
Math 583 Exam 2 is on Wednesday, Nov. 1 and covers homeworks 5-8 and quizzes
5-8. You are allowed 9 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

60) A random vector u has a mixture distribution if u equals a random vector uj with
probability πj for j = 1, ..., J . The distribution of a g × 1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =
J

∑

j=1

πjFuj
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is

the cdf of a g × 1 random vector uj. Then u has a mixture distribution of the uj with
probabilities πj.

61) Theorem. Suppose E(h(u)) and the E(h(uj)) exist. Then

E[h(u)] =
J

∑

j=1

πjE[h(uj)].

Hence

E(u) =
J

∑

j=1

πjE[uj ],

and Cov(u) = E(uuT ) − E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =
∑J

j=1 πjE[uju
T
j ] − E(u)[E(u)]T =

J
∑

j=1

πjCov(uj) +
J

∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T .

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =
J

∑

j=1

πjCov(uj).

62) Let β̂MIX be a random vector with a mixture distribution of the β̂Ik ,0 with

probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with the same probabilities πkn of the

variable selection estimator β̂V S, but the Ik are randomly selected.
63) Theorem. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX = β̂Ik ,0 with

probabilities πkn where πkn → πk as n → ∞. Denote the positive πk by πj. Assume

ujn =
√

n(β̂Ij ,0 − β)
D→ uj ∼ Np(0, V j,0). a) Then

un =
√

n(β̂MIX − β)
D→ u

where the cdf of u is Fu(t) =
∑

j πjFuj
(t).
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b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√

n(Aβ̂MIX − Aβ)
D→ Au = v (1)

where v has a mixture distribution of the vj = Auj ∼ Ng(0, AV j,0A
T ) with probabilities

πj.

c) The estimator β̂V S is a
√

n consistent estimator of β:
√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√

n(β̂SEL − β)
D→ u ∼ Np(0, V d,0) where SEL is V S or MIX.

64) The following subscript notation is useful. Subscripts before the MIX are used
for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if I = {i1, ..., ia}, then

β̂I,MIX = (β̂i1, ..., β̂ia)
T . Subscripts after MIX denote the ith vector from a sample

β̂MIX,1, ..., β̂MIX,B. Similar notation is used for other estimators such as β̂V S . The sub-
script 0 is still used for zero padding. We may use F or FULL to denote the full model
β̂ = β̂F = β̂FULL.

65) Use the conditional distribution of β̂V S |(β̂V S = β̂Ik,0) to find the distribution

of wn =
√

n(β̂V S − β). Let β̂
C

Ik,0 be a random vector from the conditional distribution

β̂Ik,0|(β̂V S = β̂Ik ,0). Let wkn =
√

n(β̂Ik,0 − β)|(β̂V S = β̂Ik,0) ∼ √
n(β̂

C

Ik ,0 − β). Denote
Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by P (z ≤ t). Then

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J
∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn, and wn has a
mixture distribution of the wkn with probabilities πkn.

66) Theorem. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂V S = β̂Ik,0 with
probabilities πkn where πkn → πk as n → ∞. Denote the positive πk by πj. Assume

wjn =
√

n(β̂
C

Ij ,0 − β)
D→ wj. Then

wn =
√

n(β̂V S − β)
D→ w

where the cdf of w is Fw(t) =
∑

j πjFwj
(t).

67) Data splitting divides the data into two sets: the training set (or modeling set) H
that has nH cases, and the validation set V that has n− nH = nV cases. For regression,
assume the cases are independent. Build a model IH using a predictors using the cases
in H. During the building process, you can examine the data (use the response to build
the model) and you can use variable selection.
Then fit the model IH using only the cases in V . Assuming n ≥ Ja (with J ≥ 5 or
10 etc.), perform the usual model checks (such as a response plot) and the usual model
inference.

Pros: with data splitting, you can look at the data for the cases in H, use data
splitting for high dimensional data, and perform standard inference. (With all n cases,
a) using the response to build a model invalidates inference, and b) variable selection
inference is complicated.) Also standard theory applies to the nV cases, hence often iid
cases are not needed.
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Drawbacks: a) Since nV cases are used, there is a loss of efficiency compared to
using all n cases if IH could have be chosen without looking at the response or using
variable selection. b) Models that are much better than IH may exist, especially in high
dimensions.

