
Math 583 Exam 1 is on Wednesday, Sept. 27 and covers homeworks 1-4 and quizzes
1-4. You are allowed 9 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

1) For classical regression and multivariate analysis, we often want n ≥ Jp, with
J ≥ 5. Often much larger J is needed. High dimensional methods have n ≤ 5p.

2) Regression investigates how the response variable Y changes with the value of a
p × 1 vector x of predictors. The estimated sufficient predictor ESP = α̂ + xT β̂.

3) A response plot is a plot of ESP vs Y and a residual plot is a plot of ESP vs. r.
4) A plot of w vs. z puts w on the horizontal axis and z on the vertical axis.
5) A model for variable selection is xTβ = xT

SβS + xT
EβE = xT

SβS where x =
(xT

S , xT
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let xI be the

vector of a terms from a candidate subset indexed by I , and let xO be the vector of the
remaining predictors (out of the candidate submodel). If S ⊆ I , then xT β = xT

SβS =
xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI where xI/S denotes the predictors in I that are not

in S. Since this is true regardless of the values of the predictors, βO = 0 if S ⊆ I . Note
that βE = 0. Let kS = aS − 1 = the number of population active nontrivial predictors.
Then k = a − 1 is the number of active predictors in the candidate submodel I .

6) For multiple linear regression (MLR), model MLR 1) is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error.
Assume that the ei are iid with expected value E(ei) = 0 and variance V (ei) = σ2. In
matrix notation, these n equations become Y = Xβ + e where Y is an n × 1 vector of
dependent variables, X is an n× p matrix of predictors, β is a p × 1 vector of unknown
coefficients, and e is an n × 1 vector of unknown errors.

Model MLR 2) is

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei

for i = 1, ..., n. For this model, we may use φ = (α, βT )T with Y = Xφ + e.
7) For model MLR 1) Y = Xβ + e, the ordinary least squares (OLS) estimator is

β̂ = β̂OLS = (XTX)−1XT Y , which exists if n > p and X has full rank p.
8) For model MLR 2) Yi = α+xT

i β + ei, let xT
i = (xi1, ..., xip), let α be the intercept,

and let the slopes vector β = (β1, ..., βp)
T . Let the population covariance matrices

Cov(x) = E[(x − E(x))(x− E(x))T ] = Σx, and

Cov(x, Y ) = E[(x − E(x))(Y −E(Y ))] = ΣxY = Σx,Y .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx is nonsingular,
then the population coefficients from an OLS regression of Y on x (even if a linear model
does not hold) are

α = αOLS = E(Y ) − βT E(x) and β = βOLS = Σ−1
x ΣxY.
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9) The sample mean x =
1

n

n
∑

i=1

xi = (X1, ..., Xp)
T where Xi is the sample mean of

the data in column i corresponding to variable Xi. Let the sample covariance matrices
be

Σ̂x =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n − 1

n
∑

i=1

(xi − x)(Yi − Y ).

Then Σx = S = (Sij). That is, the ij entry of S is the sample covariance Sij .Let the

method of moments estimators be Σ̃x =
1

n

n
∑

i=1

(xi − x)(xi − x)T and

Σ̃xY =
1

n

n
∑

i=1

(xi − x)(Yi − Y ) =
1

n

n
∑

i=1

xiYi − x Y .

10) For model MLR 2) Yi = α + xT
i β + ei, a) If Σ̂

−1

x exists, then α̂ = Y − β̂
T
x and

β̂ = β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi, x
T
i )T are iid random vectors such that σ2

Y , Σ−1
x , and ΣxY exist.

Then α̂
P→ α and

β̂
P→ β as n → ∞

where α and β are given by 8).
11) If X and Y are p × 1 random vectors, a a conformable constant vector, and A

and B are conformable constant matrices, then

E(X + Y ) = E(X) + E(Y ), E(a + Y ) = a + E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
12) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
13) If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ). If a

is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).
14) If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ). If a

is a p × 1 vector of constants, then a + X ∼ Np(a + µ,Σ).

