
Math 583 Exam 3 is on Wednesday, Dec. 6 with emphasis on homeworks 9-11 and
quizzes 9-11. You are allowed 9 sheets of notes and a calculator. Any needed tables will
be provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS
ON THIS HANDOUT! Final: Wednesday, December 13 2:45-4:45.

113) In supervised classification, there are G known groups or populations and m test
cases. Each case is assigned to exactly one group based on its measurements wi. Assume
that for each population there is a probability density function (pdf) fj(z) where z is a
p × 1 vector and j = 1, ..., G. Hence if the random vector x comes from population j,
then x has pdf fj(z). Assume that there is a random sample of nj cases x1,j, ..., xnj ,j for

each group. The n =
∑G

j=1 nj cases make up the training data. Let (xj, Sj) denote the
sample mean and covariance matrix for each group. Let the ith test case wi be a new
p× 1 random vector from one of the G groups, but the group is unknown. Discriminant

analysis = classification attempts to allocate (classify) the wi to the correct groups for
i = 1, ..., m.

Assume that costs of correct and incorrect allocation are unknown or equal, and
assume that the probabilities πj = ρj(wi) that wi is in group j are unknown or equal:
πj = 1/G for j = 1, ..., G. Often it is assumed that the G groups have the same covariance
matrix Σx. Then the pooled covariance matrix estimator is

Spool =
1

n−G

G
∑

j=1

(nj − 1)Sj

where n =
∑G

j=1 nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location and disper-

sion for the jth group, e.g. the sample mean and sample covariance matrix (µ̂j , Σ̂j) =
(xj, Sj).

114) Assume that G = 2 and that there is a group 0 and a group 1. Let ρ(w) = P (w ∈
group 1). Let ρ̂(w) be the logistic regression (LR) estimate of ρ(w). Logistic regression

produces an estimated sufficient predictor ESP = α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and allocates
w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates w to group 1 if ESP ≥ 0
and allocates w to group 0 if ESP < 0. The response plot is as in point 107).

115) Given LR output, as shown below in symbols and for a real data set, and given
x to classify, be able to a) compute ESP, b) classify x in group 0 or group 1, c) compute
ρ̂(x).

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0
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Binomial Regression Kernel mean function = Logistic

Response = Status,Terms = (Bottom Left),Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

116) Let Σ̂pool be a pooled dispersion estimator such as Spool. Then the linear dis-

criminant rule is allocate w to the group with the largest value of

dj(w) = µ̂
T
j Σ̂

−1

poolw −
1

2
µ̂

T
j Σ̂

−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) = (xj , Spool).
LDA is robust to nonnormality and somewhat robust to the assumption of equal popu-
lation covariance matrices. LDA can be useful if the population dispersion matrices are
equal: Σj ≡ Σ for j = 1, ..., G. LDA can be useful if some of the nj < 10p. In high dimen-

sions, replace Spool by a regularized estimator such as Σ̂pool = Ip or Σ̂pool = diag(Spool).
117) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it is

known that xij came from group j where there are G ≥ 2 groups. Use the discriminant
analysis method to classify the training data. If mj of the nj group j cases are correctly

classified, then the apparent error rate for group j is 1 − mj/nj. If mA =
∑G

j=1 mj of

the n =
∑G

j=1 nj cases were correctly classified, then the apparent error rate AER =
1−mA/n.

118) Get apparent error rates for LDA with the following commands.

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the following com-
mands.

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4, and x5 with the following
commands.

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

119) Expect the apparent error rate to be too low: the method works better on the
training data than on the new test data to be classified.

120) leave one out cross validation (CV): for i = 1, ..., n where the training data has
n cases, compute the discriminant rule with case i left out and see if the rule correctly
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classifies case i. Let mC be the number of cases correctly classified. Then the CV error
rate is 1−mC/n.

121) leave out a validation set V (data splitting): Suppose the training data has
n cases. Randomly select a subset V of nv cases to be left out when computing the
discriminant rule. Hence n−nv cases are used to compute the discriminant rule. Let mL

be the number of cases from subset V that are correctly classified. Then the “validation
set” error rate is 1−mL/nv. Here nv should be large enough to get a good rate. Often
use nv between 0.1n and 0.5n.

