Y are integrable and a,b € R, then aX + bY is integrable with
E(aX +bY) =aE(X)+bE(Y).
iv) Monotone Convergence Theorem (MCT): If 0 < X, T X ae, then
E(X,) 1 E(X).
v) Fatou’s Lemma: For RVs X,, > 0, E[liminf, X,] <liminf, E[X,].
vi) Lebesgue’s Dominated Convergence Theorem (LDCT): If the |X,| < Y ae
where Y is integrable, and if X,, — X ae, then X and X,, are integrable and F(X,,)
E(X).
vii) Bounded Convergence Theorem (BCT): If the X,, are uniformly bounded, then
X, — X ae implies E(X,) — E(X).
viii) If X,, > 0 then E(Y "7, X)) =57 | E(X,)
) 16320, B(IX) < oo, then B(Yy Xu) = 300, E(X).
x) If X and Y are integrable, then |E(X) — E(Y)| < E[|X = Y]]

65) Consequences: a) linearity implies E(Zizl anXp) = 22:1 a, B(X,): ie., the



expectation and finite sum operators can be interchanged, or the expectation of a finite
sum is the sum of the expectations if the X,, are integrable.

b) MCT, LDCT, and BCT give conditions where the limit and F can be interchanged:
lim, F(X,) = Elim, X,,] = E(X)

¢) 64) viii) and ix) give conditions where the infinite sum Y >, and the expected value
can be interchanged: E[> 7 X,] =3, E(X,).

66) Given (€2, F, P), the collection of all integrable random vectors or RVs is denoted
by L' = LY(Q, F, P).

67) Let X be a 1 xk random vector with cdf Fx (t)=F(t) = P(Xy <ty,..., X < tg).
Then the Lebesgue Stieltjes integral E[h(X)] = [ h(t)dF (t) provided the expected value
exists, and the integral is a linear operator with respect to both h and F. If X is a random
variable, then E[h = [h(t . If W = h(X) is integrable or if W = h(X) > 0,
then the expected value exists. Here h RF — RJ with 1 < j < k.

68) The distribution of a 1 X k random vector X is a mixture distribution if the

cdf of X is ;
= mFy,(t)
j=1

where the probabilities 7; satisfy 0 < 7; < 1 and Z}]:1 m =1, J > 2, and Iy, (t) is
the cdf of a 1 x k random vector U;. Then X has a mixture distribution of the U ; with
probabilities ;. If X is a random variable, then

J
t) = Z i Fy, (t)

69) Expected Value Theorem: Assume all expected values exist. Let dx =
dxidxs...dxy. Let X be the support of X = {x: f(x) > 0} or {z : p(x) > 0}.

a) If X has (joint) pdf f(x), thenE[h(X = /= - foo h( )f(w) de= [ [,h(x)f(x)d

Hence E[X| = [ - [T xf(x dar;—f fX:I;f

b) If X has pdf f(z), then E[h = [7 h(z) = [y h(x)f(z) de. Hence
EX])= [7 zf(z) dv = fX:Ef(z) dx

) I X bas (joint) pmf p(a), then E[h(X)] = X, -+ ¥, h(@)p(@) = Ygess h(@)p() =
Y gex M@)p(x). Hence E[X] =3, -3, @p(®) = D pepr p(®) = D _ger 2p(T).

d) If X has pmf p(x), then E[h(X)] = Z h( () = > cx h(z)p(x). Hence

E[X] =3, wp(x) = 2 sex 2p(T).

e) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the
E(h(U,)) exist. Then

J
X)) = Z’]TjE[h(Uj | and E(X Zﬂj

f) Suppose X has a mixture distribution given by 68) and that E(h(X)) and the E(h(U;))

exist. Then
J J

E[hX)] =) _mE[h(U))] and B(X) = > mBE[Uj].

J=1 =1

xT.



