Types of Problems–Review for Some of the QUAL problems

Notation: Let $A^T = A'$ be the transpose of A.

0) Covariance and Expected Value = Mean, and the Multivariate Normal (MVN) Distribution:

Notation: Unless told otherwise, assume expectations exist and that conformable matrices and vectors are used.

The population mean of a random $n \times 1$ vector $\boldsymbol{x} = (x_1, ..., x_n)^T$ is $E(\boldsymbol{x}) = \boldsymbol{\mu} = (E(x_1), ..., E(x_n))^T$ and the $n \times n$ population covariance matrix $\operatorname{Cov}(\boldsymbol{x}) = \boldsymbol{\Sigma}_{\boldsymbol{x}} = E(\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{x} - E(\boldsymbol{x}))^T = (\sigma_{i,j})$ where $\operatorname{Cov}(x_i, x_j) = \sigma_{i,j}$. The population covariance matrix of \boldsymbol{x} with \boldsymbol{y} is

$$\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\Sigma}_{\boldsymbol{x}, \boldsymbol{y}} = E[(\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{y} - E(\boldsymbol{y}))^T].$$

If X and Y are $n \times 1$ random vectors, a a conformable constant vector, and A and B are conformable constant matrices, then

$$E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y}), \ E(\mathbf{a} + \mathbf{Y}) = \mathbf{a} + E(\mathbf{Y}), \ \& \ E(\mathbf{A}\mathbf{X}\mathbf{B}) = \mathbf{A}E(\mathbf{X})\mathbf{B}.$$

Also

$$\operatorname{Cov}(\boldsymbol{a} + \boldsymbol{A}\boldsymbol{X}) = \operatorname{Cov}(\boldsymbol{A}\boldsymbol{X}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^{T}.$$

Note that E(AY) = AE(Y) and $Cov(AY) = ACov(Y)A^{T}$.

If X $(m \times 1)$ and Y $(n \times 1)$ are random vectors, and A and B are conformable constant matrices, then

$$\operatorname{Cov}(\boldsymbol{A}\boldsymbol{X},\boldsymbol{B}\boldsymbol{Y}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{B}^{T}.$$

If $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $E(\boldsymbol{X}) = \boldsymbol{\mu}$, $Cov(\boldsymbol{X}) = \boldsymbol{\Sigma}$, and $m_{\boldsymbol{X}}(\boldsymbol{t}) = exp(\boldsymbol{t}^T \boldsymbol{\mu} + \frac{1}{2} \boldsymbol{t}^T \boldsymbol{\Sigma} \boldsymbol{t})$.

If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and if \mathbf{A} is a $q \times p$ matrix, then $\mathbf{A}\mathbf{X} \sim N_q(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$. If \mathbf{a} $(p \times 1)$ and \mathbf{b} $(q \times 1)$ are constant vectors, then $\mathbf{X} + \mathbf{a} \sim N_p(\boldsymbol{\mu} + \mathbf{a}, \boldsymbol{\Sigma})$ and $\mathbf{A}\mathbf{X} + \mathbf{b} \sim N_q(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.

Let
$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}$$
, $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}$, and $\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}$.

The conditional distribution of a MVN is MVN. If $X \sim N_p(\mu, \Sigma)$, then the conditional distribution of X_1 given that $X_2 = x_2$ is multivariate normal with mean $\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$ and covariance matrix $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. That is,

$$X_1 | X_2 = x_2 \sim N_q (\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$

Notation:

$$X_1 | X_2 \sim N_q(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (X_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$

1) Projection Matrices, Generalized Inverses, and the Column Space $C(\mathbf{X})$: Let $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_m]$ be an $n \times m$ matrix. The space spanned by the columns of \mathbf{A} = column space of $\mathbf{A} = C(\mathbf{A})$. Let $\boldsymbol{X} = [\boldsymbol{v}_1 \ \boldsymbol{v}_2 \ \dots \ \boldsymbol{v}_p]$ be an $n \times p$ matrix. Then

 $C(\mathbf{X}) = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{X}\boldsymbol{\beta} \text{ for some } \boldsymbol{\beta} \in \mathbb{R}^p \}.$

One way to show $C(\mathbf{A}) = C(\mathbf{B})$ is to show that i) $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{y} \in C(\mathbf{B})$ and ii) $\mathbf{B}\mathbf{y} = \mathbf{A}\mathbf{x} \in C(\mathbf{A})$.

The null space of $\mathbf{A} = N(\mathbf{A}) = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$ = kernel of \mathbf{A} . The subspace $V^{\perp} = \{\mathbf{y} \in \mathbb{R}^k : \mathbf{y} \perp V\}$ is the orthogonal complement of V. $N(\mathbf{A}^T) = [C(\mathbf{A})]^{\perp}$, so $N(\mathbf{A}) = [C(\mathbf{A}^T)]^{\perp}$.

A generalized inverse of an $m \times n$ matrix A is any $n \times m$ matrix A^- satisfying $AA^-A = A$. Other names are conditional inverse, pseudo inverse, g-inverse, and p-inverse. Usually a generalized inverse is not unique, but if A^{-1} exists, then $A^- = A^{-1}$ is unique. Notation: $G := A^-$ means G is a generalized inverse of A.

Let V be a subspace of \mathbb{R}^k . Then every $\boldsymbol{y} \in \mathbb{R}^k$ can be expressed uniquely as $\boldsymbol{y} = \boldsymbol{w} + \boldsymbol{z}$ where $\boldsymbol{w} \in V$ and $\boldsymbol{z} \in V^{\perp}$.

Let $\mathbf{X} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_p]$ be $n \times p$, and let $V = C(\mathbf{X}) = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$. Then the $n \times n$ matrix $\mathbf{P}_V = \mathbf{P}_{\mathbf{X}}$ is a **projection matrix** on $C(\mathbf{X})$ if $\mathbf{P}_{\mathbf{X}} \ \mathbf{y} = \mathbf{w} \ \forall \ \mathbf{y} \in \mathbb{R}^n$. (Here $\mathbf{y} = \mathbf{w} + \mathbf{z} = \mathbf{w}\mathbf{y} + \mathbf{z}\mathbf{y}$, so \mathbf{w} depends on \mathbf{y} .)

