
Math 583 HW 5 Fall 2020 Due Friday, Oct. 2.

Quiz 5 on Wednesday will have problems on prediction regions and large sample theory.

Note that Exam 2 is now Friday Oct. 23.

Problem numbers are from Olive (2020). Do the source commands from homework
4.

11.33. Suppose x1, ..., xn are iid p×1 random vectors from a multivariate t-distribution
with parameters µ and Σ with d degrees of freedom. Then E(xi) = µ and Cov(x)

=
d

d − 2
Σ for d > 2. Assuming d > 2, find the limiting distribution of

√
n(x − c) for

appropriate vector c.

R problems
3.43. The rpack function mldsim6 compares 7 estimators: FCH, RFCH, CMVE,

RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch. 4). Most of these
estimators need n > 2p, need a nonsingular dispersion matrix, and work best with
n > 10p. The function generates data sets and counts how many times the minimum
Mahalanobis distance Di(T, C) of the outliers is larger than the maximum distance of
the clean data. The value pm controls how far the outliers need to be from the bulk of
the data, and pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Euclidean distances
Di(T, Ip) and the Mahalanobis distances Di(T, Cd) where Cd is the diagonal matrix with
the same diagonal entries as C where (T, C) is the covmb2 estimator using j concentration
type steps. Dispersion matrices are effected more by outliers than good robust location
estimators, so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T, Cd) for many outlier
configurations. Again the function counts the number of times the minimum outlier
distance is larger than the maximum distance of the clean data.

Both functions used several outlier types. The simulations generated 100 data sets.
The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers in a tight cluster (near
point mass) at the major axis (0, ..., 0, pm)T . Type 2 had outliers in a tight cluster at the
minor axis (pm, 0, ..., 0)T . Type 3 had mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)).
Type 4 changed the pth coordinate of the outliers to pm. Type 5 changed the 1st coor-
dinate of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 1: Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB

100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 1 suggests with osteps = 0, covmb2 had the worst count. When pm is
increased to 25, all counts become 100. Copy and paste the commands for this part into
R and make a table similar to Table 1, but now osteps=9 and p = 45 is close to n/2 for
the second line where pm = 60. Your table should have 2 lines from output.

1



Table 2: Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

b) Copy and paste the commands for this part into R and make a table similar to
Table 2, but type 2 outliers are used.

c) When you have two reasonable outlier detectors, there are outlier configurations
where one will beat the other. Simulations suggest that “covmb2” using Di(T, Ip) out-
performs “diag” using Di(T, Cd) for many outlier configurations, but there are some
exceptions. Copy and paste the commands for this part into R and make a table similar
to Table 2, but type 3 outliers are used.

3.44 a). Tests for covariance matrices tend to be very nonrobust to nonnormality.
Let a plot of x versus y have x on the horizontal axis and y on the vertical axis. A good
diagnostic is to use the DD plot. So a diagnostic for H0 : Σx = Σ0 for known Σ0 is
to plot Di(x, S) versus Di(x,Σ0) for i = 1, ..., n. If n ≥ 10p and H0 is true, then the
plotted points in the DD plot should start to cluster tightly about the identity line.

a) A test for sphericity is a test of H0 : Σx = σ2Ip for some unknown constant
σ2 > 0. Make a “D2 plot” of D2

i (x, S) versus D2

i (x, Ip). If n ≥ 10p and H0 is true, then
the plotted points in the D2 plot should cluster tightly about the line through the origin
with slope σ2. Use the R commands for this part and paste the plot into Word. The
simulated data set has xi ∼ N10(0, 100I 10) where n = 100 and p = 10. Do the plotted
points follow a line through the origin with slope 100?

4.1. Use the R source commands and then type ddplot4(buxx, alpha=0.2) and put
the plot in Word. The Buxton data has 5 outliers, p = 4, and n = 87, so the 80%
prediction region uses the 100(1 − δ + p/n) = 84.6th percentile. The output shows that
the cutoffs are 2.527, 2.734, and 2.583 for the nonparametric, semiparametric, and robust
parametric prediction regions. The two horizontal lines that correspond to the robust
distances are obscured by the identity line. (Right click Stop once on the plot.)

4.2. Type the R command predsim() and paste the output into Word.

This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and xf = x101.
One hundred such data sets are made, and ncvr, scvr, and mcvr count the number of
times xf was in the nonparametric, semiparametric, and parametric MVN 90% prediction
regions. The volumes of the prediction regions are computed and voln, vols, and volm are
the average ratio of the volume of the ith prediction region over that of the semiparametric
region. Hence vols is always equal to 1. For multivariate normal data, these ratios should
converge to 1 as n → ∞. Were the three coverages near 90%?
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