This theorem is easy to prove if the U; are continuous random vectors with (joint)
probability density functions (pdfs) fry (t). Then X is a continuous random vector with
J

pdf
J 0o 00
t):ZijUj(t), and E[h(X)]:/_ /_ h(t)f

J 00 o J
_ Zﬂj/ / Wt) fy (Bt = > mE[h(U
j=1 —00 —00 7=1

where E[h(U;)] is the expectation with respect to the random vector U;.

Alternatively, with respect to a Lebesgue Stieltjes integral, E[h(X)] = [ h(t)dF(t)
provided the expected value exists, and the integral is a linear operator with respect to
both h and F'. Hence for a mixture distribution, E[h(X)] = [ h(t)dF(t) =

/ Z%FU Z%/ t)dlys (t Z%

70) Fix (Q, F, P). Let the induced probability Py = Pr be Px(B) = P[X(B)]
for any B € B(R). Then (R, B(R), Px) is a probability space. If X is a 1 x k random
vector, then the induced probability Px = Pr be Px(B) = P[X '(B)] for any
B € B(RF). Then (R¥, B(RF), Px ) is a probability space.

Then E[h(X)] = [h(X) dP = [ h(x) dF(x) = Eplhl = [ h dPx . Then E[h(X)] =
[ h(X) dP = [ h(z) dF(z) = Ep[h] = [ h dPx. Here W = h(X) is a RV wrt (Q, F, P),
while Z = h is a RV wrt (R, B(R), Px).

71) Let X : Q — R. Let A, B, B, € B(R).

i) If AC B, then X~ !(4) C X '(B).

i) X HU,B,) = U, X 1(B,).

iii) X~ 1(N,B,) = N, X1(B,).

iv) If A and B are disjoint, then X~!(A4) and X ' (B) are disjoint.

v) X (BY) = (X (B))"

(The unions and intersections in ii) and iii) can be finite, countable or uncountable.)

72) Theorem: Fix (2, F,P). Let X : 2 — R. X is a measurable function iff X is a
RV iff any one of the following conditions holds.

) X' (B)={weQ: X(w)e B} eF V BeB(R).

i) X' ((—o0,t]) ={X <t}={we: X(w) <t}e FVteR
iii) X 1((—o0,t)) ={X <t} ={weQ: X(w) <t} e FVteR.
iv) X ([t,00)) ={X >t} ={we: X(w) >t} e FVtER.

V) X H(t,o)={X >t} ={weQ: X(w) >t} e FVtER.
73) Theorem: Let X, Y and X; be RVs on (Q2, F, P).

a) aX +bY is a RV for any a,b € R. Hence Y, X; is a RV.

b) max(X,Y) is a RV. Hence max(Xj, ..., X,,) is a RV.

c) min(X,Y) is a RV. Hence min(Xj, ..., X,,) is a RV.

d) XY is a RV. Hence X --- X,, is a RV.

e) X/YisaRVif Y(w)#0VweQ.



f) sup, X, is a RV.
g) inf, X, is a RV.
h) limsup, X, is a RV.
i) liminf, X, is a RV.
j) If lim, X, = X, then X is a RV.
k) If limy, > X, => 02 X, = X, then X is a RV.
1) If h: R — R is measurable, then Y = h(X7, ..., X,) is a RV.
m) If 4 : R" — R is continuous, then A is measurable and Y = h(X}, ..., X},) is a RV.
n) If h: R — R is monotone, then h is measurable and h(X) is a RV.
74) Let f( ) > 0 be a Lebesgue integrable pdf of a RV with c¢df F. Then Px(B) =
= [, f 5 f(x)dz wrt Lebesgue integration. So many probability distributions can be
obtalned with Lebesgue integration.

75) RVs Xji,..., X}, are independent if P(X; € By,.... X € By) = [[I_, P(X; €
B;) for any Bi,..., By € B(R) iff Fx,  x,(x1,...,2x) = Fx,(z1)--- Fx,(zx) for any real
x1, o xp iff 0(X7), ..., 0(X}) are independent (VA; € o(X;), Ay, ..., Ay are independent).
An infinite collection of RVs X1, Xs, ... is independent if any finite subset is independent.
If pdfs exist, Xy, ..., Xj are independent iff fx, . x,(z1,....,2%) = fx,(x1) - fx, (zx) for
any real z1,...,x,. If pmfs exist, Xi,..., X} are independent iff px,  x, (1,...,25) =
px, (z1) -+ px, (zg) for any real z1, ..., zx. Recall that the o-field o(X) = {X"'(B): B €
B(R}.