122) The k-fold CV is similar to that for MLR. Let mk be the number of cases that
are correctly classified. Then the k-fold CV error rate is 1−mk/n.

multiple testing

123) Suppose there are m tests for g ∈ I = {1, ..., m} with H0g : µgA = µgB versus
H1g : µgA 6= µgB. The m tests result in m estimated p-values (pvalues) p̂1, ..., p̂m. Let

R̂ give a set of indices i for hyotheses H0i, that are rejected. The empty set R̂ = ∅ is
possible. Often α = 0.1, 0.05, or 0.01. Let p̂(1), ..., p̂(m) be the order statistics of the p̂i.

124) Let I0 = {i ∈ I : H0i is true }. We call false positive the indices i ∈ R̂ ∩ I0 and
true positive the indices i ∈ R̂∩Ic

0. Let FP = number of false positives and TP = number

of true positives. The false discovery proportion FDP =
FP

FP + TP
with 0/0 = 0. The

false discovery rate FDR = E

[

FP

FP + TP
I(FP + TP ≥ 1)

]

.

125) The Bonferroni correction uses R̂B = {i ∈ I : p̂i ≤ α/m}. Often α = 0.1, 0.05,
or 0.01.

126) The Benjamani-Hochberg procedure uses R̂BH = ∅ if {k : p̂(k) ≤ αk/m} = ∅.
Otherwise, let k̂ = max{k ∈ I : p̂(k) ≤ αk/m}, and R̂BH = {i ∈ I : p̂i ≤ αk̂/m} =
{i1, ..., ik̂ corresponding to p̂(1), ..., p̂(k̂)}.

Note that the Bonferroni correction uses α/m while 126) uses k̂α/m.
ch. 10

127) The multivariate linear regression mreg1 model

yi = BT xi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp

where x1 ≡ 1 is the trivial predictor. The ith case is (xT
i , yT

i ) = (1, xi2, ..., xip, Yi1, ..., Yim)
where the 1 could be omitted. The model is written in matrix form as Z = XB+E where
the matrices are defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij)
for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m where In

is the n× n identity matrix and ei is defined below. Then the p×m coefficient matrix
B =

[

β1 β2 . . . βm

]

and the m × m covariance matrix Σε are to be estimated,
and E(Z) = XB while E(Yij) = xT

i βj . The εi are assumed to be iid. The data matrix
W = [X Y ] except usually the first column 1 of X is omitted. The n×m matrix

Z =











Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m











=
[

Y 1 Y 2 . . . Y m

]

=







yT
1
...

yT
n






.
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The n × p design matrix of predictor variables is

X =











x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p











=
[

v1 v2 . . . vp

]

=







xT
1
...

xT
n







where v1 = 1. The p×m matrix

B =











β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m











=
[

β1 β2 . . . βm

]

.

The n ×m matrix

E =











ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m











=
[

e1 e2 . . . em

]

=







εT
1
...

εT
n







.

Considering the ith row of Z, X and E shows that yT
i = xT

i B + εT
i .

128) Each response variable in a mreg1 model follows a multiple linear regression
model Y j = Xβj +ej for j = 1, ..., m where it is assumed that E(ej) = 0 and Cov(ej) =
σjjIn. Hence the errors corresponding to the jth response are uncorrelated with variance
σ2

j = σjj. Notice that the same design matrix X of predictors is used for each of the
m models, but the jth response variable vector Y j, coefficient vector βj and error vector
ej change and thus depend on j.

Now consider the ith case (xT
i , yT

i ) which corresponds to the ith row of Z and the
ith row of X. Then











Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xT

i βm + εim











.

129) The OLS estimators for the mreg1 model are

B̂ = (XT X)−1XTZ =
[

β̂1 β̂2 . . . β̂m

]

.

130) Let X = (1 X1). The mreg2 model is

yi = α + BT
Sxi + εi

for i = 1, ..., n with

Z = XB + E = X

[

αT

BS

]

+ E =







αT

...
αT






+ X1BS + E.
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Now consider the ith case (xT
i , yT

i ) which corresponds to the ith row of Z and the
ith row of X. The nontrivial predictors are in xi for the mreg2 model. Then











Yi1 = α1 + β11xi1 + · · ·+ βp1xip + εi1 = α1 + xT
i β1 + εi1

Yi2 = α2 + β12xi1 + · · ·+ βp2xip + εi2 = α2 + xT
i β2 + εi2

...
Yim = αm + β1mxi1 + · · ·+ βpmxip + εim = αm + xT

i βm + εim











.

