Math 582

Quiz 10 2022

Name

11/

1) Suppose $x_1, ..., x_n$ are iid $p \times 1$ random vectors where

$$x_i \sim (1 - \gamma)N_p(\mu, \Sigma) + \gamma N_p(\mu, c\Sigma)$$

with $0 < \gamma < 1$ and c > 0. Then $E(\mathbf{x}_i) = \boldsymbol{\mu}$ and $Cov(\mathbf{x}_i) = [1 + \gamma(c-1)]\boldsymbol{\Sigma}$. Find the limiting distribution of $\sqrt{n}(\overline{\mathbf{x}} - \boldsymbol{d})$ for appropriate vector \boldsymbol{d} .

by the MCLT

76

2) Suppose $Y \sim N_n(X\beta, \sigma^2 I)$. Find the distribution of HY if H is an $n \times n$ constant matrix such that HX = X and $H = H^T = HH = H^2$. Simplify.

HY~ Nn (HXB, or HHT)

~ NA (XB) 02H)

3) Suppose that $Y_i = \alpha + \boldsymbol{x}_i^T \boldsymbol{\beta} + e_i$ where the $e_i = \sigma_i e_i$ where the e_i iid with $E(e_i) = 0$ and $V(e_i) = 1$. Then the e_i are independent with $E(e_i) = 0$ and $V(e_i) = \sigma_i^2$. This MLR model can be written as $\boldsymbol{Y} = \alpha 1 + \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{e}$. We will assume that the cases $(\boldsymbol{x}_i^T, Y_i)^T$ are iid. Fit the model with OLS to get $(\hat{\alpha}, \hat{\boldsymbol{\beta}})$ and the residuals r_i . The nonparametric bootstrap samples the $(\boldsymbol{x}_i, Y_i, r_i)$ with replacement to form the MLR model $\boldsymbol{Y}^* = \hat{\alpha} 1 + \boldsymbol{X}^* \hat{\boldsymbol{\beta}} + \boldsymbol{r}^*$ where with respect to the bootstrap distribution, the r_i^* are iid with $E(r_i^*) = 0$. This bootstrap model has the $(\boldsymbol{x}_i^{*T}, Y_i^*)^T$ iid with respect to the bootstrap distribution.

The MLR model $\boldsymbol{Y}^* = \hat{\alpha} \mathbf{1} + \boldsymbol{X}^* \hat{\boldsymbol{\beta}} + \boldsymbol{r}^*$ is the bootstrap data set, and OLS is fit to the model to obtain the bootstrapped statistic $(\hat{\alpha}^* = \overline{Y^*} - \hat{\boldsymbol{\beta}}^{*T} \overline{\boldsymbol{x}^*}, \hat{\boldsymbol{\beta}}^* = \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}^*}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}^*Y^*})$.

a) By the second method to compute OLS, $\hat{\boldsymbol{\beta}} = \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}Y}$. Since the bootstrap distribution for the nonparametric bootstrap is the empirical distribution, it can be shown that $[\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^*]^{-1} \stackrel{P}{\to} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^*$ and $\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}Y}^* \stackrel{P}{\to} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}Y}$. Prove that $\hat{\boldsymbol{\beta}}^* = [\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^*]^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}Y}^* \stackrel{P}{\to} \hat{\boldsymbol{\beta}}$.

b) By the second method to compute OLS, $\hat{\alpha} = \overline{Y} - \hat{\boldsymbol{\beta}}^T \overline{\boldsymbol{x}}$. It can be shown that $\overline{Y^*} \xrightarrow{P} \overline{Y}$ and $\overline{\boldsymbol{x}^*} \xrightarrow{P} \overline{\boldsymbol{x}}$. Prove that $\hat{\alpha}^* = \overline{Y^*} - \hat{\boldsymbol{\beta}}^{*T} \overline{\boldsymbol{x}^*} \xrightarrow{P} \hat{\alpha}$.