Projection Matrix Theorem: a) $\boldsymbol{P}_{\boldsymbol{X}}$ is unique.

b) $\boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^-\boldsymbol{X}^T$ where $(\boldsymbol{X}^T\boldsymbol{X})^-$ is any generalized inverse of $\boldsymbol{X}^T\boldsymbol{X}$.

c) \mathbf{A} is a projection matrix on $C(\mathbf{A})$ iff \mathbf{A} is symmetric and idempotent. Hence $\mathbf{P}_{\mathbf{X}}$ is a projection matrix on $C(\mathbf{P}_{\mathbf{X}}) = C(\mathbf{X})$.

d) $I_n - P_X$ is the projection matrix on $[C(X)]^{\perp}$. e) $A = P_X$ iff i) $y \in C(X)$ implies Ay = y and ii) $y \perp C(X)$ implies Ay = 0. f) $P_X X = X$, and $P_X W = W$ if each column of $W \in C(X)$. g) $P_X v_i = v_i$. h) If $C(X_R)$ is a subspace of C(X), then $P_X P_{X_R} = P_{X_R} P_X = P_{X_R}$. i) $rank(P_X) = tr(P_X) = rank(X)$.

Note that \boldsymbol{P} is a projection matrix iff \boldsymbol{P} is symmetric and idempotent. Partition \boldsymbol{X} as $\boldsymbol{X} = [\boldsymbol{X}_1 \ \boldsymbol{X}_2]$, let \boldsymbol{P} be the projection matrix for $\mathcal{C}(\boldsymbol{X})$ and let \boldsymbol{P}_1 be the projection matrix for $\mathcal{C}(\boldsymbol{X}_1)$. Since $\mathcal{C}(\boldsymbol{P}_1) = \mathcal{C}(\boldsymbol{X}_1) \subseteq \mathcal{C}(\boldsymbol{X})$, $\boldsymbol{P}\boldsymbol{P}_1 = \boldsymbol{P}_1$. Hence $\boldsymbol{P}_1\boldsymbol{P} = (\boldsymbol{P}\boldsymbol{P}_1)' = \boldsymbol{P}_1' = \boldsymbol{P}_1$.

1a): Given small X, be able to find the projection matrix P for C(X).

1b): Given small X, be able to find rank(X), a basis for C(X), and $[\mathcal{C}(X)]^{\perp} =$ nullspace of X^{T} .

1c): Be able to show that $G := A^{-}$.

2) Quadratic Forms Y'AY and terms like AY:

The matrix A in a quadratic form $x^T A x$ is symmetric. A is positive definite (A > 0) if $x^T A x > 0 \forall x \neq 0$. A is positive semidefinite $(A \ge 0)$ if $x^T A x \ge 0 \forall x$.

Let \boldsymbol{A} be symmetric. If $\boldsymbol{A} \geq 0$ then the eigenvalues of \boldsymbol{A} are real and nonnegative. If $\boldsymbol{A} \geq 0$, let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. If $\boldsymbol{A} > 0$, then $\lambda_n > 0$.

Theorem 2.5 (Seber and Lee Th. 1.5) expected value of a quadratic form: Let X be a random vector with $E(X) = \mu$ and $Cov(X) = \Sigma$. Then

$$E(\mathbf{X}^{T}\mathbf{A}\mathbf{X}) = tr(\mathbf{A}\mathbf{\Sigma}) + [E(\mathbf{X})]^{T}\mathbf{A}E(\mathbf{X}) = tr(\mathbf{A}\mathbf{\Sigma}) + \boldsymbol{\mu}^{T}\mathbf{A}\boldsymbol{\mu}.$$

Theorems 2.6 and 2.7: If $AY \perp BY$, then $f(AY) \perp g(BY)$ where f and g are functions (such that f(AY) only depends on A and AY and g(BY) only depends on B and BY). Note that $Y'AY = Y'A'A^{-}AY = f(AY)$ (for a quadratic form A is symmetric), $Y'(I - P)Y = ||(I - P)Y||^2$, and $Y'PY = ||PY||^2$ where the squared Euclidean norm $||Z||^2 = Z'Z$.

Theorem 2.8. Let $Y \sim N_n(\mu, \Sigma)$. a) Let u = AY and w = BY. Then $AY \perp BY$ iff $Cov(u, w) = A\Sigma B^T = 0$ iff $B\Sigma A^T = 0$. Note that if $\Sigma = \sigma^2 I_n$, then $AY \perp BY$ if $AB^T = 0$ if $BA^T = 0$.

b) If A is a symmetric $n \times n$ matrix, and B is an $m \times n$ matrix, then $Y^T A Y \perp B Y$ iff $A \Sigma B^T = 0$ iff $B \Sigma A = 0$.

Craig's Theorem: Let $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

a) If $\Sigma > 0$, then $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \perp \mathbf{Y}^T \mathbf{B} \mathbf{Y}$ iff $\mathbf{A} \Sigma \mathbf{B} = \mathbf{0}$ iff $\mathbf{B} \Sigma \mathbf{A} = \mathbf{0}$.

b) If $\Sigma \ge 0$, then $Y^T A Y \perp Y^T B Y$ if $A \Sigma B = 0$ (or if $B \Sigma A = 0$).

c) If $\Sigma \geq 0$, then $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \perp \mathbf{Y}^T \mathbf{B} \mathbf{Y}$ iff

(*) $\Sigma A \Sigma B \Sigma = 0$, $\Sigma A \Sigma B \mu = 0$, $\Sigma B \Sigma A \mu = 0$, and $\mu^T A \Sigma B \mu = 0$. Note that if $A \Sigma B = 0$, then (*) holds.

Theorem 2.13. If $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma} > 0$, then $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \sim \chi^2(\operatorname{rank}(\boldsymbol{A}), \boldsymbol{\mu}^T \boldsymbol{A} \boldsymbol{\mu}/2)$ iff $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent.

Remark 1: If the theorem is for $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{I})$ and $\boldsymbol{Z} \sim N_n(E(\boldsymbol{Z}), \sigma^2 \boldsymbol{I})$, then use $\boldsymbol{Y} = \boldsymbol{Z}/\sigma \sim N_n(\boldsymbol{\mu} = E(\boldsymbol{Z})/\sigma, \boldsymbol{I})$.

