Math 582

Exam 2, 2022

Name_____

- 1) Let $Y_1, ..., Y_n$ be iid $N(\mu, \sigma^2)$.
- 6 M
- a) Let $T_{1,n} = \overline{Y}$ and find the limiting distribution of $\sqrt{n}(T_{1,n} \theta)$.

5n (m-x) = 5n (T-4) 4 NO,52/.

b) Let $T_{2,n} = \text{MED}(n)$ be the sample median and find the limiting distribution of $\sqrt{n}(T_{2,n} - \theta)$. Hint: $MED(Y) = \mu$.

6(3) = 200 exp(-102 6-11)

SO E(U) = E(MEDEL) = JETTO

5 (MEDM) - M) B, M(P) 4/H(MED(Y) 1)2)

 $\sim N(0, \frac{2170^2}{4}) \sim N(0, \frac{170^2}{2})$

c) Find $ARE(T_{1,n}, T_{2,n})$. Which estimator is better, asymptotically?

 $=\frac{\sigma_{1}^{2}(F)}{\sigma_{1}^{2}(F)}=\frac{(T\sigma_{2}^{2})}{\sigma_{2}^{2}}=\frac{T}{2}=1,5708$

SoTin = 7 is better

2) Suppose $Y_1, ..., Y_n$ are iid gamma (ν, λ) , $Y \sim G(\nu, \lambda)$, where ν is known. Then $I_1(\lambda) = \nu/\lambda^2$. Is $\hat{\lambda}_n = \overline{Y}_n/\nu$ an asymptotically efficient estimator of λ ? Hint: determine if

$$\sqrt{n}(\overline{Y}_{n}/\nu - \lambda) \xrightarrow{D} N\left(0, \frac{1}{I_{1}(\lambda)}\right).$$

$$\sqrt{n}(\overline{Y}_{n}/\nu$$

3) Suppose $Y_1, ..., Y_n$ are iid $\text{EXP}(\lambda)$. Let $T_n = Y_{(1)} = Y_{1:n} = \min(Y_1, ..., Y_n)$. It can be shown that the mgf of T_n is

 $m_{T_n}(t) = rac{1}{1 - rac{\lambda t}{n}}$

for $t < n/\lambda$. Show that $T_n \stackrel{D}{\to} X$ and give the distribution of X.

$$M_{T_{N}}(t) \rightarrow 1 = M_{X}(t)$$
 $\forall t \in \mathbb{R}$
where $P(X=0) = 1$,

4) Suppose $X_1,...,X_n$ are iid 3×1 random vectors from a multinomial distribution with ·

$$E(\boldsymbol{X}_i) = \begin{bmatrix} m\rho_1 \\ m\rho_2 \\ m\rho_3 \end{bmatrix} \quad \text{and} \quad \operatorname{Cov}(\boldsymbol{X}_i) = \begin{bmatrix} m\rho_1(1-\rho_1) & -m\rho_1\rho_2 & -m\rho_1\rho_3 \\ -m\rho_1\rho_2 & m\rho_2(1-\rho_2) & -m\rho_2\rho_3 \\ -m\rho_1\rho_3 & -m\rho_2\rho_3 & m\rho_3(1-\rho_3) \end{bmatrix}$$

where m is a known positive integer and $0 < \rho_i < 1$ with $\rho_1 + \rho_2 + \rho_3 = 1$. Find the limiting distribution of $\sqrt{n}(\overline{X} - c)$ for appropriate vector c.

$$[S_{1}(x_{1}-(x_{2}))]$$
 $[S_{2}(x_{3})]$ $[S_{3}(x_{3})]$ $[S_{3}(x_{3})]$ $[S_{3}(x_{3})]$ $[S_{4}(x_{3})]$ $[S_{5}(x_{3})]$ $[S_{5}(x_{3})]$ $[S_{5}(x_{3})]$ $[S_{5}(x_{3})]$ $[S_{5}(x_{3})]$

5) Suppose $Y_n \stackrel{P}{\to} Y$. Then $W_n = Y_n - Y \stackrel{P}{\to} 0$. Define $X_n = Y$ for all n. Then $X_n \stackrel{D}{\to} Y$. Then $Y_n = X_n + W_n \stackrel{D}{\to} Z$ by Slutsky's Theorem. What is Z?

9 (proves Ing I It Ing)

using slutshyleth)

6) If $X \sim N_k(\mu, \Sigma)$, then the characteristic function of X is

$$c_{\pmb{X}}(\pmb{t}) = \exp\left(i\pmb{t}^T\pmb{\mu} - \frac{1}{2}\pmb{t}^T\pmb{\Sigma}\pmb{t}\right)$$

for $t \in \mathbb{R}^k$. Let $a \in \mathbb{R}^k$ and find the characteristic function of $a^T X = c_{a^T X}(y) =$ $E[\exp(i \ y \ \boldsymbol{a}^T \boldsymbol{X})] = c_{\boldsymbol{X}}(y\boldsymbol{a})$ for any $y \in \mathbb{R}$. Simplify any constants.

7) Suppose

$$\sqrt{n} \left(\begin{pmatrix} \hat{\theta}_1 \\ \vdots \\ \hat{\theta}_p \end{pmatrix} - \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} \right) \stackrel{D}{\to} N_p(\mathbf{0}, \mathbf{\Sigma}).$$

Let $\boldsymbol{\theta} = (\theta_1, ..., \theta_p)^T$ and let $\boldsymbol{g}(\boldsymbol{\theta}) = (e^{\theta_1}, ..., e^{\theta_p})^T$. Find $\boldsymbol{D}_{\boldsymbol{g}(\boldsymbol{\theta})}$.

$$D = \begin{vmatrix} \frac{1}{3}e^{0} & \frac{1}{3}e^{0} & \frac{1}{3}e^{0} \\ \frac{1}{3}e^{0} & \frac{1}{3}e^{0} & \frac{1}{3}e^{0} \end{vmatrix} = \begin{vmatrix} e^{0} & e^{0} & e^{0} \\ \frac{1}{3}e^{0} & \frac{1}{3}e^{0} & \frac{1}{3}e^{0} & \frac{1}{3}e^{0} \end{vmatrix}$$

Table 1: Exponential(1) -1 Errors

_									
	n	clen	slen	alen	olen	ccov	scov	acov	ocov
Ī	50	5.795	6.432	6.821	6.817	.971	.987	.976	.988
	100	5.427	5.907	7.525	5.377	.974	.987	.986	.985
	1000	5.182	5.387	8.432	4.807	.972	.987	.992	.987
	∞	5.152	5.293	8.597	4.605	.972	.990	.995	.990

070724

8) The above table shows simulation results for multiple linear regression. The large sample 99% PIs are for Y_f given x_f and training data $(Y_1, x_1), ..., (Y_n, x_n)$ with n = 50, 100, or 1000. There are 4 PIs s, a, c (classical PI for $N(0, \sigma^2)$ errors, so a Chebyshev PI), and o (asymptotically optimal PI based on the shorth). The distribution for the errors was EXP(1) - 1. For each n coverages and the average PI lengths were given. Hence for n = 50, PI a had simulated coverage 0.976 and ave. length = 6.821 while n = 1000 PI c had simulated coverage 0.972 and ave. length = 5.182. The $n = \infty$ line gives the asymptotic lengths and coverages. There were 5000 runs, so say the PI is best if its coverage ≥ 0.98 with shortest average length. Which PI is best for the following sample sizes n?

a) 50

4

ccor too low

b) 100

CCOU +00 low

c) 1000

ccou toolow

