
Exam 2 review. 12 sheets of notes and a calculator. Friday, Oct. 23.

Know 1), 9), and 14) - 22) from exam 1 review.
Types of problems.

24) A p×1 random vector x has an elliptically contoured distribution, if x has density

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (1)

and we say x has an elliptically contoured ECp(µ,Σ, g) distribution. If the second
moments exist, then

E(x) = µ (2)

and
Cov(x) = cxΣ (3)

for some constant cx > 0.
25) The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (x− µ)T Σ−1(x− µ). (4)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (5)

U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

26) The classical estimator (x, S) of multivariate location and dispersion is the sample
mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (6)

27) The n × p data matrix

W =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]
.

28) Let the p × 1 column vector T (W ) be a multivariate location estimator, and let
the p× p symmetric positive definite matrix C(W ) be a dispersion estimator. Then the
ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (7)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of
center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance uses (T, C) = (x, S).

Note that D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x − µ̂).
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29) a) The p × p population correlation matrix Cor(x) = ρx = (ρij).
b) The population covariance matrix of x with y is Cov(x, y) = Σx,y =

E[(x− E(x))(y − E(y))T ].
30) The spectral decomposition of the symmetric matrix A =

∑p
i=1 λieie

T
i

= λ1e1e
T
1 + · · · + λpepe

T
p .

31) The generalized sample variance = |S| = det(S).
32) The hyperellipsoid {x|D2

x ≤ h2} = {x : (x − x)T S−1(x − x) ≤ h2} is centered
at x and has volume equal to

2πp/2

pΓ(p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If x = 0, the axes

are given by the eigenvectors êi where the half length in the direction of êi is h
√

λ̂i. Here
êT

i êj = 0 for i 6= j while êT
i êi = 1.

33) A DD plot is a plot of classical vs. robust Mahalanobis distances. The DD plot
is used to check i) if the data is MVN (plotted points follow the identity line), ii) if the
data is EC but not MVN (plotted points follow a line through the origin with slope >
1), iii) if the data is not EC (plotted points do not follow a line through the origin), iv)
if multivariate outliers are present (e.g. some plotted points are far from the bulk of the
data). v) The DD plot can be used to display the prediction regions of Chapter 4.

34) Many practical “robust estimators” generate a sequence of K trial fits called
attractors: (T1, C1), ..., (TK, CK). Then the attractor (TA, CA) that minimizes some
criterion is used to obtain the final estimator. One way to obtain attractors is to generate
trial fits called starts, and then use the concentration technique. Let (T−1,j, C−1,j) be the
jth start and compute all n Mahalanobis distances Di(T−1,j, C−1,j). At the next iteration,
the classical estimator (T0,j, C0,j) is computed from the cn ≈ n/2 cases corresponding
to the smallest distances. This iteration can be continued for k steps resulting in the
sequence of estimators (T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). Then (Tk,j, Ck,j) is the
jth attractor for j = 1, ..., K. Using k = 10 often works well, and the basic resampling
algorithm is a special case k = −1 where the attractors are the starts.

35) The DGK estimator (TDGK , CDGK) uses the classical estimator
(T−1,D, C−1,D) = (x, S) as the only start.

36) The median ball (MB) estimator (TMB, CMB) uses (T−1,M , C−1,M) = (MED(W ), Ip)
as the only start where MED(W ) is the coordinatewise median. Hence (T0,M , C0,M) is
the classical estimator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

37) Elemental concentration algorithms use elemental starts: (T−1,j, C−1,j)
= (xj, Sj) is the classical estimator applied to a randomly selected “elemental set” of
p + 1 cases. If the xi are iid with covariance matrix Σx, then the starts (xj , Sj) are
identically distributed with E(xj) = E(xi), Cov(xj) = Σx/(p + 1), and E(Sj) = Σx.

38) Let the “median ball” be the hypersphere containing the half set of data closest
to MED(W ) in Euclidean distance. The two attractors for the FCH estimator are the
MB and DGK estimators. Hence the two starts are (MED(W ), Ip) and (x, S). The
FCH estimator uses the MB estimator if the DGK location estimator TDGK = Tk,D is
outside of the median ball, and the attractor with the smallest determinant, otherwise.
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Let (TA, CA) be the attractor used. Then the estimator (TFCH , CFCH ) takes TFCH = TA

and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (8)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom.

