
Types of Problems–Review for Some of the QUAL problems
Notation: Let AT = A′ be the transpose of A.
0) Covariance and Expected Value = Mean, and the Multivariate Normal

(MVN) Distribution:
Notation: Unless told otherwise, assume expectations exist and that conformable

matrices and vectors are used.
The population mean of a random n × 1 vector x = (x1, ..., xn)

T is E(x) = µ =
(E(x1), ..., E(xn))

T and the n × n population covariance matrix

Cov(x) = Σx = E(x − E(x))(x − E(x))T = (σi,j) where Cov(xi, xj) = σi,j. The
population covariance matrix of x with y is

Cov(x, y) = Σx,y = E[(x− E(x))(y − E(y))T ].

If X and Y are n × 1 random vectors, a a conformable constant vector, and A and
B are conformable constant matrices, then

E(X + Y ) = E(X) + E(Y ), E(a + Y ) = a + E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
If X (m × 1) and Y (n × 1) are random vectors, and A and B are conformable

constant matrices, then

Cov(AX, BY ) = ACov(X, Y )BT .

If X ∼ Np(µ,Σ), then E(X) = µ, Cov(X) = Σ, and mX (t) = exp(tT µ +
1

2
tTΣt).

If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ). If a

(p × 1) and b (q × 1) are constant vectors, then X + a ∼ Np(µ + a,Σ) and AX + b ∼
Nq(Aµ + b, AΣAT ).

Let X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then the con-
ditional distribution of X1 given that X2 = x2 is multivariate normal with mean
µ1 + Σ12Σ

−1
22 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 −µ2),Σ11 − Σ12Σ

−1
22 Σ21).

1) Projection Matrices, Generalized Inverses, and the Column Space C(X):
Let A = [a1 a2 ... am] be an n×m matrix. The space spanned by the columns of A

= column space of A = C(A).
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Let X = [v1 v2 ... vp] be an n × p matrix. Then
C(X) = {y ∈ R

n : y = Xβ for some β ∈ R
p}.

One way to show C(A) = C(B) is to show that i) Ax = By ∈ C(B) and ii)
By = Ax ∈ C(A).

The null space of A = N(A) = {x : Ax = 0} = kernel of A. The subspace
V ⊥ = {y ∈ R

k : y ⊥ V } is the orthogonal complement of V .
N(AT ) = [C(A)]⊥, so N(A) = [C(AT )]⊥.
A generalized inverse of an m × n matrix A is any n × m matrix A− satisfying

AA−A = A. Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A−1 exists, then A− = A−1

is unique. Notation: G := A− means G is a generalized inverse of A.
Let V be a subspace of R

k. Then every y ∈ R
k can be expressed uniquely as y = w+z

where w ∈ V and z ∈ V ⊥.
Let X = [v1 v2 ... vp] be n×p, and let V = C(X) = span(v1, ..., vp). Then the n×n

matrix P V = PX is a projection matrix on C(X) if PX y = w ∀ y ∈ R
n. (Here

y = w + z = wy + zy, so w depends on y.)
Projection Matrix Theorem: a) PX is unique.

b) PX = X(XT X)−XT where (XTX)− is any generalized inverse of XTX.
c) A is a projection matrix on C(A) iff A is symmetric and idempotent. Hence PX is
a projection matrix on C(PX ) = C(X).
d) In − PX is the projection matrix on [C(X)]⊥.
e) A = PX iff i) y ∈ C(X) implies Ay = y and ii) y ⊥ C(X) implies Ay = 0.
f) PXX = X, and PXW = W if each column of W ∈ C(X).
g) PXvi = vi.
h) If C(XR) is a subspace of C(X), then PXPXR

= PXR

PX = PXR

.
i) rank(PX ) = tr(PX ) = rank(X).

Note that P is a projection matrix iff P is symmetric and idempotent. Partition X

as X = [X1 X2], let P be the projection matrix for C(X) and let P 1 be the projection
matrix for C(X1). Since C(P 1) = C(X1) ⊆ C(X), PP 1 = P 1. Hence P 1P = (PP 1)

′ =
P ′

1 = P 1.
1a): Given small X, be able to find the projection matrix P for C(X).
1b): Given small X, be able to find rank(X), a basis for C(X), and [C(X)]⊥ =

nullspace of XT .
1c): Be able to show that G := A−.

2) Quadratic Forms Y ′AY and terms like AY :
The matrix A in a quadratic form xTAx is symmetric. A is positive definite

(A > 0) if xT Ax > 0 ∀ x 6= 0. A is positive semidefinite (A ≥ 0) if xTAx ≥ 0 ∀ x.
Let A be symmetric. If A ≥ 0 then the eigenvalues of A are real and nonnegative.

If A ≥ 0, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If A > 0, then λn > 0.
Theorem 2.5 (Seber and Lee Th. 1.5) expected value of a quadratic form:

Let X be a random vector with E(X) = µ and Cov(X) = Σ. Then

E(XTAX) = tr(AΣ) + [E(X)]TAE(X) = tr(AΣ) + µTAµ.
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Theorems 2.6 and 2.7: If AY BY , then f(AY ) g(BY ) where f and g are
functions (such that f(AY ) only depends on A and AY and g(BY ) only depends on
B and BY ). Note that Y ′AY = Y ′A′A−AY = f(AY ) (for a quadratic form A is
symmetric), Y ′(I − P )Y = ‖(I − P )Y ‖2, and Y ′PY = ‖PY ‖2 where the squared
Euclidean norm ‖Z‖2 = Z ′Z.