131) For the mreg2 model, the OLS estimators are B̂ = (XT X)−1XT Z,

α̂ = y− B̂
T

Sx, and B̂S = Σ̂
−1

x Σ̂xy where Σ̂xy = 1
n−1

∑n

i=1(xi−x)(yi− y)T which has

jth column Σ̂xYj
for j = 1, ..., m. Note that α̂j = Y j − β̂

T

j x. Let

v =

(

y

x

)

, E(v) = µv =

(

E(y)
E(x)

)

=

(

µy
µx

)

, µ̂v = v =

(

y

x

)

,

Cov(v) = Σv =

(

Σy Σyx
Σxy Σx

)

, and Σ̂v = Sv =

(

Σ̂y Σ̂yx

Σ̂xy Σ̂x

)

.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope vectors BS =
[

β1 β2 . . . βm

]

. For iid case vi, the population least squares coefficient matrix is

B =

(

αT

BS

)

where α = µy −BT
Sµx and BS = Σ−1

x Σxy provided the relevant matrices exist.
The OLS mreg2 estimator can be calculated by computing the sample mean and

sample covariance matrix (v, Sv) = (v, Σ̂v) of the vi, and then plug in the results into
the formulas for α̂ and B̂S .

More on classification

132) For two groups with Z = 1 or Z = −1, let SP = β0 +βTx. Classify x in group 1
if ESP > 0 and classify x in group −1 if ESP < 0. So the classifier Ĉ(x) = sign(ESP ).

133) Suppose the two groups of training data in 132) are separable by a hyperplane.
The estimated optimal separating hyperplane ESP has the largest margin on the training
data. The hyperplanes parallel to the ESP that form the boundaries of the margin are
called fences. The fences pass through as least 2 training data set cases forming the
support set S of support vectors. The margin M is the distance between the fences. A
separating hyperplane has SP > 0 if x ∈ group 1 and SP < 0 if x ∈ group −1. Hence
Zi SPi = Zi(β0+βTxi) > 0 for i = 1, ..., n. Think of the hyperplane β0+βTx as dividing
R

P into two halves. The SVM split tries to make the halves homogeneous.
134) Wide data = ultra-high dimensional data has p >> n. If n ≤ p + 1 then there is

a separating hyperplane unless there are “exact predictor ties across the class barrier.”
135) The optimal margin classifier (β̂0M , β̂M) solves max

β0∈R,β∈RP

M subject to (*):

Zi SPi = Zi(β0 + βT xi) ≥ M for all i = 1, ..., n. Equivalently, solve min
β0,β
‖β‖2 sub-

ject to (*). This classifier is called a hard margin classifier since no training data cases
from either group can pass the fences of the classifier. It turns out that β̂M =

∑

i∈S α̂ixi.
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136) A soft margin classifier allows training data cases from either group to pass the
fences or to be misclassified. Let the εi ≥ 0 be slack variables. This classifier solves
min
β0,β
‖β‖2 subject to Zi SPi = Zi(β0 + βTxi) ≥ 1 − εi for i = 1, ..., n and

∑n

i=1 εi ≤

B. Equivalently min
β0,β

n
∑

i=1

[1 − Zi(β0 + βT xi)]+ + λ‖β‖22, a criterion similar to that of

ridge regression. Here [w]+ = w if w ≥ 0 and [w]+ = 0 if w ≤ 0. The hinge loss

[1− Zi(β0 + βTxi)]+ is the cost of xi being on the wrong side of the margin (which is 0
if xi is on the correct side of the margin).

137) A support vector machine (SVM) that uses xi minimizes the above loss criterion.
For separable training data, (β̂0,SV M , β̂SV M)→ (β̂0,M , β̂M) as λ→ 0. The SVM also has

fences and a support set S of support vectors with β̂SV M =
∑

i∈S γ̂ixi. The ESP =

β̂0,SV M + β̂
T

SV Mx = β̂0,SV M +
∑

i∈S γ̂ix
T
i x. The SVM can be computed with O(n2p)

complexity using the Gram matrix XXT or with O(np2) complexity using XTX. Ridge
regression could also be computed this way.