The RFCH estimator uses two standard “reweight for efficiency steps” while the RMVN
estimator uses a modified method for reweighting. The RMVN set U and the RFCH set
V correspond to the mW ≥ n/2 cases used to compute RMVN or RFCH estimator where
W is U or V .

39) For a large class of elliptically contoured distributions, FCH, RFCH, and RMVN
are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where ci = 1 for Np(µ,Σ) data.

40) An estimator (T, C) of multivariate location and dispersion (MLD), needs to
estimate p(p + 3)/2 unknown parameters when there are p random variables. For (x, S)
we want n ≥ 10p. We want n ≥ 20p for FCH, RFCH, or RMVN.

41) Brand name robust MLD estimators take too long to compute: F-brand name
estimators that are not backed by breakdown or large sample theory are actually used.
FMCD, F-MVE, F-S, F-MM, F-τ , F-constrained-M and F-Stahel-Donoho are especially
common. F-brand name estimators use a fixed number of starts.

42) The squared Euclidean distances of the xi from the coordinatewise median is D2
i =

D2
i (MED(W ), Ip). Concentration type steps compute the weighted median MEDj : the

coordinatewise median computed from the cases xi with D2
i ≤ MED(D2

i (MEDj−1, Ip))
where MED0 = MED(W ). Often used j = 0 (no concentration type steps) or j = 9. Let
Di = Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn) where
k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise.

43) Let the covmb2 set B of at least n/2 cases correspond to the cases with weight
Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi∑n

i=1 Wi

and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise median
versus the Euclidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear in the upper
right corner of the plot with a gap between the bulk of the data and the outliers.

ch. 11
44) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let X be a

random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) → F (x) as

n → ∞ for all points x at which F (x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of Xn. Note that X does not
depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every ε > 0,

P (‖Xn − X‖ > ε) → 0 as n → ∞.
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45) Multivariate Central Limit Theorem (MCLT): If X1, ..., Xn are iid k× 1 random
vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn −µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

46) Suppose
√

n(Tn − µ)
D→ Np(θ,Σ). Let A be a q × p constant matrix. Then

A
√

n(Tn − µ) =
√

n(ATn − Aµ)
D→ Nq(Aθ, AΣAT ).

47) Suppose A is a conformable constant matrix and Xn
D→ X. Then AXn

D→ AX.
ch. 4
48) For h > 0, the hyperellipsoid {z : (z − T )TC−1(z − T ) ≤ h2} =

{z : D2
z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in this

region if Dxf
≤ h. A large sample 100(1 − δ)% prediction region is a set An such that

P (xf ∈ An) is eventually bounded below by 1 − δ as n → ∞ where 0 < δ < 1. A large

sample 100(1 − δ)% confidence region for a vector of parameters θ is a set An such that
P (θ ∈ An) is eventually bounded below by 1 − δ as n → ∞.

49) Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and qn =
min(1 − δ/2, 1 − δ + 10δp/n), otherwise. If qn < 1 − δ + 0.001, set qn = 1 − δ. If
(T, C) is a consistent estimator of (µ, dΣ), then {z : Dz(T, C) ≤ h} is a large sam-
ple 100(1 − δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth sample
quantile of the Di. The large sample 100(1 − δ)% nonparametric prediction region
{z : D2

z(x, S) ≤ D2
(Un)} uses (T, C) = (x, S). We want n ≥ 10p for good coverage and

n ≥ 50p for good volume. In the DD plot, cases with MD ≤ D(Un) are in the nonparamet-
ric prediction region. The cutoff is displayed by a vertical line by the function ddplot4.
Cases in the semiparametric prediction region {z : D2

z(TRMV N , CRMV N ) ≤ D2
(Un)} have

RD ≤ D(Un) = D(Un)(TRMV N , CRMV N) displayed by a horizontal line in the DD plot. A

horizontal line going to the identity line is at RD =
√

χ2
p,1−δ.

50) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1
vector. Make a confidence region and reject H0 if θ0 is not in the confidence region.
Let qB and UB be as in 49) with n replaced by B and p replaced by g. Let T

∗

and S∗

T

be the sample mean and sample covariance matrix of the bootstrap sample T ∗

1 , ..., T ∗

B.
a) The prediction region method large sample 100(1 − δ)% confidence region for θ is
{w : (w − T

∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} = {w : D2

w(T
∗

, S∗

T ) ≤ D2
(UB)} where D2

(UB)

is computed from D2
i = (T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i = 1, ..., B. Note that the
corresponding test for H0 : θ = θ0 rejects H0 if (T

∗ − θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB).
This procedure applies the nonparametric prediction region to the bootstrap sample.
b) The modified Bickel and Ren (2001) large sample 100(1 − δ)% confidence region is
{w : (w − Tn)

T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w : D2

w(Tn, S
∗

T ) ≤ D2
(UB,T )} where the

cutoff D2
(UB,T ) is the 100qBth sample quantile of the D2

i = (T ∗

i − Tn)
T [S∗

T ]−1(T ∗

i − Tn). c)

The hybrid large sample 100(1−δ)% confidence region: {w : (w−Tn)
T [S∗

T ]−1(w−Tn) ≤
D2

(UB)} = {w : D2
w(Tn, S∗

T ) ≤ D2
(UB)}.
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If g = 1, confidence intervals can be computed without S∗

T or D2 for a), b), and c).

51) Theorem 4.1: Geometric Argument. Suppose
√

n(Tn−θ)
D→ u with E(u) =

0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular covariance matrix ΣTn.

Assume (nST )−1 P→ Σ−1
A . Then the large sample 100(1 − δ)% prediction region Rp =

{w : D2
w(T , ST ) ≤ D2

(UB)} centered at T contains a future value of the statistic Tf with

probability 1−δB → 1−δ as B → ∞. Hence the region Rc = {w : D2
w(Tn, ST ) ≤ D2

(UB)}
is a large sample 100(1 − δ)% confidence region for θ.

52) Suppose m independent large sample 100(1 − δ)% prediction regions are made
where x1, ..., xn, xf are iid from the same distribution for each of the m runs. Let Y count
the number of times xf is in the prediction region. Then Y ∼ binomial (m, 1−δn) where
1 − δn is the true coverage. Simulation can be used to see if the true or actual coverage
1 − δn is close to the nominal coverage 1 − δ. A prediction region with 1 − δn < 1 − δ is
liberal and a region with 1− δn > 1− δ is conservative. It is better to be conservative by
3% than liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

ch. 5
Response = Y
Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

R Squared: r^2

Sigma hat: sqrt{MSE}

Number of cases: n

Degrees of freedom: n-p

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

Response = brnweight

Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant 99.8495 171.619 0.582 0.5612

size 0.220942 0.0357902 6.173 0.0000

sex 22.5491 11.2372 2.007 0.0458

breadth -1.24638 1.51386 -0.823 0.4111
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circum 1.02552 0.471868 2.173 0.0307

R Squared: 0.749755

Sigma hat: 82.9175

Number of cases: 267

Degrees of freedom: 262

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 4 5396942. 1349235. 196.24 0.0000

Residual 262 1801333. 6875.32

53) Know the meaning of the least squares multiple linear regression output. Shown
above is an actual output and an output only using symbols.

54) The response variable is the variable that you want to predict. The predictor
variables are the variables used to predict the response variable.

55) The MLR model is

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the ith error.
The constant variance MLR model assumes that the errors are iid with E(ei) = 0 and
V (ei) = σ2 < ∞. Assume that the errors are independent of the predictor variables xi.
The unimodal MLR model also assumes that the ei are iid from a unimodal distribution
that is not highly skewed. Usually xi,1 ≡ 1.

56) In matrix notation, these n equations become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,
β is a p × 1 vector of unknown coefficients, and e is an n× 1 vector of unknown errors.

