Math 584 HW 11 Spring 2021, due Thursday, April 22.
Final: Tuesday, May 4, 2:45-4:45.
Refer to Exam 3 review 164)-190). Problems 1) and 2) consider testing 175)-189). More information about multivariate linear regression is in ch. 8 of the online notes. Parentheses are the problem from the Olive text.

1) (8.1): Let

$$
T(\boldsymbol{W})=n \quad[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L} \boldsymbol{W} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]
$$

Let

$$
\frac{\boldsymbol{X}^{T} \boldsymbol{X}}{n}=\hat{\boldsymbol{W}}^{-1}
$$

Show $T(\hat{\boldsymbol{W}})=[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]$.
2) (8.2): Let $T=[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]$. Let $\boldsymbol{L}=\boldsymbol{L}_{j}=$ $[0, \ldots, 0,1,0, \ldots, 0]$ have a 1 in the j th position. Let $\hat{\boldsymbol{b}}_{j}^{T}=\boldsymbol{L} \hat{\boldsymbol{B}}$ be the j th row of $\hat{\boldsymbol{B}}$. Let $d_{j}=\boldsymbol{L}_{j}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}_{j}^{T}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)_{j j}^{-1}$, the j th diagonal entry of $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$. Then $T_{j}=$ $\frac{1}{d_{j}} \hat{\boldsymbol{b}}_{j}^{T} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \hat{\boldsymbol{b}}_{j}$. The Hotelling Lawley statistic $\left.U=\operatorname{tr}\left(\left[(n-p) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}\right]^{-1} \hat{\boldsymbol{B}}^{T} \boldsymbol{L}^{T}\left[\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right]^{-1} \boldsymbol{L} \hat{\boldsymbol{B}}\right]\right)$. Hence if $\boldsymbol{L}=\boldsymbol{L}_{j}$, then $U_{j}=\frac{1}{d_{j}(n-p)} \operatorname{tr}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \hat{\boldsymbol{b}}_{j} \hat{\boldsymbol{b}}_{j}^{T}\right)$.

Using $\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}(\boldsymbol{C A B})$ and $\operatorname{tr}(a)=a$ for scalar a, show the $(n-p) U_{j}=T_{j}$.
3) (8.3): Using the Searle (1982, p. 333) identity
$\operatorname{tr}\left(\boldsymbol{A} \boldsymbol{G}^{T} \boldsymbol{D} \boldsymbol{G} \boldsymbol{C}\right)=[\operatorname{vec}(\boldsymbol{G})]^{T}\left[\boldsymbol{C} \boldsymbol{A} \otimes \boldsymbol{D}^{T}\right][\operatorname{vec}(\boldsymbol{G})]$, show
$(n-p) U(\boldsymbol{L})=\operatorname{tr}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \hat{\boldsymbol{B}}^{T} \boldsymbol{L}^{T}\left[\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right]^{-1} \boldsymbol{L} \hat{\boldsymbol{B}}\right]$
$=[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]$ by identifying $\boldsymbol{A}, \boldsymbol{G}, \boldsymbol{D}$, and \boldsymbol{C}.
Problem 4) is on the back.
4) (8.8): Let $\boldsymbol{y}=\boldsymbol{B}^{T} \boldsymbol{x}+\boldsymbol{\epsilon}$. Suppose $\boldsymbol{x}=\left(1, x_{2}, \ldots, x_{p}\right)^{T}=\left(1 \boldsymbol{w}^{T}\right)^{T}$ where $\boldsymbol{w}=$ $\left(x_{2}, \ldots, x_{p}\right)^{T}$. Let

$$
\boldsymbol{B}=\binom{\boldsymbol{\alpha}^{T}}{\boldsymbol{B}_{S}}
$$

Suppose

$$
\binom{\boldsymbol{y}}{\boldsymbol{w}} \sim N_{m+p-1}\left[\binom{\boldsymbol{\mu}_{\boldsymbol{y}}}{\boldsymbol{\mu}_{\boldsymbol{w}}},\left(\begin{array}{cc}
\boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{y} & \boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{w} \\
\boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{y} & \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{w}
\end{array}\right)\right] .
$$

Then $\boldsymbol{y} \mid \boldsymbol{w} \sim N_{m}\left(\boldsymbol{\mu}_{\boldsymbol{y}}+\boldsymbol{\Sigma}_{\boldsymbol{y} \boldsymbol{w}} \boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{w}\left(\boldsymbol{w}-\boldsymbol{\mu}_{\boldsymbol{w}}\right), \boldsymbol{\Sigma}_{\boldsymbol{y} \boldsymbol{y}}-\boldsymbol{\Sigma}_{\boldsymbol{y} \boldsymbol{w}} \boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{w} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{w}\right)$, and $\boldsymbol{\epsilon} \sim$ $N_{m}\left(\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{y}-\boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{w} \boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{w} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{w}\right)=N_{m}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}\right)$.

Now

$$
\boldsymbol{y}|\boldsymbol{x}=\boldsymbol{y}|\binom{1}{\boldsymbol{w}}=\boldsymbol{B}^{T} \boldsymbol{x}+\boldsymbol{\epsilon}
$$

and

$$
\boldsymbol{y} \left\lvert\, \boldsymbol{w}=\boldsymbol{B}^{T} \boldsymbol{x}+\boldsymbol{\epsilon}=\binom{\boldsymbol{\alpha}^{T}}{\boldsymbol{B}_{S}}^{T}\binom{1}{\boldsymbol{w}}+\boldsymbol{\epsilon}=\left(\begin{array}{ll}
\boldsymbol{\alpha} & \boldsymbol{B}_{S}^{T}
\end{array}\right)\binom{1}{\boldsymbol{w}}+\boldsymbol{\epsilon}=\boldsymbol{\alpha}+\boldsymbol{B}_{S}^{T} \boldsymbol{w}+\boldsymbol{\epsilon} .\right.
$$

Непсе $E(\boldsymbol{y} \mid \boldsymbol{w})=\boldsymbol{\mu}_{\boldsymbol{y}}+\boldsymbol{\Sigma}_{\boldsymbol{y} \boldsymbol{w}} \boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{w}\left(\boldsymbol{w}-\boldsymbol{\mu}_{\boldsymbol{w}}\right)=\boldsymbol{\alpha}+\boldsymbol{B}_{S}^{T} \boldsymbol{w}$.
a) Show $\boldsymbol{\alpha}=\boldsymbol{\mu}_{\boldsymbol{y}}-\boldsymbol{B}_{S}^{T} \boldsymbol{\mu}_{\boldsymbol{w}}$.
b) Show $\boldsymbol{B}_{S}=\boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{y}$ where $\boldsymbol{\Sigma} \boldsymbol{w}=\boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{w}$.
(Hence $\boldsymbol{B}_{S}^{T}=\boldsymbol{\Sigma} \boldsymbol{y} \boldsymbol{w}^{\boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1}}$.)

