8) Let $W \sim N(\mu_W, \sigma_W^2)$ and let $X \sim N_p(\mu, \Sigma)$. The characteristic function of W is

$$\varphi_W(y) = E(e^{iyW}) = \exp\left(iy\mu_W - \frac{y^2}{2}\sigma_w^2\right).$$

Suppose $W = t^T X$. Then $W \sim N(\mu_W, \sigma_W^2)$. Find μ_W and σ_W^2 . Then the characteristic function of X is

$$\varphi_{\boldsymbol{X}}(\boldsymbol{t}) = E(e^{i\boldsymbol{t}^T\boldsymbol{X}}) = \varphi_{\boldsymbol{W}}(1).$$

Use these results to find $\varphi_{\mathbf{X}}(t)$.

$$\frac{\partial u_{w}}{\partial x} = E[\underline{z}^{T} \underline{x}] = x^{T} E[\underline{x}] = \underline{z}^{T} \underline{x} + \underline{z}^{T} \underline{z} + \underline{z}^{$$

9) Suppose $X_1, ..., X_n$ are iid $k \times 1$ random vectors where $E(X_i) = 1 = (1, ..., 1)^T$ and $Cov(X_i) = I_k = diag(1, ..., 1)$, the $k \times k$ identity matrix. Find the limiting distribution of $\sqrt{n}(\overline{X} - c)$ for appropriate vector c.