68) Let Q(η) be a real valued function of the k × 1 vector η. The gradient of Q(η)
is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=

∂Q(η)

∂η
=











∂
∂η1

Q(η)
∂

∂η2

Q(η)
...

∂
∂ηk

Q(η)











.

Suppose there is a model with unknown parameter vector η. A set of estimating equations

f(η) is used to maximize or minimize Q(η) where η is a dummy variable vector.
As a mnemonic (memory aid) for the following theorem, note that the derivative

d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem. a) If Q(η) = aT η = ηT a for some k×1 constant vector a, then 5Q = a.
b) If Q(η) = ηTAη for some k × k constant symmetric matrix A, then 5Q = 2Aη.
c) If Q(η) =

∑k
i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi) where sign(ηi)

= 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only defined for η where none
of the k values of ηi are equal to 0.

69) For h > 0, the hyperellipsoid {z : (z − T )TC−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in this
region if Dxf

≤ h. A large sample 100(1 − δ)% prediction region is a set An such that
P (xf ∈ An) is eventually bounded below by 1 − δ where 0 < δ < 1. A large sample
100(1 − δ)% confidence region is a set An such that P (µ ∈ An) is eventually bounded
below by 1− δ. A prediction interval (PI) [Ln, Un] is a special case of a prediction region
and a confidence interval (CI) [Ln, Un] is a special case of a confidence region. (We often

want the probability to
P→ 1 − δ.)

70) Let D2
i = D2

xi
= D2

xi
(x, S) = (xi − x)T S−1(xi − x) where S = Σ̂x is the

sample covariance matrix. Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and
qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. If qn < 1 − δ + 0.001, set qn = 1 − δ.
Let D(Un) is the 100qnth sample quantile of the Di. The large sample 100(1 − δ)%
nonparametric prediction region is {z : Dz(x, S) ≤ D(Un)} = {z : D2

z(x, S) ≤ D2
(Un)}.

This prediction region needs Σx to be nonsingular and the xi, xf iid for i = 1, ..., n.
71) Data splitting divides the training data x1, ..., xn into two sets: H and the vali-

dation set V where H has nH of the cases and V has the remaining nV = n − nH cases
i1, ..., inV

. The estimator (TH, CH) is computed using the data set H. Then the squared
validation distances D2

j = D2
xij

(TH, CH) = (xij − TH)T C−1
H (xij − TH) are computed for

the j = 1, ..., nV cases in the validation set V . Let D2
(UV ) be the UV th order statistic of

the D2
j where

UV = min(nV , d(nV + 1)(1 − δ)e).
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The large sample 100(1 − δ)% data splitting prediction region for xf is

{z : D2
z(TH, CH) ≤ D2

(UV )}.

This prediction region can be used for high dimensional data if CH is nonsingular, e.g. if
CH = Ip. The “coverage” is bounded below by UV /(nV + 1) (with exact coverage for xi

from a continuous multivariate distribution). The coverage is no larger than nV /(nV +1)
which can be low for small nV . Prediction regions with much smaller volume may exist.

nV δ UV UV /(nV + 1)
1 1/2 1 1/2
2 1/3 2 2/3
19 0.05 19 0.95
20 0.05 20 0.9594
99 0.05 95 0.95
100 0.05 96 0.95
600 0.95 571 0.9501

72) In low dimensions with variable selection, possibly with data splitting, if model
I is selected, often βI,0(xI , Y ) = βF (x, Y ) where F is the full model and (xI , Y ) means

regress Y on xI . Hence β̂I,0
P→ βF , i.e. β̂I,0 is a consistent estimator of βF . Assume I

is sparse with βI an a × 1 vector with n ≥ Ja and J ≥ 10 or 20 etc. Check the model
with the usual checks such as the response plot. Perform the usual inference on the
model applied to the cases in the validation set V . The following table shows what β̂I or
β̂I,0 is estimating, along with errors that are common in the high dimensional literature.

OPLS and MMLE need iid cases. For iid cases, βI,OLS(xI , Y ) = Σ−1
xI

ΣxI ,Y . Results that
often hold under reasonable conditions in low dimensions, fail to hold under reasonable
conditions in high dimensions. Let HD stand for high dimensions. I could be Imin or IH.