Suppose

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

15) X1 ∼ Nq(µ1,Σ11).
16) Given a MVN distribution, be able to find the MVN distribution of subsets, pairs

of independent random variables and the correlation
ρ(Xi, Xj) =

σi,j√
σiiσjj

= Cov(Xi, Xj)/
√

V (Xi)V (Xj).
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17) If X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2 is
multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2 −µ2) and covariance Σ11 −Σ12Σ

−1
22 Σ21.

That is,
X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Often X1 = Y and X2 = X. Then find E(Y |X), V (Y |X) and ρ(Y, X).

18) Know that if Y1, ..., Yn are iid with E(Y ) = µ and V(Y ) = σ2, then E(Y ) = µ
and V(Y ) = σ2/n. Know E(S2) = σ2.

19) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let X be a
random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) → F (x) as

n → ∞ for all points x at which F (x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every ε > 0,

P (‖Xn − X‖ > ε) → 0 as n → ∞.
20) Multivariate Central Limit Theorem (MCLT): If X1, ..., Xn are iid k× 1 random

vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn −µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n
∑

i=1

X i.

21) Suppose
√

n(Tn − µ)
D→ Np(θ,Σ). Let A be a q × p constant matrix. Then

A
√

n(Tn − µ) =
√

n(ATn − Aµ)
D→ Nq(Aθ, AΣAT ).

22) Suppose A is a conformable constant matrix and Xn
D→ X. Then AXn

D→ AX.
23) The behavior of convergence in distribution to a MVN distribution in B) is much

like the behavior of the MVN distributions in A). The results in B) can be proven using
the multivariate delta method. Let A be a q× k constant matrix, b a constant, a a k× 1
constant vector, and d a q × 1 constant vector. Note that a + bXn = a + AXn with
A = bI. Thus i) and ii) follow from iii).

A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ, AΣAT ).
ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d, AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those values for
the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ, AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d, AΣAT ).
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24) Σx,y = Cov(x, y) = E[(x− E(x))(y − E(y))T ]

Cov(Ax, By) = ACov(x, y)BT

ΣAx,Y
= AΣxY (take B = I1 = 1)

Σx,By = Σx,yBT (take A = I)

If wi = Axi for i = 1, ..., n, then
w = Ax,
Σ̂w = AΣ̂xAT ,
Σ̃w = AΣ̃xAT ,
Σ̂wY = AΣ̂xY ,
Σ̃wY = AΣ̃xY ,
Cov(

∑n
i=1 xi,

∑m
j=1 zj) =

∑n
i=1

∑m
j=1 Cov(xi, zj),

25) All subsets of a MVN distribution are MVN. Suppose

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

If X ∼ Np(µ,Σ), and if X1 is a q × 1 vector, then X1 ∼ Nq(µ1,Σ11).

26) Let xn = (x1n, ..., xpn)
T and x = (x1, ..., xp)

T be random vectors. Then xn
D→ x

implies xin
D→ xi for i = 1, ..., p. Hence all subsets of xn converge in distribution to the

corresponding subsets of x: if xn
D→ x, then







xi1,n
...

xik,n







D→







xi1
...

xik






.

Typically marginal convergence in distribution xin
D→ xi for i = 1, ..., p does not imply

xn
D→ x.
27) The OLS regression of Y on w = Ax, where A is a k×p constant matrix with full

rank k, is β̂OLS(w, Y ) = Σ̂
−1

w Σ̂wY = (AΣ̂xAT )−1AΣ̂xY , provided the inverse matrices
exist.

28) Under the conditions of 27), if the cases (xi, Yi) are iid, then the population OLS
regression of Y on w is βOLS(w, Y ) = Σ−1

wΣwY = (AΣxAT )−1AΣxY , provided the
inverse matrices exist.