57) The OLS estimators are β̂ = β̂OLS = (XTX)−1XTY and σ̂2 = MSE =∑n
i=1 r2

i /(n − p). Thus σ̂ =
√

MSE. The vector of predicted or fitted values Ŷ =

Ŷ OLS = Xβ̂OLS = HY where the hat matrix H = X(XTX)−1XT . The ith fitted
value Ŷi = xT

i β̂. The ith residual ri = Yi − Ŷi and the vector of residuals r = Y − Ŷ =
(I − H)Y . The least squares regression equation for a model containing a constant is
Ŷ = β̂1 + β̂2x2 + · · · + β̂pxp.

58) Always make the response plot of Ŷ versus Y and residual plot of Ŷ versus r for
any MLR analysis. The response plot is used to visualize the MLR model, that is, to
visualize the conditional distribution of Y |xT β. If the unimodal MLR model of 55) is
useful, then i) the plotted points in the response plot should scatter about the identity
line with no other pattern, and ii) the plotted points in the residual plot should scatter
about the r = 0 line with no other pattern. If either i) or ii) is violated, then the unimodal
MLR model is not sustained. In other words, if the plotted points in the residual plot
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show some type of dependency, e.g. increasing variance or a curved pattern, then the
multiple linear regression model may be inadequate.

59) Use xf ≤ max hi for valid predictions where hi = hii is the ith diagonal element
of H .

60) The classical 100 (1 − δ)% PI for Yf is Ŷf ± tn−p,1−δ/2se(pred), but should be
replaced with the asymptotically optimal PI. Asymptotically, this PI finds the shorth(c)
interval [r(s), r(s+c−1)] of the residuals and uses [Ŷf + r(s), Ŷf + r(s+c−1)].

61) OLS CLT (Least Squares Central Limit Theorem): Consider the MLR
model Yi = xT

i β + ei and assume that the zero mean errors are iid with E(ei) = 0 and
V (ei) = σ2. Also assume that maxi(h1, ..., hn) → 0 in probability as n → ∞ and

XT X

n
→ W −1

as n → ∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ). (9)

62) The response and residual plots are useful for detecting outliers. Beginners often
label too many points as outliers. Mentally draw a box about the bulk of the data
ignoring any outliers. Double the width of the box (about the identity line for the
response plot and about the horizontal line r = 0 for the residual plot). Cases outside
of this imaginary doubled box are potential outliers. Alternatively, visually estimate the
standard deviation of the residuals in both plots. In the residual plot look for residuals
that are more than 5 standard deviations from the r = 0 line.

The identity line can also pass through or near an outlier or a cluster of outliers.
Then the outliers will be in the upper right or lower left of the response plot, and there
will be a large gap between the cluster of outliers and the bulk of the data.

63) The outlying cases in 62) could be good leverage points. The response plot
using the β̂B computed only from the bulk of the data is such that the identity line passes
near or through the good leverage points, which have outlying xi. The infants in the
Gladstone data are an example of good leverage points. Such cases should not be called
outliers. Masking occurs if the analysis suggests that one or more outliers are good cases
while swamping occurs if the analysis suggests that one or more good cases are outliers.

64) Given a response plot with highlighted cases corresponding to large Cook’s dis-
tances, know that masking occurred for Cook’s distances if all of the highlighted cases
correspond to outliers but some of the outliers are not highlighted. See Figure 6.2.
Swamping occurs for Cook’s distances if some of the highlighted cases are good cases.
See Figure 6.3 where the outliers are not highlighted but the “good leverage points” are
highlighted. Masking and swamping also often occur with respect to residuals. Fitted
values are often good for detecting outliers.

65) For MLR outlier detection, the RR plot is a scatterplot matrix of residuals
from several MLR estimators. Adding ŶOLS to the top or bottom of the plot may be
a good idea.. The FF plot is a scatterplot matrix of fitted values from several MLR
estimators. Add the response Y to the top or bottom of the plot to see the response
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plots of each estimator and to detect outliers. If a marginal plot is a straight line, then
the two estimators are fitting the data in roughly the same way.

