Math 584 HW 8 Spring 2021, due Thursday, March 25. Exam 2 is Tuesday, March 23. Final: Tuesday, May 4, 2:45-4:45.

1) The theory in chapters 4 and 5 is often used for experimental design, eg for pairwise comparisons and contrasts. Suppose that $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)'$. Consider testing both $\beta_1 = \beta_2$ and $\beta_1 = \beta_3$ simultaneously. Find \boldsymbol{A} so that $H : \boldsymbol{A\beta} = \boldsymbol{0}$ corresponds to this test.

2) Suppose that X is an $n \times p$ matrix but the rank of $X . Then the normal equations <math>X'X\beta = X'Y$ have infinitely many solutions. Let $\hat{\beta}$ be a solution to the normal equations. So $X'X\hat{\beta} = X'Y$. Let $G = (X'X)^-$ be a generalized inverse of (X'X). Assume that $E(Y) = X\beta$ and $Cov(Y) = \sigma^2 I$. It can be shown that all solutions to the normal equations have the form b_z given below.

a) Show that $b_z = GX'Y + (GX'X - I)z$ is a solution to the normal equations where the $p \times 1$ vector z is arbitrary.

b) Show that $E(\boldsymbol{b}_{\boldsymbol{z}}) \neq \boldsymbol{\beta}$.

(Hence some authors suggest that b_z should be called a solution to the normal equations but not an estimator of β .)

c) Show that $\operatorname{Cov}(\boldsymbol{b}_{\boldsymbol{z}}) = \sigma^2 \boldsymbol{G} \boldsymbol{X}' \boldsymbol{X} \boldsymbol{G}'.$

d) Although G is not unique, the projection matrix P = XGX' onto $\mathcal{C}(X)$ is unique. Use this fact to show that $\hat{Y} = Xb_z$ does not depend on G or z.

e) From p. 64, there are two ways to show that $\mathbf{a}'\boldsymbol{\beta}$ is an estimable function. Either show that there exists a vector \mathbf{c} such that $E(\mathbf{c}'\mathbf{Y}) = \mathbf{a}'\boldsymbol{\beta}$, or show that $\mathbf{a} \in \mathcal{C}(\mathbf{X}')$. Suppose that $\mathbf{a} = \mathbf{X}'\mathbf{w}$ for some fixed vector \mathbf{w} . Show that $E(\mathbf{a}'\mathbf{b}_{\mathbf{z}}) = \mathbf{a}'\boldsymbol{\beta}$.

(Hence $a'\beta$ is estimable by $a'b_z$ where b_z is any solution of the normal equations.)

f) Suppose that $\boldsymbol{a} = \boldsymbol{X}' \boldsymbol{w}$ for some fixed vector \boldsymbol{w} . Show that $Var(\boldsymbol{a}'\boldsymbol{b}_{\boldsymbol{z}}) = \sigma^2 \boldsymbol{w}' \boldsymbol{P} \boldsymbol{w}$.

3) Let $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{Y} = (Y_1, Y_2, Y_3)', \boldsymbol{\beta} = (\beta_1, \beta_2)', E(\boldsymbol{\epsilon}) = \boldsymbol{0}$, and $\operatorname{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$. If $\boldsymbol{X} = \begin{bmatrix} 2 & 0 \\ 1 & 2 \\ 0 & 1 \end{bmatrix}$, is $\boldsymbol{\beta}$ estimable? Explain briefly. $\begin{bmatrix} 1 & 3 \end{bmatrix}$

4) Let $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{Y} = (Y_1, Y_2, Y_3)', \ \boldsymbol{X} = \begin{bmatrix} 1 & 3 \\ 1 & 3 \\ 2 & 6 \end{bmatrix}, \ \boldsymbol{\beta} = (\beta_1, \beta_2)', \ \boldsymbol{E}(\boldsymbol{\epsilon}) = \boldsymbol{0},$

and $Cov(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$. Show whether or not the following functions are estimable.

- a) $5\beta_1 + 15\beta_2$ b) β_1
- c) $\beta_1 2\beta_2$