29) OLS CLTs. Consider the MLR model and assume that the zero mean errors
are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are random vectors, assume that the
cases (xi, Yi) are independent, and that the ei and xi are independent. Also assume that
maxi(h1, ..., hn) → 0 and

XT X

n
→ V −1

as n → ∞ where the convergence is in probability if the xi are random vectors (instead
of nonstochastic constant vectors).

a) For MLR model 1) Y = Xβ + e, the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 V ).
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b) For MLR model 2) Y = Xφ + e, the OLS estimator φ̂ satisfies
√

n(φ̂ − φ)
D→ Np+1(0, σ2 V ).

c) Suppose the cases (xi, Yi) are iid from some population and MLR model 2) Yi =
α + xT

i β + ei holds. Assume that Σ−1
x and Σx,Y exist. Then b) holds and

√
n(β̂ − β)

D→ Np(0, σ2 Σ−1
x )

where β = βOLS = Σ−1
x Σx,Y .

30) If the ei are iid and p is fixed, then under mild condition β̂OLS
P→ βOLS. Need iid

cases for βOLS = Σ−1
x Σx,Y .

31) The one component partial least squares (OPLS) estimator is easy to compute

in high and low dimensions. Compute Σ̂xY = η̂OPLS , then compute Wi = Σ̂
T

xY xi for

i = 1, ..., n. Then do the OLS regression of Y on the Σ̂
T

xY xi using the working model
Y = α + λW + ε to get α̂ and λ̂. Then α̂OPLS = α̂ and

β̂OPLS = λ̂Σ̂xY where λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

.

Under iid cases,

βOPLS = λΣxY where λ =
ΣT

xYΣxY

ΣT
xYΣxΣxY

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. The OPLS MLR model is Y = Y |βT
OPLSx =

αOPLS + βT
OPLSx + e.

32) CLT for Σ̂xY : Assume the cases (xT
i , Yi)

T are iid. Assume E(xk
ij Y m

i ) exist for j =
1, ..., p and k, m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi −µx)(Yi −µY )
with sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√

n(η̂n − η)
D→ Np(0,Σw),

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z = Σ̂v. Hence
Σ̃w = Σ̃z = Σ̃v.
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume λ̂
P→ λ 6= 0. Then
√

nA(β̂OPLS − βOPLS)
D→ Nk(0, λ2AΣwAT ).

33) Slutsky’s Theorem: Let xn = (X1n, ..., Xkn)
T be a sequence of k × 1 random

vectors, let yn be a sequence of k × 1 random vectors, and let x = (X1, ..., Xk)
T be a

k × 1 random vector. Let W n be a sequence of k × k nonsingular random matrices, and

let C be a k × k constant nonsingular matrix. If xn
D→ x and yn

P→ d for some constant

k × 1 vector c, then i) xn + yn
D→ x + d and

ii) yT
nxn

D→ dT x.

c) If xn
D→ x and W n

P→ C, then W nxn
D→ Cx, xT

nW n
D→ xTC, W −1

n xn
D→ C−1x,

and xT
nW −1

n
D→ xT C−1.
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34) Let u = (xi1 , ..., xik)
T where n ≥ Jk with J ≥ 5. Sometimes much larger J

will be needed. Then apply 32ab) with u in place of x to do a hypothesis test of the
form H0 : AβOPLS = 0 or H0 : AΣx,Y = 0 where AΣx,Y = BΣu,Y . In particular,
if βOPLS = (β1, ..., βp)

T , use A = (0, ..., 0, 1, 0, ..., 0) with a 1 in the ith position to test
H0 : βi = 0 versus HA : βi 6= 0. If i1 < i2 < · · · < ik, then the jth row of A has a 1 in
the ij position and all other row entries equal to 0 to test H0 : (βi1, ..., βik)

T = 0. Note
that A = Ip can be used to test H0 : βOPLS = 0 in low dimensions (n ≥ Jp), but not in
high dimensions. Similarly, A = [0 Ik ] can be used to test whether the last k elements
(βp−k−1, ..., βp)

T = 0. To test H0 : β3 −β4 = 0, use A = (0, 0, 1,−1, 0, ..., 0). Using a test

based on 32c) may not work well in high dimensions because λ̂ may not be close to λ.
35) If the data Y1, ..., Yn are arranged in ascending order from smallest to largest and

written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the Y(i)’s are called
the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample median absolute

deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).
36) Suppose the multivariate data has been collected into an n × p matrix

W =







xT
1
...

xT
n






.