Theorem 2.14. Let $A = A^T$ be symmetric.

a) If $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}$ is a projection matrix, then $\boldsymbol{Y}^T \boldsymbol{Y} \sim \chi^2(\operatorname{rank}(\boldsymbol{\Sigma}))$ where $\operatorname{rank}(\boldsymbol{\Sigma}) = tr(\boldsymbol{\Sigma})$.

b) If $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \boldsymbol{I})$, then $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \sim \chi_r^2$ iff \boldsymbol{A} is idempotent with rank $(\boldsymbol{A}) = tr(\boldsymbol{A}) = r$. c) Let $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$. Then

$$\frac{\boldsymbol{Y}^{T}\boldsymbol{A}\boldsymbol{Y}}{\sigma^{2}} \sim \chi_{r}^{2} \text{ or } \boldsymbol{Y}^{T}\boldsymbol{A}\boldsymbol{Y} \sim \sigma^{2} \chi_{r}^{2}$$

iff \boldsymbol{A} is idempotent of rank r.

d) If $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{\Sigma})$ where $\mathbf{\Sigma} > 0$, then $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \sim \chi_r^2$ iff $\mathbf{A} \mathbf{\Sigma}$ is idempotent with $\operatorname{rank}(\mathbf{A}) = r = \operatorname{rank}(\mathbf{A} \mathbf{\Sigma})$.

e) If
$$\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$$
 then $\frac{\boldsymbol{Y}^T \boldsymbol{Y}}{\sigma^2} \sim \chi^2 \left(n, \frac{\boldsymbol{\mu}^T \boldsymbol{\mu}}{2\sigma^2}\right)$

f) If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{I})$ then $\mathbf{Y}^T \boldsymbol{A} \mathbf{Y} \sim \chi^2(r, \boldsymbol{\mu}^T \boldsymbol{A} \boldsymbol{\mu}/2)$ iff \boldsymbol{A} is idempotent with rank $(\boldsymbol{A}) = tr(\boldsymbol{A}) = r$.

g) If $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$ then $\frac{\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y}}{\sigma^2} \sim \chi^2 \left(r, \frac{\boldsymbol{\mu}^T \boldsymbol{A} \boldsymbol{\mu}}{2\sigma^2}\right)$ iff \boldsymbol{A} is idempotent with $\operatorname{rank}(\boldsymbol{A}) = tr(\boldsymbol{A}) = r.$

3) MLE: The following problem is typical. It is assumed than $\sigma > 0$ and $\beta \in \mathbb{R}^p$.

Suppose $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i$ with $Q(\boldsymbol{\beta}) \geq 0$. Let c_n be a constant that does not depend on $\boldsymbol{\beta}$ or σ^2 . Suppose the likelihood function is

$$L(\boldsymbol{\beta}, \sigma^2) = c_n \; \frac{1}{\sigma^n} \exp\left(\frac{-1}{2\sigma^2}Q(\boldsymbol{\beta})\right).$$

a) Suppose that $\hat{\boldsymbol{\beta}}_Q$ minimizes $Q(\boldsymbol{\beta})$. Show that $\hat{\boldsymbol{\beta}}_Q$ is the MLE of $\boldsymbol{\beta}$.

b) Then find the MLE $\hat{\sigma}^2$ of σ^2 .

Solution: a) For fixed $\sigma > 0$, $L(\beta, \sigma^2)$ is maximized by minimizing $Q(\beta) \ge 0$. So $\hat{\beta}_Q$ maximizes $L(\beta, \sigma^2)$ regardless of the value of $\sigma^2 > 0$. So $\hat{\beta}_Q$ is the MLE.

b) Let $Q = Q(\hat{\beta}_Q)$. Then the MLE $\hat{\sigma}^2$ is found by maximizing the profile likelihood,

$$L_p(\sigma^2) = L(\hat{\boldsymbol{\beta}}_Q, \sigma^2) = c_n \frac{1}{\sigma^n} \exp\left(\frac{-1}{2\sigma^2}Q\right). \text{ Let } \tau = \sigma^2. \text{ The } L_p(\tau) = c_n \frac{1}{\tau^{n/2}} \exp\left(\frac{-1}{2\tau}Q\right),$$

and the log profile likelihood log $L_r(\tau) = d - \frac{n}{2}\log(\tau) - \frac{Q}{2\tau}$. Thus

and the log profile likelihood $\log L_p(\tau) = d - \frac{n}{2}\log(\tau) - \frac{Q}{2\tau}$. Thus

$$\frac{d \, \log L_p(\tau)}{d\tau} = \frac{-n}{2\tau} + \frac{Q}{2\tau^2} \stackrel{set}{=} 0$$

or $-n\tau + Q = 0$ or $\hat{\tau} = \hat{\sigma}^2 = Q/n$, unique. Then

$$\frac{d^2 \log L_p(\tau)}{d\tau^2} = \frac{n}{2\tau^2} - \frac{2Q}{2\tau^3}\Big|_{\hat{\tau}} = \frac{n}{2\tau^2} - \frac{2n\hat{\tau}}{2\hat{\tau}^3} = \frac{-n}{2\hat{\tau}^2} < 0$$

which proves that $\hat{\sigma}^2$ is the MLE of σ^2 .

Note: A negative second derivative shows that $\hat{\sigma}^2$ is a local max. The result that $\hat{\sigma}^2$ was the unique solution to setting the first derivative of the profile likelihood equal to zero makes $\hat{\sigma}^2$ the global max.

Common errors: Students use $Q(\beta)$ instead of $Q(\hat{\beta})$ in the profile likelihood. Students forget to write the word "unique."

Variant: $Q(\boldsymbol{\beta}) = \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$ is the least squares criterion. Recognize that $Q(\boldsymbol{\beta})$ is minimized by $\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{OLS}$, and proceed as in the above problem.

