Math 583 HW 42023 Due Wednesday, Sept. 20.
A) Suppose $\boldsymbol{\Sigma}_{\boldsymbol{x}}=\operatorname{diag}(1,2,3,4), Y_{i}=Y_{i} \mid \boldsymbol{x}_{i}=x_{i 3}+x_{i 4}+e_{i}$ where the e_{i} are iid and $e_{i} \Perp \boldsymbol{x}_{i}$. Consider the population OLS and OPLS MLR models. Then $Y=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+e$ where $\boldsymbol{\beta}=\boldsymbol{\beta}_{O L S}$. Assume

$$
\binom{Y}{\boldsymbol{x}} \sim N_{p+1}\left(\binom{\mu_{Y}}{\boldsymbol{\mu}_{\boldsymbol{x}}}, \quad\left(\begin{array}{cc}
\Sigma_{Y} & \boldsymbol{\Sigma}_{Y \boldsymbol{x}} \\
\boldsymbol{\Sigma}_{\boldsymbol{x} Y} & \boldsymbol{\Sigma}_{\boldsymbol{x}}
\end{array}\right)\right)
$$

Then $Y|\boldsymbol{x} \sim Y| \boldsymbol{\beta}_{O L S}^{T} \boldsymbol{x}$.
a) What is $\boldsymbol{\beta}$?
b) Find $\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$.
c) Find $\lambda=\lambda_{O P L S}$.
d) Find $\boldsymbol{\beta}_{O P L S}$.
e) Find $V(Y \mid \boldsymbol{x})=V\left(Y \mid \boldsymbol{\beta}_{O L S}^{T} \boldsymbol{x}\right)$.
f) Find $V\left(Y \mid \boldsymbol{\Sigma}_{\boldsymbol{x} Y}^{T} \boldsymbol{x}\right)$.

Hints: see the example done in class on notes 24)-25). For e) and f) $\sigma_{Y}^{2}=\boldsymbol{\Sigma}_{Y}$ is unknown, so $V(Y \mid \boldsymbol{x})=\sigma_{Y}^{2}-a$ and $V\left(Y \mid \boldsymbol{\Sigma}_{\boldsymbol{x} Y}^{T} \boldsymbol{x}\right)=\sigma_{Y}^{2}-d$. Find a and d.
B) Suppose $\hat{\boldsymbol{\beta}}_{E}$ estimates $\boldsymbol{\beta}_{E}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{u}_{Y}$ and the population OLS estimator $\boldsymbol{\beta}_{O L S}=$ $\boldsymbol{\beta}_{O L S}(\boldsymbol{u}, Y)$ exists (iid cases). Then $\boldsymbol{\beta}_{E}=\boldsymbol{C} \boldsymbol{\beta}_{O L S}$. Find \boldsymbol{C}.
C) We will study the relationship between $Y=$ the number of women married to civilians in the district with the predictors $x_{1}=$ constant, $x_{2}=$ pop $=$ the population of the district in 1843, $x_{3}=$ mmen $=$ the number of married civilian men in the district, x_{4} $=$ mmilmen $=$ number of married men in the military in the district, and $x_{5}=$ milwmn $=$ the number of women married to husbands in the military in the district. Sometimes the person conducting the survey would not count a spouse if the spouse was not at home. The output below is for OLS forward selection. The confidence intervals were made using the bootstrap (not yet covered). The asterisk * means the variable is in the model.

	Estimate	Std.Err	95\% shorth	CI
Intercept	241.5445	190.7426	[-218.40,	652.152]
$\mathrm{pop}=\mathrm{x} 2$	0		[-0.0053,	$0.0059]$
mmen=x3	1.0010	0.0002	[0.9687,	1.0310]
mmilmen=x4	0		[-0.5951,	$7.9475]$
$\mathrm{milwmn=x5}$	0		[-8.7004,	$0.5996]$
Selection Algorithm: forward				
pop mmen mmilmen milwmn				
1 (1) "	" "*" " "	" "		
2 (1) " "	" "*" "*"	" "		
3 (1) "*'	" "*" "*"	" "		
4 (1) "*'	" "*" "*"	"*"		
out\$cp				
[1] -0.82689	9671.015	14623.00	294295.000	00000

a) What is the value of $C_{p}\left(I_{\text {min }}\right)$ and what is $\hat{\boldsymbol{\beta}}_{I_{m i n}, 0}$? (Include the constant corresponding to the intercept x_{1}.)
b) Which variables, if any, have confidence intervals that do not contain 0? (Hence the variables are needed in the MLR model given that the other variables are in the model.)
c) List the variables, including a constant, that model 3 contains.

Note: Some output uses TRUE instead of an asterisk * (true that the model contains the variable) and FALSE instead of a blank " ". Other variants also occur.
D) Consider the data set in C) with $Y=$ the number of women married to civilians in the district, but now let $x_{1}=$ pop $=$ the population of the district in $1843, x_{2}=$ mmen $=$ the number of married civilian men in the district, $x_{3}=$ mmilmen $=$ number of married men in the military in the district, and $x_{4}=$ milwmn $=$ the number of women married to husbands in the military in the district. The output for the marginal simple linear regression of Y on x_{i} is shown below for $i=1,2,3,4$.
a)What is $\hat{\boldsymbol{\beta}}_{M M L E}$?

Hint: for x_{1}, the output gives $\hat{\alpha}_{1}=-7908.83$ and $\hat{\beta}_{1}=0.178206$. Similarly, find $\hat{\beta}_{i}$ for $i=2,3,4$ and stack into a vector.
b) Does it make sense that $\hat{\boldsymbol{\beta}}_{2} \approx 1$?

Label	Estimate	Std. Error	t-value	p-value
Constant	-7908.83	2622.01	-3.016	0.0060
x1	0.178206	0.00412413	43.211	0.0000
Label	Estimate	Std. Error	t-value	p-value
Constant	241.544	190.743	1.266	0.2175
x2	1.00097	0.00180451	554.702	0.0000
Label	Estimate	Std. Error	t-value	p-value
Constant	60931.0	13866.0	4.394	0.0002
x3	48.5630	15.6793	3.097	0.0049
Coefficient Estimates				
Label	Estimate	Std. Error	t-value	p-value
Constant	60745.3	13606.7	4.464	0.0002
x4	51.5514	16.1923	3.184	0.0040