138) A lasso-SVM solves min
β0,β

n
∑

i=1

[1 − Zi(β0 + βTxi)]+ + λ‖β‖1 and does variable

selection. For Z ∈ {−1, 1}, a “ridged logistic regression” solves

min
β0,β

n
∑

i=1

log[1+exp(−Zi(β0 +βTxi))]+λ‖β‖22. A “lasso logistic regression” would change

the squared norm ‖β‖22 to ‖β‖1.
139) A ROC curve is used to evaluate binary classifiers, and the overall performance

is summarized by the area under the ROC curve (AUC). An ideal ROC curve is close
to the top left corner (left and top sides of the rectangle) of the plot. The larger the
AUC, the better the classifier. The ROC curve plots the false positive rate versus the
true positive rate, so 0 ≤ AUC ≤ 1. A classifier with AUC = 0.5 does no better than
chance. A ROC from test data or validation data is better than a ROC from training
data.

140) A truth table = confusion matrix.

truth total
predict −1 1
−1 true negative (TN) false negative (FN) N∗

1 false positive (FP) true positive (TP) P ∗

total N P

The error rate is (FP + FN)/(FP + FN + TN + TP ). This rate is the AER if
training data was used and VER if a validation set was used.

The false positive rate = FP/N = 1− specifity ≈ type I error.
The true positive rate = TP/P = 1− sensitivity ≈ 1− type II error ≈ power ≈ recall.

141) A SVM uses a kernel function K(xi, xj). The SVM in 137) uses a linear kernel

K(xi, xj) = xT
i xj . A polynomial kernel of degree d is K(xi, xj) = [1 + xT

i xj]
d. A radial

kernel is K(xi, xj) = exp[−γ‖xi − xj‖22). The SVM with a linear kernel is a competitor
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of LDA and logistic regression. The SVM with a nonlinear kernel is a competitor of QDA
and KNN. The SVM uses f(x) = β̂0 +

∑n

i=1 α̂iK(x, xi) = β̂0 +
∑

i∈S α̂iK(x, xi) = ESP

with Ĉ(x) = sign(ESP ). The n(n− 1)/2 distinct pairs (xi, xj) are needed to estimate

β̂0 and the α̂i.
142) Let Y = 1 if Z = 1 and Y = 0 if Z = −1. Then Y |x ∼ binomial(m = 1, ρ(x))

where ρ(x) = ρ(SP ) = P (Y = 1|x) and ρ(0) = 0.5. This is a binary regression with
ρ unspecified. A response plot is ESP versus Z with lowess added as a visual aid.

If ESP = β̂0 + β̂
T
x and ni ≥ 20p, then the bootstrap with ni cases selected with

replacement from each group is likely useful. Use the prediction region method.
143) If there are G ≥ 2 classes, the one versus one or all pairs classifier constructs

(

G

2

)

binary classifiers, one for each distinct pair of groups. Classify x with fij(x), and

let mi = number of times x is predicted to be in class i. Then Ŷ (x) = Ĉ(x) = d where
md = max(m1, ..., mG). The one versus all classifier fits G binary classifiers: group
i = 1 versus the G− 1 other classes with −1 with fi(x). Then Ŷ (x) = Ĉ(x) = d where
f̂d(x) = max(f̂1(x), ..., f̂G(x)). (These are ESPs.)

144) The two classifiers in 143) can be applied to other binary classifiers, and the
labels Y ∈ {a, b} can be used. For example a = 0 and b = 1.

145) A regression tree is a flexible method for Y = m(x) + e or for Yi = m(xi)+ σiei.
A classification tree is a flexible method for classification. Both methods produce graphs
called trees that look like dendrograms. Each branch has a label like Xi > 7.56 or
Xi < 3.45 where Xi is quantitative or a label like Xj = a, c or Xj 6= d, g if Xj is
quantitative with levels a, b, ..., g, h. Unless told otherwise, go to the left of the branch
if the condition is true, and go to the right of the branch if the condition is false. A split

is a rule for creating new branches. The bottom of the tree has leaves = terminal nodes

that give Ŷ = Ŷ |x where Ŷ is a number for a regression tree and Ŷ is a label for the
classification group for a classification tree. The tree is binary so a tree with d ≥ 1 splits
(rules) has d + 1 terminal nodes.

146) Know how to find Ŷ given a tree and x values. If x = (X1, ..., Xp)
T , often not

all of the Xi values are needed to find Ŷ = Ŷ |x.
147) Trees that use recursive partitioning for classification and regression trees use

the CART algorithm. In growing the tree the binary CART algorithm recursively splits
the data in each node until either the terminal node is homogeneous (the region Rm

corresponding to the node has all cases from the same group for classification and Y ≈
constant for regression), or until the terminal node has ≤ 5 observations. The region Rm

corresponding to the mth terminal node is a hyper-box: a p-dimensional set if x is p× 1.
Hence trees suffer from the curse of dimensionality.