Note: If the e_i are iid $N(0, \sigma^2)$ and least squares is used, then the MLE of $\boldsymbol{\beta}$ is the least squares estimator $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$ and the MLE of σ^2 is

$$\hat{\sigma}_{M}^{2} = \frac{n-p}{n}MSE = \frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}.$$

4) LS Estimators for $p \leq 2$:

Given a least squares model with $p \leq 2$, derive or find the least squares estimator $\boldsymbol{\beta}$. **Tip:** If the LS model is $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + e_i$ for i = 1, ..., n, then the LS criterion is $Q(\boldsymbol{\beta}) = \sum_{i=1}^n (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 = \sum_{i=1}^n r_i^2(\boldsymbol{\beta})$. To derive the LS estimator, let $Q(\beta_1, \beta_2) = \sum_{i=1}^n (Y_i - \beta_1 - \beta_2 x_i)^2$ be the residual sum

To derive the LS estimator, let $Q(\beta_1, \beta_2) = \sum_{i=1}^n (Y_i - \beta_1 - \beta_2 x_i)^2$ be the residual sum of squares where β_i vary on \mathbb{R} . Take the partial derivatives, set them to 0, and solve for the least squares estimators. If p = 2, we will assume 2nd derivatives do not need to be taken. If p = 1, show the solution is unique and show that the second derivative evaluated at $\hat{\beta}$ is positive. The β_i could be replaced by other symbols such as η_i .

Location model: $Y_i = \beta + e_i$ or $Y = \mathbf{1}\beta + e$. The parameter β could be replaced with μ or θ . The LS criterion $Q(\beta) = \sum_{i=1}^{n} (Y_i - \beta)^2$, and $\hat{\beta} = \overline{Y}$, the sample mean.

Proof :
$$\frac{dQ(\beta)}{d\beta} = -2\sum_{i=1}^{n} (Y_i - \beta).$$

Setting the derivative equal to 0 and calling the unique solution $\hat{\beta}$ gives $\sum_{i=1}^{n} Y_i = n\hat{\beta}$ or $\hat{\beta} = \overline{Y}$. The second derivative

$$\frac{d^2Q(\beta)}{d\beta^2} = 2n > 0,$$

hence $\hat{\beta}$ is the global minimizer.

Simple linear regression (SLR): $Y_i = \beta_1 + x_i\beta_2 + e_i$ or $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}$ where $\boldsymbol{X} = [\mathbf{1} \ \boldsymbol{x}]$ and $\boldsymbol{\beta} = (\beta_1 \ \beta_2)^T$. The LS criterion $Q(\beta_1, \beta_2) = \sum_{i=1}^n (Y_i - \beta_1 - x_i\beta_2)^2$. The least squares (OLS) line is $\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X$ where the slope

$$\hat{\beta}_2 \equiv \hat{\beta} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})Y_i}{\sum_{j=1}^n (X_j - \overline{X})^2} = \sum_{i=1}^n k_i Y_i$$

with

$$k_i = \frac{X_i - \overline{X}}{\sum_{j=1}^n (X_j - \overline{X})^2} = \frac{X_i - \overline{X}}{(n-1)S_X^2},$$

and the intercept $\hat{\beta}_1 \equiv \hat{\alpha} = \overline{Y} - \hat{\beta}_2 \overline{X}$.

By the chain rule,

$$\frac{\partial Q}{\partial \beta_1} = -2\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)$$

and

$$\frac{\partial^2 Q}{\partial \beta_1^2} = 2n.$$

Similarly,

$$\frac{\partial Q}{\partial \beta_2} = -2\sum_{i=1}^n X_i (Y_i - \beta_1 - \beta_2 X_i)$$

and

$$\frac{\partial^2 Q}{\partial \beta_2^2} = 2 \sum_{i=1}^n X_i^2.$$

Setting the first partial derivatives to zero and calling the solutions $\hat{\beta}_1$ and $\hat{\beta}_2$ shows that the OLS estimators $\hat{\beta}_1$ and $\hat{\beta}_2$ satisfy the **normal equations**:

$$\sum_{i=1}^{n} Y_{i} = n\hat{\beta}_{1} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i} \text{ and}$$
$$\sum_{i=1}^{n} X_{i}Y_{i} = \hat{\beta}_{1} \sum_{i=1}^{n} X_{i} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i}^{2}.$$

The first equation gives $\hat{\beta}_1 = \overline{Y} - \hat{\beta}_2 \overline{X}$.

There are several equivalent formulas for the slope $\hat{\beta}_2$.

$$\hat{\beta}_2 \equiv \hat{\beta} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sum_{i=1}^n X_i Y_i - \frac{1}{n} (\sum_{i=1}^n X_i) (\sum_{i=1}^n Y_i)}{\sum_{i=1}^n X_i^2 - \frac{1}{n} (\sum_{i=1}^n X_i)^2}$$

$$= \frac{\sum_{i=1}^{n} (X_i - \overline{X}) Y_i}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{X} \ \overline{Y}}{\sum_{i=1}^{n} X_i^2 - n (\overline{X})^2} = \hat{\rho} s_Y / s_X.$$

Here the sample correlation $\hat{\rho} \equiv \hat{\rho}(X, Y) = \operatorname{corr}(X, Y) =$

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)s_X s_Y} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

where the sample standard deviation

$$s_W = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (W_i - \overline{W})^2}$$

for W = X, Y. Notice that the term n-1 that occurs in the denominator of $\hat{\rho}, s_Y^2$, and s_X^2 can be replaced by n as long as n is used in all 3 quantities.

SLR through the origin: $Y_i = x_i\beta + e_i$ or $Y = x\beta + e$. The LS criterion $Q(\beta) = \sum_{i=1}^{n} (Y_i - x_i\beta)^2, \text{ and } \hat{\beta} = \sum_{i=1}^{n} x_i Y_i / \sum_{i=1}^{n} x_i^2.$ **Known intercept**: $Y_i = a + x_i\beta + e_i$ where the intercept *a* is known.

 $Q(\beta) = \sum_{i=1}^{n} (Y_i - a - x_i \beta)^2.$

Known slope: $Y_i = \beta + x_i b + e_i$ where the slope b is known. $Q(\beta) = \sum_{i=1}^{n} (Y_i - \beta - x_i b)^2$. Here, β may be replaced by α .