The coordinatewise median MED(W ) = (MED(X1), ..., MED(Xp))
T where MED(Xi) is

the sample median of the data in column i corresponding to variable Xi.
37) Let (T, C) = (T (W ), C(W )) be an estimator of multivariate location and dis-

persion. The ith Mahalanobis distance Di =
√

D2
i where the ith squared Mahalanobis

distance is D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )).
38) The squared Euclidean distances of the xi from the coordinatewise median is D2

i =
D2

i (MED(W ), Ip). Concentration type steps compute the weighted median MEDj : the
coordinatewise median computed from the cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip))

where MED0 = MED(W ). Often used j = 0 (no concentration type steps) or j = 9. Let
Di = Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn) where
k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise.

39) Let the covmb2 set B of at least n/2 cases correspond to the cases with weight
Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi

∑n
i=1 Wi

and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise median
versus the Euclidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear in the upper
right corner of the plot with a gap between the bulk of the data and the outliers.
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Table 1: 40) OPLS MLR Results

General βOLS = Σ−1
x Σx,Y = λΣx,Y = βOPLS

βOLS = Σ−1
x Σx,Y =

1

λ
[Cov(x)]−1βOPLS βOLS is an eigenvector of Σx

βOPLS = λΣx,Y = λCov(x)βOLS βOPLS is an eigenvector of Σx
Σx,Y = Cov(x)βOLS = ΣxβOLS Σx,Y is an eigenvector of Σx

41) Multitude of MLR models: Suppose
(

Y
x

)

∼ Np+1

( (

µY

µx

)

,

(

ΣY ΣY x
ΣxY Σx

) )

.

Let A be a constant k × p matrix with full rank k. Let w = Ax. Assume Σx is
nonsingular. Then
(

Y
w

)

∼ Nk+1

( (

µY

µw

)

,

(

ΣY ΣY w
ΣwY Σw

) )

∼ Nk+1

( (

µY

Aµx

)

,

(

ΣY ΣY xAT

AΣxY AΣxAT

) )

.

If A = ηT and w = w = ηT x is a random variable, then
(

Y
ηT x

)

∼ N2

( (

µY

ηT µx

)

,

(

ΣY ΣT
xY η

ηTΣxY ηT Σxη

) )

.

Using 17), Y |ηT x ∼ N(αη + βT
ηx, σ2

η) where αη = µY − βT
ηµx, βη = λη,

σ2
η = ΣY − βT

ηΣxY = ΣY − ληTΣxY = ΣY − (ΣT
xY η)2

ηTΣxη
,

and

λ =
ΣT

xY η

ηT Σxη
.

Hence Y |ηTx follows a population OLS regression model for the regression of Y on
ηTx: Y |ηTx = αη + xT (λη) + e where e ∼ N(0, σ2

η). Using η = ΣxY corresponds to

OPLS. Using η = Σ−1
x ΣxY = βOLS gives Y |βT

OLSx ∼ Y |x ∼ N(E(Y |x), V (Y |x)) or
Y |x = αOLS + xTβOLS + e where e ∼ N(0, V (Y |x)) and V (Y |x) = ΣY −ΣT

xY Σ−1
x ΣxY .

Using 17), Y |w also follows a population OLS regression model for the regression of
Y on w: Y |w = αw,OLS + wT βw,OLS + e where e ∼ N(0, σ2

Y |w). Here

βw,OLS = Σ−1
wΣwY = (AΣxAT )−1AΣxY ,

and αw,OLS = E(Y ) − βT
w,OLSE(w).