76) Suppose Xj, ..., X,, are independent and g¢;(X;) is a function of X; alone. Then
Elgi(z1) - ga(X3)] = B[, 9:(X0)] = T, Elg:(X;)] provided the expected values
exist.

77) Let (21, F1, P1) and (€2, Fa, P2) be two probability spaces. The Cartesian prod-
uct = cross product ; X Qy = {(wi,ws2) : Q1 € 21,0y € Q}. The product of F; and
F,, denoted by Fy x Fa, is the o-field o(A) where A = {A; x Ay : A € F1, Ay € Fo} is
the collection of all cross products A; x Ay of events in F; and Fs.

78) Theorem: There is a unique probability measure P = P; X P,, called the product
of P, and P; or the product probability measure, such that P(A; x Ay) = Pi(A1) Py (A2)
for all A; € F; and Ay € Fo.

79) The product probability space is ({21 x Qy, Fy X Fa, P, X P).

80) 77)-79) can be extended to (2, F;, P;) for ¢ = 1,...,n. Denote P, X --- x P,

by [1ie, B, Fi x - x F, by [[iey Fi, and Q1 X -+ x Q,, by [, Q. If (Q, F, B) =
(R, B(R), P,), then the product probability space is (]R" BR"),[[, B). If (%, Fi, P) =
(R, B(R), Py,), then the product probability space is (R", B(R"), [[;_, Px,)-

81) Let independent X; be defined on (R, B(R), Py,). Then the product probability
space (£, F, P) = (R", (]R") HZ 1 Px,) is the probability space for X = (Xj,..., X,,).

82) Let [ fdu = [ f(x) . Then the double integral

//lez fz1,22)d[Py X Py(1,22)] =

/91 { o f(:vl,:vg)sz(xg)} dPy(z;) = /Q2 { 5 F(wr, 22)dPy(21) | dPs(2s).

The last two equations are known as iterated integrals.

6



83) Fubini’s Theorem: a) Assume f > 0. Then le f(z1,z2)dP; (1) is measurable
Fa, sz f(z1, 22)dPs(z5) is measurable F, and 82) holds.

b) Assume f is integrable wrt P; x P,, then le f(z1,22)dPi(z) is finite ae and
measurable F, ae, sz f(z1, z2)dPy(x5) is finite ae and measurable F; ae, and 82) holds.

Note: Part 83 a) is also known as Tonelli’s theorem or the Fubini-Tonelli theorem.
The double integral is often written as fﬂlxﬂz‘ Note that f : Q; x Qy — R (at least
ae). Fubini’s theorem for product probability measures shows double integrals can be
calculated with iterated integrals if X; Il X5, and the theorem is sometimes stated as
below.

84) Fubini’s Theorem for product probability measures: If f is measurable,
then

/le2 fdlPyxPy] = /Q1 { o, f(flﬂfz)dpz(i’«“z)} dPi(z1) = /Q2 { o f(xl,l?)dpl(l’l)] dPy(x2)

provided that either a) f > 0, or b) le><QZ |fld[P1 x P] < 0.
85) A product measure y satisfies p(J];_, Ai) = []1; (4.
86) Fubini’s Theorem for product measures: If f is measurable, then

/le2 fdlmxp2] = /Q1 { o, f(ifl’i’fz)dﬂz(ﬂfz)} dpr (1) = /Q2 { o f(931>£f2)dl£1(931)} dpiz (2)

provided that the yu; are o-finite and either a) f > 0, or b) leXQQ | fld[p1 X pa] < o0.