5) WLS:

For the WLS model $Y | \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\beta} + e$ where the e_i are independent with $E(e_i) = 0$ and $V(e_i) = \sigma_i^2$. Hence $\boldsymbol{Y} = \boldsymbol{Y} | \boldsymbol{X} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}$ where $E(\boldsymbol{e}) = \boldsymbol{0}$ and $Cov(\boldsymbol{e}) = diag(\sigma_i^2)$.

An alternative model is $Y | \boldsymbol{x}^T \boldsymbol{\beta} = \boldsymbol{x}^T \boldsymbol{\beta} + \boldsymbol{u}$ where the u_i are independent with $E(u_i) =$ 0 and $V(u_i) = \tau_i^2$. Hence $\mathbf{Y} = \mathbf{Y} | \mathbf{X} \boldsymbol{\beta} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{u}$ where $E(\boldsymbol{u}) = \mathbf{0}$ and $Cov(\boldsymbol{u}) =$ $diag(\tau_i^2).$

6) Non-full rank linear models:

The nonfull rank linear model is $Y = X\beta + e$ where X has rank r , and \boldsymbol{X} is an $n \times p$ matrix.

Theorem 3.1. i) $\boldsymbol{P} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-}\boldsymbol{X}^T$ is the unique projection matrix on $C(\boldsymbol{X})$ and does not depend on the generalized inverse $(\mathbf{X}^T \mathbf{X})^{-}$.

ii) $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^- \boldsymbol{X}^T \boldsymbol{Y}$ does depend on $(\boldsymbol{X}^T \boldsymbol{X})^-$ and is not unique.

iii) $\hat{Y} = X\hat{\beta} = PY, r = Y - \hat{Y} = Y - X\hat{\beta} = (I - P)Y$ and $RSS = r^T r$ are unique and so do not depend on $(\mathbf{X}^T \mathbf{X})^-$.

iv) $\hat{\boldsymbol{\beta}}$ is a solution to the normal equations: $\boldsymbol{X}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{Y}$.

v) $\operatorname{Rank}(\boldsymbol{P}) = r$ and $\operatorname{rank}(\boldsymbol{I} - \boldsymbol{P}) = n - r$.

vi) If $\text{Cov}(\mathbf{Y}) = \text{Cov}(\mathbf{e}) = \sigma^2 \mathbf{I}$, then $MSE = \frac{RSS}{n-r} = \frac{\mathbf{r}^T \mathbf{r}}{n-r}$ is an unbiased estimator of σ^2 .

vii) Let the columns of X_1 form a basis for C(X). For example, take r linearly independent columns of \boldsymbol{X} to form \boldsymbol{X}_1 . Then $\boldsymbol{P} = \boldsymbol{X}_1 (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T$.

7) Estimability and the Gauss Markov Theorem:

Let \boldsymbol{a} and \boldsymbol{b} be constant vectors. Then $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable if there exists a linear unbiased estimator $\boldsymbol{b}^T \boldsymbol{Y}$ so $E(\boldsymbol{b}^T \boldsymbol{Y}) = \boldsymbol{a}^T \boldsymbol{\beta}$. Also, $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^T = \boldsymbol{b}^T \boldsymbol{X}$ iff $\boldsymbol{a} = \boldsymbol{X}^T \boldsymbol{b}$ iff $\boldsymbol{a} \in C(\boldsymbol{X}^T)$.

The linear estimator $\boldsymbol{a}^T \boldsymbol{Y}$ of $\boldsymbol{c}^T \boldsymbol{\theta}$ is the best linear unbiased estimator (BLUE) of $\boldsymbol{c}^T \boldsymbol{\theta}$ if $E(\boldsymbol{a}^T \boldsymbol{Y}) = \boldsymbol{c}^T \boldsymbol{\theta}$, and if for any other unbiased linear estimator $\boldsymbol{b}^T \boldsymbol{Y}$ of $\boldsymbol{c}^T \boldsymbol{\theta}$, $V(\boldsymbol{a}^T \boldsymbol{Y}) \leq V(\boldsymbol{b}^T \boldsymbol{Y})$. Note that $E(\boldsymbol{b}^T \boldsymbol{Y}) = \boldsymbol{c}^T \boldsymbol{\theta}$.

The next theorem shows that the least squares estimator of an estimable function $\boldsymbol{a}^T \boldsymbol{\beta}$ is $\boldsymbol{a}^T \hat{\boldsymbol{\beta}} = \boldsymbol{b}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{Y}$. Note that $\boldsymbol{b}^T \boldsymbol{Y}$ is also an unbiased estimator of $\boldsymbol{a}^T \boldsymbol{\beta}$ since $E(\boldsymbol{b}^T \boldsymbol{Y}) = \boldsymbol{b}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{a}^T \boldsymbol{\beta}$.

Theorem 3.2 (see Seber and Lee Th 3.2) Let $Y = X\beta + e$ where where X has rank $r \le p \le n$, E(e) = 0, and $Cov(e) = \sigma^2 I$.

a) The quantity $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^T = \boldsymbol{b}^T \boldsymbol{X}$ iff $\boldsymbol{a} = \boldsymbol{X}^T \boldsymbol{b}$ (for some constant vector \boldsymbol{b}) iff $\boldsymbol{a} \in C(\boldsymbol{X}^T)$.

b) Let $\hat{\boldsymbol{\theta}} = \boldsymbol{X}\hat{\boldsymbol{\beta}}$ and $\boldsymbol{\theta} = \boldsymbol{X}\boldsymbol{\beta}$. Suppose there exists a constant vector \boldsymbol{c} such that $E(\boldsymbol{c}^T\hat{\boldsymbol{\theta}}) = \boldsymbol{c}^T\boldsymbol{\theta}$. Then among the class of linear unbiased estimators of $\boldsymbol{c}^T\boldsymbol{\theta}$, the least squares estimator $\boldsymbol{c}^T\hat{\boldsymbol{\theta}}$ is the unique BLUE.

c) Gauss Markov Theorem: If $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable and a least squares estimator $\hat{\boldsymbol{\beta}}$ is any solution to the normal equations $\boldsymbol{X}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{Y}$, then $\boldsymbol{a}^T \hat{\boldsymbol{\beta}}$ is the unique BLUE of $\boldsymbol{a}^T \boldsymbol{\beta}$.