148) The tree divides the p-dimensional predictor space into J distinct and nonover-
lapping regions (p-dimensional hyper-boxes) R1, ..., RJ. For each observation that falls
in region Rj make the same prediction ŶRj

. For example, ŶRj
= Y j, the sample mean of

the training data Y in Rj for regression, and ŶRj
= modej for classification where modej

is the training data group that occurred most often for the training data Y in Rj (a lot
like KNN where the region is a p-dimensional hypersphere that contains K training data
Y ’s). For a regression tree, the response plot is a plot of Ŷ versus Y . Then there are J
dot plots, one for each value of ŶRj

, with nj values Y1,1, ..., Y1,nj
where the Yi,j are the
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training data in Rj. These J dot plots scatter about the identity line. The residuals

corresponding to Rj are ri,j = Yi,j −Y j. The residual plot of Ŷ versus r consists of J dot

plots of the residuals, one for each value of ŶRj
= Y j. These dot plots scatter about the

r = 0 line.
149) Let Ŷ |x = f̂(x). For a regression tree, draw a sample of size n with replacement

from x1, ..., xn. Fit a tree and find f̂∗

1 (x). Repeat B times to get f̂∗

1 (x), ..., f̂∗

B(x). then

the bagging estimator f̂∗

bag(x) =
1

B

B
∑

i=1

f̂∗

i (x). For classification take samples of size ni

with replacement from each group. Let f̂∗

i (x) = ji(x) ∈ {1, ..., G} be the estimated level
(group) of Y given x. Let mk = number of ji(x) = k for k = 1, ..., G. Take f̂∗

bag(x) = d
where md = max(m1, ..., mG), so d is the “mode level group.” For both regression and
classification, the trees are not pruned, so terminate when each terminal node has 5 or
fewer observations. Bagging a tree typically gives more accuracy than a single tree.

150) The probability of a case not being selected for the ith bootstrap sample is
about e−1 ≈ 1/3. These are called out of bag (OOB) observations. Predict Ŷ for
each OOB observation. Doing this for all B bootstrap samples produces about B/3
predictors Ŷi for each xi. Let the OOB predictor Ŷio = average Ŷi for regression and

mode level for classification. Then the OOB MSE =
1

n

n
∑

i=1

(Yi − Ŷio)
2 for regression and

1

n

n
∑

i=1

I(Yi 6= Ŷio) for classification. The OOB MSE is “virtually” equivalent to the leave

one out CV estimate for sufficiently large B.
151) Random forests use the bootstrap, but at each split, a random sample of m ≈√

p predictors is used as split candidates. Random forests produce trees that are less
correlated than bagged trees, and tend to have better test error than bagging.

152) Boosting has f̂ (x) =
∑B

b=1 λf̂b(x). First set f̂(x) ≡ 0 and ri = Yi. For b =

1, ..., B fit a tree f̂b with d splits (often d = 1 where the tree is a stump or d = 2) to
the training data (X, r). Update the tree and the residuals f̂ (x) ← f̂(x) + λf̂b(x) and
ri ← ri−λf̂b(x). Using stumps (d = 1) leads to an additive model: f̂(x) =

∑p

j=1 f̂j(Xj)
where x = (X1, ..., Xp). So boosting with d = 1 is a competitor of the additive error

GAM Ŷ = α̂ +
∑p

j=1 Ŝj(Xj). Typically λ = 0.01 or 0.001.
153) For a binary classification tree with Y = 0 or 1, for a fixed value of x, the

bootstrap produces B estimates P̂ ∗

i (Y = 1|x) of P (Y = 1|x). Let Ŷ ∗

i = 1 if P̂ ∗

i (Y =
1|x) ≥ 0.5 and Ŷ ∗

i = 0 if P̂ ∗

i (Y = 1|x) < 0.5. Two common methods to get Ŷ |x

are a) Ŷ |x = mode class of 0 or 1, or b) Ŷ |x = 1 if
1

B

B
∑

i=1

P̂∗

i (Y = 1|x) ≥ 0.5 and

Ŷ |x = 0 if
1

B

B
∑

i=1

P̂∗

i (Y = 1|x) < 0.5.
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