Table 1: Regression Summary: Data Splitting and/or Variable Selection
low dimensions HD but sparse I high dimensional error

general: β(x, Y ) = βI,0(xI , Y ) βI(xI , Y ) βF = β(x, Y ) = βI,0(xI , Y )
lasso VS: β(x, Y ) = βI,0(xI , Y ) βI(xI , Y ) βF = β(x, Y ) = βI,0(xI , Y )
OLS: βI,0(xI , Y ) = βOLS(x, Y ) βI(xI , Y ) or Σ−1

xI
ΣxI ,Y βE = βOLS = βF

OPLS: βOPLS = λΣx,Y βI,OPLS = λIΣxI ,Y βOPLS = βOLS = βF

MMLE: βMMLE = Σu,Y βI,MMLE = ΣuI ,Y βMMLE = βOLS = βF

73) Consider the MLR model Y = Xβ + e. Then OLS minimizes the OLS criterion
QOLS(β) = RSS(β) = (Y −Xβ)T (Y −Xβ) where RSS is the residual sum of squares.
One ridge regression estimator β̂R minimizes the ridge regression criterion

QR(β) =
1

a
RSS(β) +

λ1n

a
βT β.

Here λ1,n ≥ 0 and a > 0 are known constants with a = 1, 2, n, and 2n common. Then

β̂R = (XT X + λ1nIp)
−1XTY , and the inverse matrix exists provided λ1n > 0.
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74) Another ridge regression estimator β̃R minimizes

QRR(β) =
1

a
RSS(β) +

λ1n

a
(βT β − β2

1).

This ridge estimator criterion is similar to the lasso criterion, but it is likely that β̃RR

does not have a simple formula unless 75) below is used.
75) It is common to center and scale the predictors and/or to center the response

so that the constant term disappears. Then then two ridge regression estimators agree.
Software often does this.

76) Refer to 73). It can be shown that

β̂R = (XTX + λ1nIp)
−1XTY = XT (XXT + λ1nIn)−1Y

where the inverse matrices exist for any λ1,n > 0. The first formula is better if n >> p

while the 2nd formula is better if n << p. If λ1,n = 0, then β̂R = β̂OLS. If λ̂1,n → ∞, then

β̂R → 0 and Ŷ → 0. Hence ridge regression is a shrinkage estimator and is regularized
if λ1,n > 0.

If n > p and (XT X)−1 exists, then η̂R = Anβ̂OLS = Bnβ̂OLS where

An = (XTX + λ1,nIp)
−1XT X and Bn = [Ip − λ1,n(X

T X + λ1,nIp)
−1].

77) RR CLT. Assume p is fixed and that the conditions of the OLS CLT (Theorem
3.1 and point 29 a)) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√

n
P→ 0, then

√
n(β̂R − β)

D→ Np(0, σ2V ).

b) If λ̂1,n/
√

n
P→ τ ≥ 0 then

√
n(β̂R − β)

D→ Np(−τV η, σ2V ).
78) For k-fold cross validation (k-fold CV), randomly divide the training data into k

groups (folds) of approximately equal size nj ≈ n/k for j = 1, ..., k. Leave out the 1st
fold, fit the method to the k−1 remaining folds, then compute some criterion for the 1st
fold. Repeat for folds 2, ..., k.

79) For the MLR model Y = Xβ + e, compute Ŷi(j) for each Yi in the fold j left

out. Then MSEj =
1

nj

nj
∑

i=1

(Yi− Ŷi(j))
2, and the overall criterion is CV(k) =

1

k

k
∑

j=1

MSEj.

Note that if each nj = n/k, then CV(k) =
1

n

n
∑

i=1

(Yi − Ŷi(j))
2. Then CV(k) ≡ CV(k)(Ii) is

computed for i = 1, ..., J , and the model Ic with the smallest CV(k)(Ii) is selected.
80) Output like that below means cases 7, 12, 14, 18, 21, and 23 are in fold 1 while

cases 1, 16, 22, 24, and 25 are in fold 4.

folds: 4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3

81) For MLR, k-fold CV picks a model Ic that is good for prediction. Models I1, ..., IJ

are considered. For example, Ij corresponds to λj when a grid of J values of λ is used:
0 ≤ λ1 < λ2 < · · · < λJ where λj = λ1,n,j. Ridge regression, lasso, and elastic net use
such a grid.

5



82) A fitted or population regression model is sparse if a of the predictors are active
(have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10. Otherwise the model is nonsparse.
A high dimensional population regression model is abundant or dense if the regression
information is spread out among the p predictors (nearly all of the predictors are active).
Hence an abundant model is a nonsparse model. High dimensional methods have n ≤ 5p.