42) Referring to 40) and 41), be able to compute λOPLS from 31), βOPLS = λΣxY ,
βOLS = Σ−1

x ΣxY , and ΣxY = ΣxβOLS if the cases are iid, the MLR model holds, and
Σx is a diagonal matrix. Be able to recognize β = βOLS from the MLR model.

43) Let ‖a‖2 =
√

aT a be the Euclidean norm.
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44) The marginal maximum likelihood estimator (MMLE or marginal least squares es-
timator) computes the marginal regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M)

for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .
45) For multiple linear regression, the marginal estimators are the simple linear re-

gression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y .

If the wi are the predictors standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = I−1Σ̂w,Y = η̂OPLS(w, Y )

where (w, Y ) denotes that Y was regressed on w, and I is the p × p identity matrix.
46) The MMLE is interesting since if each predictor satisfies a marginal model, then

the marginal model theory can be used to find a confidence interval for βi for i = 1, ..., p
where βi is the ith component of βMMLE. For MLR, let V = diag(Σx) = diag(σ2

1, ..., σ
2
p).

For iid cases, βMMLE = V −1Σx,Y = V −1ΣxβOLS.
For standardized predictors, let sj and σj be the sample and population standard devi-

ations of xj. Let wi = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi = diag(1/σ1, ..., 1/σp)xi.

Note that
√

n(Σ̂w,Y − Σu,Y ) =
√

n(Σ̂w,Y − Σ̂u,Y ) +
√

n(Σ̂u,Y − Σu,Y ) = OP (1) +√
n(Σ̂u,Y − Σu,Y ) under mild regularity conditions for iid cases. Hence Σ̂w,Y is a

√
n

consistent estimator of Σu,Y . Note that Σu is the correlation matrix of x.
47) Theorem: Consider the MMLE for MLR. Suppose the cases (Yi, x

T
i )T are iid from

some distribution. Let wi be the standardized predictors and assume Σ̂w,Y
P→ Σu,Y and

Σ̂w
P→ Σu where the Σ̂w are nonsingular for large enough n and Σu is nonsingular.

a)β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = η̂OPLS(w, Y )
P→ Σu,Y =

ηOPLS(u, Y ) = βMMLE = Σu[Σu]−1Σu,Y = ΣuβOLS(u, Y ).

b) Let βOLS = βOLS(u, Y ). Then βMMLE = ΣuβOLS = βOLS if βOLS = 0 or if
βOLS is an eigenvector of Σu with eigenvalue = 1.

Ch. 2

48) Refer to point 5) for a model for variable selection: xT β = xT
SβS+xT

EβE = xT
SβS.

If S ⊆ I , then xTβ = xT
SβS = xT

I βI + xT
O0 = xT

I βI . To clarify notation, suppose p = 3,
a constant α is always in the model, and β = (β1, 0, 0)

T . Then the J = 2p = 8 possible
subsets of {1, 2, ..., p} are I1 = ∅, S = I2 = {1}, I3 = {2}, I4 = {3}, I5 = {1, 2},
I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There are 2p−aS = 4 subsets I2, I5, I6, and I8

such that S ⊆ Ij. Let β̂I7
= (β̂2, β̂3)

T and xI7 = (x2, x3)
T .

Let Imin correspond to the set of predictors selected by a variable selection method
such as forward selection or lasso variable selection. If β̂I is a×1, use zero padding to form
the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik,0 with probabilities πkn =

P (Imin = Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p.
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49)

IJ model x1 x2 x3 x4 β̂ = β̂Ij

I1 1 * (0, β̂2, 0, 0)
T

I2 2 * * (0, β̂2, β̂3, 0)
T

I3 3 * * * (β̂1, β̂2, β̂3, 0)
T

I4 4 * * * * (β̂1, β̂2, β̂3, β̂4)
T = β̂OLS

Model Imin is the model, among p candidates, that minimizes Cp, AIC, BIC if n ≥ 10,
or EBIC if n < 10p. Model Ij contains j predictors, x∗

1, x
∗
2, ..., x

∗
j if forward selection is

used.
50) Variable selection is a search for a subset of predictors that can be deleted without

important loss of information if n ≥ 10p and such that model I (containing the remaining
predictors that were not deleted) is good for prediction if n < 10p. Note that the “100%”
shorth CI for a βi that is a component of βO is [0,0].