Proof: a) If $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable, then $\boldsymbol{a}^T \boldsymbol{\beta} = E(\boldsymbol{b}^T \boldsymbol{Y}) = \boldsymbol{b}^T \boldsymbol{X} \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^p$. Thus $\boldsymbol{a}^T = \boldsymbol{b}^T \boldsymbol{X}$ or $\boldsymbol{a} = \boldsymbol{X}^T \boldsymbol{b}$. Hence $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^T = \boldsymbol{b}^T \boldsymbol{X}$ iff $\boldsymbol{a} = \boldsymbol{X}^T \boldsymbol{b}$ iff $\boldsymbol{a} \in C(\boldsymbol{X}^T)$.

b) Since $\hat{\boldsymbol{\theta}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{P}\boldsymbol{Y}$, it follows that $E(\boldsymbol{c}^{T}\hat{\boldsymbol{\theta}}) = E(\boldsymbol{c}^{T}\boldsymbol{P}\boldsymbol{Y}) = \boldsymbol{c}^{T}\boldsymbol{P}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{c}^{T}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{c}^{T}\boldsymbol{\theta}$. Thus $\boldsymbol{c}^{T}\hat{\boldsymbol{\theta}} = \boldsymbol{c}^{T}\boldsymbol{P}\boldsymbol{Y} = (\boldsymbol{P}\boldsymbol{c})^{T}\boldsymbol{Y}$ is a linear unbiased estimator of $\boldsymbol{c}^{T}\boldsymbol{\theta}$. Let $\boldsymbol{d}^{T}\boldsymbol{Y}$ be any other linear unbiased estimator of $\boldsymbol{c}^{T}\boldsymbol{\theta}$. Hence $E(\boldsymbol{d}^{T}\boldsymbol{Y}) = \boldsymbol{d}^{T}\boldsymbol{\theta} = \boldsymbol{c}^{T}\boldsymbol{\theta}$ for all $\boldsymbol{\theta} \in C(\boldsymbol{X})$. So $(\boldsymbol{c}-\boldsymbol{d})^{T}\boldsymbol{\theta} = 0$ for all $\boldsymbol{\theta} \in C(\boldsymbol{X})$. Hence $(\boldsymbol{c}-\boldsymbol{d}) \in [C(\boldsymbol{X})]^{\perp}$ and $\boldsymbol{P}(\boldsymbol{c}-\boldsymbol{d}) = \boldsymbol{0}$, or $\boldsymbol{P}\boldsymbol{c} = \boldsymbol{P}\boldsymbol{d}$. Thus $V(\boldsymbol{c}^{T}\hat{\boldsymbol{\theta}}) = V(\boldsymbol{c}^{T}\boldsymbol{P}\boldsymbol{Y}) = V(\boldsymbol{d}^{T}\boldsymbol{P}\boldsymbol{Y}) = \sigma^{2}\boldsymbol{d}^{T}\boldsymbol{P}^{T}\boldsymbol{P}\boldsymbol{d} = \sigma^{2}\boldsymbol{d}^{T}\boldsymbol{P}\boldsymbol{d}$. Then $V(\boldsymbol{d}^{T}\boldsymbol{Y}) - V(\boldsymbol{c}^{T}\hat{\boldsymbol{\theta}}) = V(\boldsymbol{d}^{T}\boldsymbol{Y}) - V(\boldsymbol{d}^{T}\boldsymbol{P}\boldsymbol{Y}) = \sigma^{2}[\boldsymbol{d}^{T}\boldsymbol{d} - \boldsymbol{d}^{T}\boldsymbol{P}\boldsymbol{d}] = \sigma^{2}\boldsymbol{d}^{T}(\boldsymbol{I}_{n} - \boldsymbol{P})\boldsymbol{d} = \boldsymbol{\sigma}^{2}\boldsymbol{d}^{T}(\boldsymbol{I}_{n} - \boldsymbol{P})\boldsymbol{d} = \boldsymbol{g}^{T}\boldsymbol{g} \geq 0$ with equality iff $\boldsymbol{g} = (\boldsymbol{I}_{n} - \boldsymbol{P})\boldsymbol{d} = \boldsymbol{0}$, or $\boldsymbol{d} = \boldsymbol{P}\boldsymbol{d} = \boldsymbol{P}\boldsymbol{c}$. Thus $\boldsymbol{c}^{T}\hat{\boldsymbol{\theta}}$ has minimum variance and is unique.

c) Since $\boldsymbol{a}^T \boldsymbol{\beta}$ is estimable, $\boldsymbol{a}^T \hat{\boldsymbol{\beta}} = \boldsymbol{b}^T \boldsymbol{X} \hat{\boldsymbol{\beta}}$. Then $\boldsymbol{a}^T \hat{\boldsymbol{\beta}} = \boldsymbol{b}^T \hat{\boldsymbol{\theta}}$ is the unique BLUE of $\boldsymbol{a}^T \boldsymbol{\beta} = \boldsymbol{b}^T \boldsymbol{\theta}$ by b).

Gauss Markov Theorem-Full Rank Case: Let $Y = X\beta + e$ where X is full rank, E(e) = 0, and $Cov(e) = \sigma^2 I$. Then $a^T \hat{\beta}$ is the unique BLUE of $a^T \beta$ for every constant $p \times 1$ vector a.

Notation: $\boldsymbol{\beta}$ is "estimable" by $\boldsymbol{\hat{\beta}}$ for the full rank model, but not for the non-full rank model.

