\qquad

1) Suppose that

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right) \sim N_{4}\left(\left(\begin{array}{c}
49 \\
25 \\
9 \\
4
\end{array}\right), \quad\left(\begin{array}{cccc}
2 & -1 & 3 & 0 \\
-1 & 5 & -3 & 0 \\
3 & -3 & 5 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)\right)
$$

a) Find the distribution of X_{2}.
b) Find the distribution of $\left(X_{1}, X_{3}\right)^{T}$.
c) Find the correlation $\rho\left(X_{1}, X_{3}\right)$.
2) Recall that if $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the conditional distribution of \boldsymbol{X}_{1} given that $\boldsymbol{X}_{2}=\boldsymbol{x}_{2}$ is multivariate normal with mean $\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right)$ and covariance matrix $\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$. Let Y and X follow a bivariate normal distribution

$$
\binom{Y}{X} \sim N_{2}\left(\binom{49}{17}, \quad\left(\begin{array}{cc}
3 & -1 \\
-1 & 4
\end{array}\right)\right)
$$

a) Find $E(Y \mid X)$.
b) Find $\operatorname{Var}(Y \mid X)$.
3) Let $\boldsymbol{y} \sim N_{2}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}\right)$ where $\boldsymbol{y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ and $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\prime}$. Let $\boldsymbol{A}=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$.
a) Are $\boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{B} \boldsymbol{y}$ independent? Explain. Hint: The quantities are independent if $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{y}, \boldsymbol{B y})=\mathbf{0}$.
b) Are $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{y}$ and $\boldsymbol{y}^{\prime} \boldsymbol{B} \boldsymbol{y}$ independent? Explain.