83) In low dimensions, want to estimate β = βF that uses all predictors. In high
dimensions, it may not be possible to get a consistent estimator of βF , but wit iid cases,
we want to greatly outperform the null model that uses iid Y1, ..., Yn with no predictors.

84) The lasso estimator β̂L minimizes the lasso criterion

QL(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p
∑

i=2

|βi| (2)

over all vectors β ∈ R
p.

85) Lasso CLT. Assume p is fixed and that the conditions of the OLS CLT (Theorem
3.1 and point 29 a))hold for the model Y = Xβ + e.

a) If λ̂1,n/
√

n
P→ 0, then

√
n(β̂L − β)

D→ Np(0, σ2V ).

b) If λ̂1,n/
√

n
P→ τ ≥ 0 and sn

P→ s = sβ, then

√
n(β̂L − β)

D→ Np

(−τ

2
V s, σ2V

)

.

c) If λ̂1,n/n
P→ 0, then β̂L

P→ β = βF,OLS .
86) Like ridge regression, lasso uses a grid of λ values: 0 < λ1 < λ2 < · · · < λJ where

λj = λ1,n,j. The value of λJ is the smallest value of λ such that β̂2 = · · · = β̂p = 0
(no nontrivial predictors are active, so none are used). The value of λ1 tends to be
proportional to n3/4, which makes the lasso estimator at most n1/4 consistent instead of
the much better

√
n consistent. In low dimensions, λ1 is often selected, and J = 100 is

fine. In high dimensions, increasing J gives more models that could be good for prediction
(multitude of models).

87) In low dimensions, since lasso is a consistent estimator of β = βF , P (S ⊆ Imin) →
1 as n → ∞ where Imin corresponds to the λ̂ = λj chosen by k-fold CV. Hence the
lasso variable selection estimator is a

√
n consistent estimator of β = βOLS. In high

dimensions with p > n, either all p of the β̂i are nonzero or at most n + 1 of the β̂i are
nonzero (including a constant). Hence if β̂S is (a + 1) × 1 with a > n, then the lasso
variable selection estimator can not be a consistent estimator of β = βF = βOLS. Data
splitting can be used for inference after checking that the model selected by lasso variable
selection is good. Since lasso can select nH +1 predictors including a constant, may need
nV > nH + 1 to compute OLS on the validation set (e.g. for simulations).

88) Consider intervals that contain c cases [Y(1), Y(c)], [Y(2), Y(c+1)], ..., [Y(n−c+1), Y(n)].
Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator shorth(c) =
[Y(s), Y(s+c−1)] is the interval with the shortest length.
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89) Let xT
i = (1 uT

i ). It is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n × (p − 1) matrix of standardized nontrivial predictors W =
(Wij). For j = 1, ..., p − 1, let Wij denote the (j + 1)th variable standardized so that
∑n

i=1 Wij = 0 and
∑n

i=1 W 2
ij = n. Then the sample correlation matrix of the nontrivial

predictors ui is

Ru =
W TW

n
.

Then regression through the origin is used for the model Z = W η+e where the vector of
fitted values Ŷ = Y + Ẑ. Thus the centered response Zi = Yi−Y and Ŷi = Ẑi +Y . Then
η̂ does not depend on the units of measurement of the predictors. Linear combinations
of the ui can be written as linear combinations of the xi, hence β̂ can be found from η̂.

90) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z −W η)T (Z − Wη) +

λ1,n

a

p−1
∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2 corresponds to ridge
regression, j = 1 corresponds to lasso, and a = 1, 2, n, and 2n are common. The residual
sum of squares RSSW (η) = (Z−Wη)T (Z−Wη), and λ1,n = 0 corresponds to the OLS
estimator η̂OLS = (W T W )−1W TZ. Usually a grid of M values 0 ≤ λ1 < λ2 < · · · < λM

is used where λi = λ1,n,i. 10-fold CV is often used to select λS = λ̂1,n.

91) Let Y = Xβ + e, and let Z = W η + e be used to fit elastic net. Then Ẑ, η̂EN ,
and Y are used to find β̂EN and Ŷ . The elastic net estimator η̂EN minimizes the criterion
QEN(η) = RSSW (η)+λ1‖η‖2

2 +λ2‖η‖1 where λ1 = (1−α)λ1,n and λ2 = 2αλ1,n. Let the
(n + p− 1)× (p− 1) augmented matrix W A and the (n + p− 1)× 1 augmented response
vector ZA be defined by

W A =

(

W√
λ1 Ip−1

)

, and ZA =

(

Z

0

)

,

where 0 is the (p − 1) × 1 zero vector. Let RSSA(η) = ‖ZA − W Aη‖2
2. Then η̂EN can

be obtained from the lasso of ZA on W A: that is, η̂EN minimizes
QL(η) = RSSA(η) + λ2‖η‖1 = QEN(η).