66) Suppose c = cn ≈ n/2. The LMS(c) criterion is

QLMS(b) = r2
(c)(b) (10)

where r2
(1) ≤ · · · ≤ r2

(n) are the ordered squared residuals, and the LTS(c) criterion is

QLTS(b) =
c∑

i=1

r2
(i)(b). (11)

The LTA(c) criterion is

QLTA(b) =
c∑

i=1

|r(b)|(i) (12)

where |r(b)|(i) is the ith ordered absolute residual.
67) Three impractical high breakdown robust estimators are the least median of

squares (LMS) estimator, the least trimmed sum of squares (LTS) estimator, and the
least trimmed sum of absolute deviations (LTA) estimator. These estimators correspond
to the β̂L ∈ R

p that minimizes the corresponding criterion.
68) For multiple linear regression, an elemental set is a set of p cases. The elemental fit

from the ith elemental set Ji is the OLS estimator β̂Ji
= (XT

Ji
XJi

)−1XT
Ji

Y Ji
= X−1

Ji
Y Ji

applied to the cases corresponding to the elemental set provided that the inverse of XJi

exists.
69) A start is an initial trial fit and an attractor is the final fit generated by the

algorithm from the start. Let b0,j be the jth start and compute all n residuals ri(b0,j) =
Yi − xT

i b0,j. Let bn/2c ≤ cn ≤ bn/2c + b(p + 1)/2c. i) For an FLTS concentration

algorithm, at the next iteration, the OLS estimator b1,j is computed from the cn ≈ n/2
cases corresponding to the smallest squared residuals r2

i (b0,j). This iteration can be
continued for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j . The result
of the iteration bk,j is called the jth attractor where j = 1, ..., K. The final FLTS
concentration algorithm estimator uses the attractor that minimizes the LTS criterion.

ch. 6
70) Let the ith case wi = (Yi, x

T
i )T where the continuous predictors from xi are

denoted by ui for i = 1, ..., n. Now let D be the RMVN set U , the RFCH set V , or the
covmb2 set B. Find D by applying the MLD estimator to the ui, and then run the MLR
method on the m cases wi corresponding to the set D indices i1, ..., im, where m ≥ n/2.
This estimator is the MLD set MLR estimator.

71) The Euclidean distance of the ith vector of predictors xi from the jth vector of
predictors xj is

Di(xj) = Di(xj, Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next, let β̂j(α) denote
the OLS fit to the min(p + 3 + bαn/100c, n) cases with the smallest distances where the
approximate percentage of cases used is α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the
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greatest integer function so b7.7c = 7. The extra p + 3 cases are added so that OLS can
be computed for small n and α.) This yields seven OLS fits corresponding to the cases
with predictors closest to xj. A fixed number of K cases are selected at random without
replacement to use as the xj . Hence 7K OLS fits are generated. We use K = 7 as the
default. A robust criterion Q is used to evaluate the 7K fits and the OLS fit to all of the
data. Hence 7K + 1 OLS fits (attractors) are generated and the MBA estimator mbareg
is the fit that minimizes the criterion Q from 66).

72) Compute (T, C) on the xi, perhaps using the RMVN estimator. Trim the M% of
the cases with the largest Mahalanobis distances, and then compute the MLR estimator
β̂M from the remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to

generate ten response plots of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer
plots are used for small data sets if β̂M can not be computed for large M .) These plots
are called “trimmed views.” The tvreg trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity line with
smallest variance function, ignoring any outliers.

73) For 71) and 72), the K attractors (K = 10 for tvreg) are
√

n consistent estimators
of β. Hence the mbareg and tvreg estimators are

√
n consistent.

74) The rmreg2 estimator is the OLS estimator computed from the cases in the
RMVN set U applied to ui = (xi2, ..., xip, Yi)

T for i = 1, ..., n. Hence ui is the ith case
with xi1 = 1 deleted.

75) The hbreg estimator β̂H is defined as follows. Pick a constant a > 1 and set
β̂H = β̂C. If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If aQL(β̂B) < min[QL(β̂C), aQL(β̂A)],
set β̂H = β̂B . The default estimator uses QL from 66), a = 1.4, β̂C = β̂OLS, β̂A the
mbareg or rmreg2 estimator, and β̂B is the FLTS concentration estimator that uses
(MED(n), 0, ..., 0)T as the high breakdown start where MED(n) is the sample median
of the Yi.
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