8) Hypothesis Testing:

Theorem 2.16. Let $\boldsymbol{\theta} = \boldsymbol{X}\boldsymbol{\eta} \in C(\boldsymbol{X})$ where $Y_i = \boldsymbol{x}_i^T\boldsymbol{\eta} + r_i(\boldsymbol{\eta})$ and the residual $r_i(\boldsymbol{\eta})$ depends on $\boldsymbol{\eta}$. The **least squares estimator** $\hat{\boldsymbol{\beta}}$ is the value of $\boldsymbol{\eta} \in \mathbb{R}^p$ that minimizes the **least squares criterion**

 $\sum_{i=1}^n r_i^2(\boldsymbol{\eta}) = \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\eta}\|^2.$

LS CLT (Least Squares Central Limit Theorem): Consider the MLR model $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + e_i$ and assume that the zero mean errors are iid with $E(e_i) = 0$ and $VAR(e_i) = 0$

 σ^2 . Also assume that $\max_i(h_1, ..., h_n) \to 0$ in probability as $n \to \infty$ and

$$\frac{\boldsymbol{X}^T\boldsymbol{X}}{n} \to \boldsymbol{W}^{-1}$$

as $n \to \infty$. Then the least squares (OLS) estimator $\hat{\boldsymbol{\beta}}$ satisfies

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{D} N_p(\boldsymbol{0}, \sigma^2 \boldsymbol{W}).$$
 (1)

Partial F Test Theorem: Suppose $H_0 : L\beta = 0$ is true for the partial F test where L is a full rank $r \times p$ matrix. Under the OLS full rank model, a)

$$F_R = \frac{1}{rMSE} (\boldsymbol{L}\hat{\boldsymbol{\beta}})^T [\boldsymbol{L}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{L}^T]^{-1} (\boldsymbol{L}\hat{\boldsymbol{\beta}}).$$

b) If $\boldsymbol{e} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$, then $F_R \sim F_{r,n-p}$.

c) For a large class of zero mean error distributions $rF_R \xrightarrow{D} \chi_r^2$.

d) The partial F test that rejects $H_0: L\beta = 0$ if $F_R > F_{r,n-p}(1-\delta)$ is a large sample right tail δ test for the OLS model for a large class of zero mean error distributions.

Assume H_0 is true. By the OLS CLT, $\sqrt{n}(\boldsymbol{L}\hat{\boldsymbol{\beta}} - \boldsymbol{L}\boldsymbol{\beta}) = \sqrt{n}\boldsymbol{L}\hat{\boldsymbol{\beta}} \stackrel{D}{\to} N_r(\boldsymbol{0}, \sigma^2 \boldsymbol{L}\boldsymbol{W}\boldsymbol{L}^T)$. Thus $\sqrt{n}(\boldsymbol{L}\hat{\boldsymbol{\beta}})^T (\sigma^2 \boldsymbol{L}\boldsymbol{W}\boldsymbol{L}^T)^{-1} \sqrt{n}\boldsymbol{L}\hat{\boldsymbol{\beta}} \stackrel{D}{\to} \chi_r^2$. Let $\hat{\sigma}^2 = MSE$ and $\hat{\boldsymbol{W}} = n(\boldsymbol{X}^T\boldsymbol{X})^{-1}$. Then

$$n(\boldsymbol{L}\hat{\boldsymbol{\beta}})^T [MSE \ \boldsymbol{L}n(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{L}^T]^{-1}\boldsymbol{L}\hat{\boldsymbol{\beta}} = rF_R \xrightarrow{D} \chi_r^2.$$

Partial F test: Let the full model $Y = X\beta + e$ with a constant β_1 in the model: 1 is the 1st column of X. Let the reduced model $Y = X_R\beta_R + e$ also have a constant in the model where the columns of X_R are a subset of k of the columns of X. Let P_R be the projection matrix on $C(X_R)$ so $PP_R = P_R$. Then $F_R = \frac{SSE(R) - SSE(F)}{rMSE(F)}$ where $r = df_R - df_F = p - k$ = number of predictors in the full model but not in the reduced model. MSE = MSE(F) = SSE(F)/(n-p) where SSE = SSE(F) = Y(I - P)Y. $SSE(R) - SSE(F) = Y^T(P - P_R)Y$ where $SSE(R) = Y^T(I - P_R)Y$.

Now assume $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, and when H_0 is true, $\mathbf{Y} \sim N_n(\mathbf{X}_R\boldsymbol{\beta}_R, \sigma^2 \mathbf{I})$. Since $(\mathbf{I} - \mathbf{P})(\mathbf{P} - \mathbf{P}_R) = \mathbf{0}$, $[SSE(R) - SSE(F)] \perp MSE(F)$ by Craig's Theorem. When H_0 is true, $\boldsymbol{\mu} = \mathbf{X}_R\boldsymbol{\beta}_R$ and $\boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} = 0$ where $\mathbf{A} = (\mathbf{I} - \mathbf{P})$ or $\mathbf{A} = (\mathbf{P} - \mathbf{P}_R)$. Hence the noncentrality parameter is 0, and by Theorem 2.14 g), $SSE \sim \sigma^2 \chi^2_{n-p}$ and $SSE(R) - SSE(F) \sim \sigma^2 \chi^2_{p-k}$ since $rank(\mathbf{P} - \mathbf{P}_R) = tr(\mathbf{P} - \mathbf{P}_R) = p - k$. Hence under $H_0, F_R \sim F_{p-k,n-p}$.

An ANOVA table for the partial F test is shown below, where $k = p_R$ is the number of predictors used by the reduced model, and $r = p - p_R = p - k$ is the number of predictors in the full model that are not in the reduced model.

Source	df	SS	MS	F
Reduced	$n - p_R$	$SSE(R) = \boldsymbol{Y}^T (\boldsymbol{I} - \boldsymbol{P}_R) \boldsymbol{Y}$	MSE(R)	$F_R = \frac{SSE(R) - SSE}{rMSE} =$
Full	n-p	$SSE = \boldsymbol{Y}^T (\boldsymbol{I} - \boldsymbol{P}) \boldsymbol{Y}$	MSE	$\frac{\boldsymbol{Y}^T(\boldsymbol{P}-\boldsymbol{P}_R)\boldsymbol{Y}/r}{\boldsymbol{Y}^T(\boldsymbol{I}-\boldsymbol{P})\boldsymbol{Y}/(n-p)}$

The ANOVA F test is the special case where k = 1, $X_R = 1$, $P_R = P_1$, and SSE(R) - SSE(F) = SSTO - SSE = SSR.