92) The k-component estimator

β̂kE = Â
T

k,nγ̂k = Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)
−1Âk,nΣ̂x,Y = Λ̂kΣ̂x,Y

= Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂xβ̂OLS(x, Y ) = Λ̂kΣ̂xβ̂OLS(x, Y ).

Suppose k = p and Â
−1

p,n exists. Then β̂pE = β̂OLS .
93) The matrix A has eigenvalue λ with eigenvector x 6= 0 if Ax = λx. Let e

be an eigenvector of A with unit length: ‖e‖2 = 1. If the corresponding eigenvalue
is unique, then e and −e are the only such eigenvectors. Suppose A is p × p and
symmetric. Then the eigenvalues of A are real. Then A is positive definite, A > 0, if
λ1 ≥ λ2 ≥ · · · ≥ λp > 0, and A is positive semidefinite, A ≥ 0, then λp ≥ 0. A positive
definite matrix is nonsingular: A−1 exists.
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94)

Âk,n =











η̂1

η̂2
...

η̂k











.

95) For principle components regression (PCR), let D̂ = Σ̂x or D̂ = R̂x, the sample
correlation matrix of the x in the MLR model Y = α + xTβ + e. Let (λ̂1, ê1), ..., (λ̂p, êp)

be the eigenvalue eigenvector pairs of D̂ with λ̂1 ≥ λ̂2 · · · ≥ λ̂p and with the eigenvectors
chosen to be orthonormal. Then η̂i = êi in 92) and 94). There are p+1 PCR estimators:
β̂1PCR, ..., β̂pPCR and the model selection PCR estimator β̂MS,PCR = β̂k∗PCR where k∗ is
chosen by model selection such as 10-fold CV.

96) For partial least squares (PLS), the k-component PLS estimator regresses Y on
η̂T

1 x, ..., η̂T
k x. There are several equivalent ways to get the η̂i. One way is to use

η̂1 = Σ̂xY , η̂2 = Σ̂xΣ̂xY , ..., η̂k = [Σ̂x]k−1Σ̂xY .

Then β̂1PLS = β̂OPLS . There are p + 1 PLS estimators: β̂1PLS, ..., β̂pPLS and the model

selection PLS estimator β̂MS,PLS = β̂k∗PLS where k∗ is chosen by model selection such
as 10-fold CV.

97) Since OLS is used, need k < n − 1 in high dimensions.
ch. 8

98) A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix

form, this model is
Y = Xβ + e,

where Y is an n× 1 vector of dependent variables, X is an n× p matrix of predictors, β

is a p×1 vector of unknown coefficients, and e is an n×1 vector of unknown errors. Also
E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2
1, ..., σ

2
n) is an n × n positive definite

matrix. In chapters 2 and 3, the constant variance assumption was used: σ2
i = σ2 for all

i. Hence heterogeneity means that the constant variance assumption does not hold.
99) For 98), under iid cases and additional regularity conditions,

√
n(β̂OLS − β)

D→ Np(0, V ΩV )

where V −1 = E[xix
T
i ], Ω = E[e2

i xix
T
i ], and

1

n
XTX =

1

n

n
∑

i=1

xix
T
i

P→ V −1.

100) Under iid cases and 98) but Y = α + βT x + e, then Y |βT
OPLSx is often an MLR

model with heterogeneity. Then
√

n(Σ̂xY − ΣxY )
D→ Np(0,Σw) as in 32).
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101) Let Y = Xβ + e and xT
i = (1 uT

i ). It is often convenient to use the centered
response Z = Y −Y where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial
predictors W = (Wij). For j = 1, ..., p − 1, let Wij denote the (j + 1)th variable
standardized so that

∑n
i=1 Wij = 0 and

∑n
i=1 W 2

ij = n. Then the sample correlation
matrix of the nontrivial predictors ui is

Ru =
W TW

n
.