Note: the Lebesgue measure is o0 —finite on R and the counting measure p¢ is o-finite
if Q) is countable, where pc(A) = the number of points in set A. Let A be the Legesgue
measure on R? and py the Lebesgue measure on R. The A\(A x B) = ur(A)ur(B) is a
product measure. Let v be the counting measure on Z? and uc the counting measure on
Z. Then v(A x B) = uc(A)pc(B) is a product measure.

87) Fubini’s Theorem for Lebesgue Integrals: Let C' = {(z,y) : a < x < b,c <
y < d} = [a,b] x [c,d]. Let g(z,y) be measurable and Lebesgue integrable. Then

//(;g(f’y)dfdy:/cd Uabg(%wdx} dyzfab {/Cdg(x,y)dy} da.

88) The result in 87) can be extended to where the limits of integration are infinite
and to n > 2 integrals. Using g(z,vy) = h(z,y) f(x,y) where f is a pdf gives E[h(X,Y)].
Note that g : R* — R (at least ae).

89) (Lindeberg-Lévy) Central Limit Theorem (CLT): Let X3, ..., X, be iid with
E(X) = pand V(X) = 02 Then v/n(X, — p) 2 N(0,0?%).

90) If F,, and F' are cdfs, then F, converges weakly to F, written F, w F. it
lim, F,,(x) = F(x) at every continuity point of X.

91) Let {Z,,n =1,2,...} be a sequence of random variables with cdfs F},, and let X
be a random variable with cdf F. Then Z,, converges in distribution to X, written

Z, 2 X,



or Z, converges in law to X, written Z, L X, if

lim F,(t) = F(t)
at each continuity point ¢ of F. The distribution of X is called the limiting distribution
or the asymptotic distribution of Z,,.

Notes: a) If X, 2 X, then the limiting distribution (the distribution of X') does not

depend on n.
() - () - ()

is the z—score of X, (and the z-score of } "' | X;), and Z, 2 N(0,1). ¢) Two applications
of the CLT are to give the limiting distribution of y/n(X,, — u) and the limiting distribu-
tion of \/n(X,/n — py) for a random variable X,, such that X, = > "  V; where the V;

are iid with F(Y) = py and V(Y) = ¢. See point 92) below. d) X, L X is equivalent
to Fx, converges weakly to Flx.

92) Theorem: a) If Y7, ..., Y, are iid binomial BIN(k, p) random variables, then X,, =
> Y; ~ BIN(uk, p). Note that E(Y;) = kp and V(V;) = kp(1 — p).

b) Denote a chi-square x> random variable by x*(p). If Y1,..., Y, are iid x2, then
X, =31, Yi~x2,. Note that E(Y;) = p and V(Y;) = 2p.

c) If V3, ..., Y, are iid exponential EXP(8) ~ G(1, ), then X,, = > | Y; ~ G(n,3).
Note that E(Y;) =1/8 and V(Y;) = 1/32.

d) If Y1,...,Y, are iid gamma G(a, 3), then X,, = > "' | Y; ~ G(na, ). Note that
E(Y;) = /B and V(¥;) = o/
e)IfYy, ..., Y, areiid N(u,0?), then X,, = > | Vi ~ N(nu,no?). Note that E(Y;) = u
and V(Y;) = o>

f) If Y1,..., Y, are iid Poisson POIS(f), then X,, = > " | ¥; ~ POIS(nd). Note that
BY) =V(¥) =0

g) If Y3, ..., Y, are iid inverse Gaussian IG(6, ), then X,, = > " | V; ~ IG(nf,n?)\).
Note that F(Y;) =0 and V(Y;) = 63 /).

h) If Y1, ..., Y, are iid geometric geom(p) ~ NB(1,p), then X,, = > " | ¥; ~ NB(n, p).
Note that E(Y;) = (1 —p)/p and V(Y;) = (1 — p)/p*.

i) If V1, ..., Y, are iid negative binomial NB(r, p), then X,, = """ | Y; ~ NB(nr, p).
Note that E(Y;) =r(1 — p)/p and V(Y;) = (1 — p)/p*.




