Math 584 HW 8 Spring 2021, due Thursday, March 25.
Exam 2 is Tuesday, March 23.
Final: Tuesday, May 4, 2:45-4:45.

1) The theory in chapters 4 and 5 is often used for experimental design, eg for pairwise comparisons and contrasts. Suppose that $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)^{\prime}$. Consider testing both $\beta_{1}=\beta_{2}$ and $\beta_{1}=\beta_{3}$ simultaneously. Find \boldsymbol{A} so that $H: \boldsymbol{A} \boldsymbol{\beta}=\mathbf{0}$ corresponds to this test.
2) Suppose that \boldsymbol{X} is an $n \times p$ matrix but the rank of $\boldsymbol{X}<p<n$. Then the normal equations $\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\prime} \boldsymbol{Y}$ have infinitely many solutions. Let $\hat{\boldsymbol{\beta}}$ be a solution to the normal equations. So $\boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}^{\prime} \boldsymbol{Y}$. Let $\boldsymbol{G}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-}$be a generalized inverse of $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)$. Assume that $E(\boldsymbol{Y})=\boldsymbol{X} \boldsymbol{\beta}$ and $\operatorname{Cov}(\boldsymbol{Y})=\sigma^{2} \boldsymbol{I}$. It can be shown that all solutions to the normal equations have the form $\boldsymbol{b}_{\boldsymbol{z}}$ given below.
a) Show that $\boldsymbol{b}_{\boldsymbol{z}}=\boldsymbol{G} \boldsymbol{X}^{\prime} \boldsymbol{Y}+\left(\boldsymbol{G} \boldsymbol{X}^{\prime} \boldsymbol{X}-\boldsymbol{I}\right) \boldsymbol{z}$ is a solution to the normal equations where the $p \times 1$ vector \boldsymbol{z} is arbitrary.
b) Show that $E(\boldsymbol{b} \boldsymbol{z}) \neq \boldsymbol{\beta}$.
(Hence some authors suggest that $\boldsymbol{b}_{\boldsymbol{z}}$ should be called a solution to the normal equations but not an estimator of $\boldsymbol{\beta}$.)
c) Show that $\operatorname{Cov}\left(\boldsymbol{b}_{\boldsymbol{z}}\right)=\sigma^{2} \boldsymbol{G} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{G}^{\prime}$.
d) Although \boldsymbol{G} is not unique, the projection matrix $\boldsymbol{P}=\boldsymbol{X} \boldsymbol{G} \boldsymbol{X}^{\prime}$ onto $\mathcal{C}(\boldsymbol{X})$ is unique. Use this fact to show that $\hat{\boldsymbol{Y}}=\boldsymbol{X} \boldsymbol{b}_{\boldsymbol{z}}$ does not depend on \boldsymbol{G} or \boldsymbol{z}.
e) From p. 64, there are two ways to show that $\boldsymbol{a}^{\prime} \boldsymbol{\beta}$ is an estimable function. Either show that there exists a vector \boldsymbol{c} such that $E\left(\boldsymbol{c}^{\prime} \boldsymbol{Y}\right)=\boldsymbol{a}^{\prime} \boldsymbol{\beta}$, or show that $\boldsymbol{a} \in \mathcal{C}\left(\boldsymbol{X}^{\prime}\right)$. Suppose that $\boldsymbol{a}=\boldsymbol{X}^{\prime} \boldsymbol{w}$ for some fixed vector \boldsymbol{w}. Show that $E\left(\boldsymbol{a}^{\prime} \boldsymbol{b}_{\boldsymbol{z}}\right)=\boldsymbol{a}^{\prime} \boldsymbol{\beta}$.
(Hence $\boldsymbol{a}^{\prime} \boldsymbol{\beta}$ is estimable by $\boldsymbol{a}^{\prime} \boldsymbol{b}_{\boldsymbol{z}}$ where $\boldsymbol{b}_{\boldsymbol{z}}$ is any solution of the normal equations.)
f) Suppose that $\boldsymbol{a}=\boldsymbol{X}^{\prime} \boldsymbol{w}$ for some fixed vector \boldsymbol{w}. Show that $\operatorname{Var}\left(\boldsymbol{a}^{\prime} \boldsymbol{b}_{\boldsymbol{z}}\right)=\sigma^{2} \boldsymbol{w}^{\prime} \boldsymbol{P} \boldsymbol{w}$.
3) Let $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}, E(\boldsymbol{\epsilon})=\mathbf{0}$, and $\operatorname{Cov}(\boldsymbol{\epsilon})=$ $\sigma^{2} \boldsymbol{I}$. If $\boldsymbol{X}=\left[\begin{array}{ll}2 & 0 \\ 1 & 2 \\ 0 & 1\end{array}\right]$, is $\boldsymbol{\beta}$ estimable? Explain briefly.
4) Let $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}, \boldsymbol{X}=\left[\begin{array}{ll}1 & 3 \\ 1 & 3 \\ 2 & 6\end{array}\right], \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}, E(\boldsymbol{\epsilon})=\mathbf{0}$, and $\operatorname{Cov}(\boldsymbol{\epsilon})=\sigma^{2} \boldsymbol{I}$. Show whether or not the following functions are estimable.
a) $5 \beta_{1}+15 \beta_{2}$
b) β_{1}
c) $\beta_{1}-2 \beta_{2}$