Then regression through the origin is used for the model Z = W η+e where the vector of
fitted values Ŷ = Y + Ẑ. Thus the centered response Zi = Yi−Y and Ŷi = Ẑi +Y . Then
η̂ does not depend on the units of measurement of the predictors. Linear combinations
of the ui can be written as linear combinations of the xi, hence β̂ can be found from η̂.

102) A single index model is Y = m(SP ) + e where E(Y |SP ) = m(SP ) and SP =
α + βT x or SP = βTx. If the cases are iid, OPLS theory still holds. Hence

√
n(Σ̂xY −

ΣxY )
D→ Np(0,Σw) as in 32).

103) Poisson regression: Y |SP ∼ Poisson(exp(SP )). For Poisson regression, estimate
E(Y |x) with eESP . The response plot is a plot of ESP versus Y with the estimated
mean function eESP and lowess added as visual aids. The lowess curve should track the
exponential curve fairly closely except possible for the largest values of ESP .

104) Let Zi = Yi if Yi > 0, and let Zi = 0.5 if Yi = 0. The minimum chi–

square estimator of the parameters (α, β) in a Poisson regression model is (α̂M , β̂M),
and is found from the weighted least squares regression of log(Zi) on xi with weights
wi = Zi. Equivalently, use the ordinary least squares (OLS) regression (without intercept)
of

√
Zi log(Zi) on

√
Zi(1, x

T
i )T . If the cases are iid, OPLS theory still holds with Z

replacing Y . Hence
√

n(Σ̂xZ − ΣxZ)
D→ Np(0,Σw) as in 32).

105) The cases (xi, Yi) follow a Weibull proportional hazards (PH) regression model if
log(Yi) = α+βT xi + εi follows an MLR model = Weibull accelerated failure time model.

106) Binary regression: Y |SP ∼ bin(1, ρ(SP)). Here ρ(SP ) = E(Y |SP ) = P (Y =
1|SP ). If (Y, xT )T has a joint distribution, then Y |ηTx ∼ bin(1, ρ(ηT x)) follows a binary
regression model for every η ∈ R

p. However, the model and ρ could be poor. Visualize ρ
with a response plot of η̂Tx versus Y with a scatterplot smoother added as a visual aid.

107) For binary logistic regression Y = 0 or Y = 1 and ρ(SP ) =
eSP

1 + eSP
Estimate

E(Y |x) = P (Y = 1|x) with ρ̂(x) = ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )
. The response plot is a

plot of ESP versus Y with the (estimated mean function) logistic curve ρ̂(ESP ) and a
step function added as visual aids. The step function heights are the sample proportion
of cases with Y = 1 in each slice, and the step function should track the logistic curve
fairly closely.

108) If Yi ∼ D(α + βTxi, γ) and the regression method gives α̂, β̂, and γ̂, then the

parametric bootstrap generates Y ∗

i ∼ D(α̂+ β̂
T
xf , γ̂) for i = 1, ..., B. Then a 100(1−δ)%

PI for Yf is roughly the 100(1 − δ)% shorth PI applied to Y ∗

1 , ..., Y ∗

B. Here D is some
parametric distribution. (Poisson regression, logistic regression, Weibull regression, etc.)

109) Lasso variable selection can be used for several models, such as MLR, LR, PR,
and Weibull PH regression. Fit the lasso estimator β̂L = (β̂1, ..., β̂p)

T . Then fit the
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corresponding regression model (such as MLR, LR, PR, or Weibull PH regression) to the
variables xj corresponding to the β̂j 6= 0.

110) The MMLE for regression methods is to fit the marginal regression model: regress
Y on xj to get (α̂j , β̂j), for j = 1, ..., p. Then β̂MMLE = ( ˆbeta1, ..., β̂p)

T . Let Wi =

β̂MMLExi for i = 1, ..., n. Then do the marginal regression of Y on Wi for the regression
method (e.g. MLR, LR, PR, Weibull regression). Given the marginal regression output
for j = 1, ..., k be able to find (β̂1, ..., β̂k)

T where k = p is possible in low dimensions.
111) MMLE variable selection: get the standardized predictors wi = (w1, ..., wp)

T .

Get the MMLE estimator β̂MMLE = ( ˆbeta1, ..., β̂p)
T from the marginal regressions of Y

on the wi. Then take the J variables xj corresponding to the largest |β̂j|. Regress Y on
these J variables.

112) If J is small enough, data splitting can be used for inference after variable
selection (lasso VS, MMLE VS, forward selection, etc.).
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