51) Underfitting occurs if S 6⊆ I so that xI is missing important predictors. Under-
fitting will occur if xI is k × 1 with d = k < aS. Overfitting occurs if S ⊂ I with S 6= I
or if n < 5k.

52) In 49) sometimes TRUE = * and FALSE = blank. The xi may be replaced by
the variable name or letters like a b c d.

Ij model x2 x3 x4 x5

I2 1 FALSE TRUE FALSE FALSE
I3 2 FALSE TRUE TRUE FALSE
I4 3 TRUE TRUE TRUE FALSE
I5 4 TRUE TRUE TRUE TRUE

53) The out$cp line gives Cp(I2), Cp(I3), ..., Cp(Ip) = p and Imin is the Ij with the
smallest Cp.

54) Typical bootstrap output for forward selection, lasso, and elastic net is shown
below. The SE column is usually omitted except possibly for forward selection. The
term “coef” might be replaced by “Estimate.” This column gives β̂I,0 where I = Imin for
forward selection, I = L for lasso, and I = EN for elastic net. Note that the SE entry
is omitted if β̂i = 0 so variable xi was omitted by the variable selection method. In the
output below, β̂2 = β̂3 = 0. The SE column corresponds to the OLS SE obtained by
acting as if the OLS full model contains a constant and the variables not omitted by the
variable selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]

x3 0 [L̂3, Û3]

x4 0 [L̂4, Û4]
...

...
...

...

xp β̂p SE(β̂p) [L̂p, Ûp]
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55) Forward selection generates a sequence of J models. Assume all models with a
constant α contain a constant. To form I1, consider all models I with one predictor.
Compute criterion C(xi) and let x∗

1 minimize the criterion. Then I1 corresponds to x∗
1

and p models are fit. To form I2, compute C(x∗
1, xj) for the p − 1 models where xj 6= x∗

1.
Continue in this manner. The last model fit is IJ using C(x∗

1, ..., x
∗
J−1, xj) for the p−J+1

models where xj is not one of the J − 1 variables already selected. Imin is the model
corresponding to the smallest criterion. Often J = min(n − r, p) for some integer r ≥ 0.

The same regression method, eg OLS or a GLM, is used to compute each fitted model
β̂I . For MLR, typically C(I) = RSS(I) + p(I) where SSE(I) = RSS(I) = rT (I)r(I) =
∑n

i=1 r2
i (I) =

∑n
i=1(Yi − Ŷi(I))2.

56) Forward selection can be slow if n and p are large with the number of fitted models
close to n(p − n/2) if p >> n.

57) Lasso variable selection uses a grid of J models depending on a parameter λi for
i = 1, ..., J to form I1, ..., IJ. The glmnet default appears to be 100, but researchers often
use much larger J for high dimensional data.

58) MMLE variable selection: Let the xi be the predictors. Let the wi be the
standardized predictors such that the sample variance of each predictor is 1. Find the
J variables x∗

1, ..., x
∗
J corresponding to the largest |β̂i|. Note that these variables are not

standardized.
59) A two stage variable selection method is to use 58) to find r variables, then use

forward selection or lasso variable selection on the r variables to get model Imin with
variables x∗

1, ..., x
∗
a.

Math 583 Exam 1 is on Wednesday, Sept. 27 and covers homeworks 1-4

and quizzes 1-4. You are allowed 9 sheets of notes and a calculator.
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