ANOVA table: $Y = X\beta + e$ with a constant β_1 in the model: 1 is the 1st column of X. MS = SS/df.

$$SSTO = \mathbf{Y}^T (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T) \mathbf{Y} = \sum_{i=1}^n (Y_i - \overline{Y})^2, \ SSE = \sum_{i=1}^n r_i^2, \ SSR = \sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2$$

SSTO = SSR + SSE. SSTO is the SSE (residual sum of squares) for the location model $\mathbf{Y} = \mathbf{1}\beta_1 + \mathbf{e}$ that contains a constant but no nontrivial predictors. The location model has projection matrix $\mathbf{P}_1 = \mathbf{1}(\mathbf{1}^T\mathbf{1})^{-1}\mathbf{1}^T = \frac{1}{n}\mathbf{1}\mathbf{1}^T$. Hence $\mathbf{PP}_1 = \mathbf{P}_1$ and $\mathbf{P1} = \mathbf{P}_1\mathbf{1} = \mathbf{1}$.

Source	df	SS	MS	${ m F}$	p-value
Regression	p-1	$SSR = \mathbf{Y}^T (\mathbf{P} - \frac{1}{n} 1 1^T) \mathbf{Y}$	MSR	$F_0 = MSR/MSE$	for H_0 :

Residual n-p
$$SSE = \mathbf{Y}^T (\mathbf{I} - \mathbf{P}) \mathbf{Y}$$
 MSE $\beta_2 = \cdots = \beta_p = 0$

The matrices in the quadratic forms for SSR and SSE are symmetric and idempotent and their product is **0**. Hence if $\boldsymbol{e} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$ so $\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, then $SSE \perp SSR$ by Craig's Theorem. If H_0 is true under normality, then $\boldsymbol{Y} \sim N_n(\mathbf{1}\beta_1, \sigma^2 \boldsymbol{I})$, and by Theorem 2.14 g), $SSE \sim \sigma^2 \chi_{n-p}^2$ and $SSR \sim \sigma^2 \chi_{p-1}^2$ since $rank(\boldsymbol{I} - \boldsymbol{P}) = tr(\boldsymbol{I} - \boldsymbol{P}) =$ n-p and $rank(\boldsymbol{P} - \frac{1}{n}\mathbf{1}\mathbf{1}^T) = tr(\boldsymbol{P} - \frac{1}{n}\mathbf{1}\mathbf{1}^T) = p-1$. Hence under normality, $F_0 \sim F_{p-1,n-p}$.

9) Expected Value, Covariance Matrix and Large Sample Theory for least squares quantities:

For the full rank model, $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ where $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$, $E(\mathbf{e}) = \mathbf{0}$ and $Cov(\mathbf{e}) = Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$, $E(\mathbf{A}\mathbf{Y}) = \mathbf{A}\mathbf{X}\boldsymbol{\beta}$ and $Cov(\mathbf{A}\mathbf{Y}) = \sigma^2 \mathbf{A}\mathbf{A}^T$.

 $A = (X^T X)^{-1} X^T$ is used for $\hat{\beta} = AY$. A = I - P = I - H is used for the residual vector $Y - \hat{Y} = AY$. A = P = H is used for the vector of fitted values \hat{Y} .

For the full rank Gaussian linear model, $\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, and if \boldsymbol{A} is $k \times n$ with rank k, then $\boldsymbol{A}\boldsymbol{Y} \sim N_k(\boldsymbol{A}\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{A}\boldsymbol{A}^T)$.

If $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{D} N_p(\boldsymbol{0}, \sigma^2 \boldsymbol{W})$, and \boldsymbol{A} is $k \times p$ with rank k, then $\sqrt{n}(\boldsymbol{A}\hat{\boldsymbol{\beta}} - \boldsymbol{A}\boldsymbol{\beta}) \xrightarrow{D} N_k(\boldsymbol{0}, \sigma^2 \boldsymbol{A}\boldsymbol{W}\boldsymbol{A}^T)$.

The non-full rank model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ also has $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$, $E(\mathbf{e}) = \mathbf{0}$, $Cov(\mathbf{e}) = Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$, $E(\mathbf{A}\mathbf{Y}) = \mathbf{A}\mathbf{X}\boldsymbol{\beta}$ and $Cov(\mathbf{A}\mathbf{Y}) = \sigma^2 \mathbf{A}\mathbf{A}^T$.

For the non-full rank model $A = (X^T X)^- X^T$ is used for $\hat{\beta} = AY$ and $P = X(X^T X)^- X^T$.

You should be able to handle the linear model written in different ways. The residual bootstrap model $\mathbf{Y}^* = \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{e}^*$ with $E(\mathbf{e}^*) = \mathbf{0}$ and $\operatorname{Cov}(\mathbf{e}^*) = \operatorname{Cov}(\mathbf{Y}^*) = \hat{\sigma}^2 \mathbf{I}$. The parametric bootstrap model $\mathbf{Y}^* = \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{e}^*$ with $\mathbf{Y}^* \sim N_n(\mathbf{X}\hat{\boldsymbol{\beta}}, MSE \mathbf{I})$. In numerical linear algebra, the least squares solution to " $\mathbf{A}\mathbf{x} = \mathbf{b}$ " is of interest where the problem is actually the multiple linear regression model $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{\epsilon}$ where \mathbf{A} has full rank p, and we will assume that $E(\mathbf{\epsilon}) = \mathbf{0}$, and $\operatorname{Cov}(\mathbf{\epsilon}) = \sigma^2 \mathbf{I}_n$.

References:

Christensen, R. (2020), *Plane Answers to Complex Questions: the Theory of Linear Models*, 5th ed., Springer, New York, NY.

Graybill, F.A. (2000), Theory and Application of the Linear Model, Brooks/Cole, Pacific Grove, CA.

Olive, D.J. (2023), *Theory of Linear Models*, online course notes, see (http://parker. ad.siu.edu/Olive/linmodbk.htm).

Rencher, A.C., and Schaalje, G.B. (2008), *Linear Models in Statistics*, 2nd ed., Wiley, Hoboken, NJ.

Searle, S.R., and Gruber, M.H.J. (2017), *Linear Models*, 2nd ed., Wiley, Hoboken, NJ.

Seber, G.A.F., and Lee, A.J. (2003), *Linear Regression Analysis*, 2nd ed., Wiley, New York, NY.

Zimmerman, D.L. (2020), *Linear Model Theory: Exercises and Solutions*, Springer, New York, NY.