Theorem 2.8. Let Y ∼ Nn(µ,Σ). a) Let u = AY and w = BY . Then AY BY

iff Cov(u, w) = AΣBT = 0 iff BΣAT = 0. Note that if Σ = σ2In, then AY BY if
ABT = 0 if BAT = 0.

b) If A is a symmetric n × n matrix, and B is an m × n matix, then Y T AY BY

iff AΣBT = 0 iff BΣA = 0.
Craig’s Theorem: Let Y ∼ Nn(µ,Σ).
a) If Σ > 0, then Y T AY Y T BY iff AΣB = 0 iff BΣA = 0.
b) If Σ ≥ 0, then Y TAY Y TBY if AΣB = 0 (or if BΣA = 0).
c) If Σ ≥ 0, then Y T AY Y T BY iff

(∗) ΣAΣBΣ = 0,ΣAΣBµ = 0,ΣBΣAµ = 0, and µT AΣBµ = 0.
Note that if AΣB = 0, then (∗) holds.
Theorem 2.13. If Y ∼ Nn(µ,Σ) where Σ > 0, then Y TAY ∼ χ2(rank(A), µTAµ/2)

iff AΣ is idempotent.
Remark 1: If the theorem is for Y ∼ Nn(µ, I) and Z ∼ Nn(E(Z), σ2I), then use

Y = Z/σ ∼ Nn(µ = E(Z)/σ, I).
Theorem 2.14. Let A = AT be symmetric.
a) If Y ∼ Nn(0,Σ) where Σ is a projection matrix, then Y TY ∼ χ2(rank(Σ)) where

rank(Σ) = tr(Σ).
b) If Y ∼ Nn(0, I), then Y TAY ∼ χ2

r iff A is idempotent with rank(A) = tr(A) = r.
c) Let Y ∼ Nn(0, σ2I). Then

Y TAY

σ2
∼ χ2

r or Y TAY ∼ σ2 χ2
r

iff A is idempotent of rank r.
d) If Y ∼ Nn(0,Σ) where Σ > 0, then Y T AY ∼ χ2

r iff AΣ is idempotent with
rank(A) = r = rank(AΣ).

e) If Y ∼ Nn(0, σ2I) then
Y T Y

σ2
∼ χ2

(

n,
µTµ

2σ2

)

.

f) If Y ∼ Nn(µ, I) then Y T AY ∼ χ2(r, µTAµ/2) iff A is idempotent with rank(A) =
tr(A) = r.

g) If Y ∼ Nn(µ, σ2I) then
Y TAY

σ2
∼ χ2

(

r,
µT Aµ

2σ2

)

iff A is idempotent with

rank(A) = tr(A) = r.

3) MLE: The following problem is typical. It is assumed than σ > 0 and β ∈ R
p.

Suppose Yi = xT
i β + εi with Q(β) ≥ 0. Let cn be a constant that does not depend

on β or σ2. Suppose the likelihood function is

L(β, σ2) = cn
1

σn
exp

(−1

2σ2
Q(β)

)

.
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a) Suppose that β̂Q minimizes Q(β). Show that β̂Q is the MLE of β.
b) Then find the MLE σ̂2 of σ2.
Solution: a) For fixed σ > 0, L(β, σ2) is maximized by minimizing Q(β) ≥ 0. So β̂Q

maximizes L(β, σ2) regardless of the value of σ2 > 0. So β̂Q is the MLE.

b) Let Q = Q(β̂Q). Then the MLE σ̂2 is found by maximizing the profile likelihood,

Lp(σ
2) = L(β̂Q, σ2) = cn

1

σn
exp

(−1

2σ2
Q

)

. Let τ = σ2. The Lp(τ ) = cn
1

τn/2
exp

(−1

2τ
Q

)

,

and the log profile likelihood log Lp(τ ) = d − n

2
log(τ ) − Q

2τ
. Thus

d log Lp(τ )

dτ
=

−n

2τ
+

Q

2τ 2

set
= 0

or −nτ + Q = 0 or τ̂ = σ̂2 = Q/n, unique. Then

d2 log Lp(τ )

dτ 2
=

n

2τ 2
− 2Q

2τ 3

∣

∣

∣

∣

τ̂

=
n

2τ 2
− 2nτ̂

2τ̂ 3
=

−n

2τ̂ 2
< 0

which proves that σ̂2 is the MLE of σ2.
Note: A negative second derivative shows that σ̂2 is a local max. The result that σ̂2

was the unique solution to setting the first derivative of the profile likelihood equal to
zero makes σ̂2 the global max.

Common errors: Students use Q(β) instead of Q(β̂) in the profile likelihood. Students
forget to write the word “unique.”

Variant: Q(β) = ‖Y −Xβ‖2 = (Y −Xβ)T (Y −Xβ) is the least squares criterion.
Recognize that Q(β) is minimized by β̂ = β̂OLS, and proceed as in the above problem.

Note: If the ei are iid N(0, σ2) and least squares is used, then the MLE of β is the
least squares estimator β̂ = (XTX)−1XTY and the MLE of σ2 is

σ̂2
M =

n − p

n
MSE =

1

n

n
∑

i=1

r2
i .

4) LS Estimators for p ≤ 2:
Given a least squares model with p ≤ 2, derive or find the least squares estimator β̂.
Tip: If the LS model is Yi = xT

i β + ei for i = 1, ..., n, then the LS criterion is
Q(β) =

∑n
i=1(Yi − xT

i β)2 =
∑n

i=1 r2
i (β).

To derive the LS estimator, let Q(β1, β2) =
∑n

i=1(Yi−β1−β2xi)
2 be the residual sum

of squares where βi vary on R. Take the partial derivatives, set them to 0, and solve
for the least squares estimators. If p = 2, we will assume 2nd derivatives do not need
to be taken. If p = 1, show the solution is unique and show that the second derivative
evaluated at β̂ is positive. The βi could be replaced by other symbols such as ηi.

Location model: Yi = β + ei or Y = 1β + e. The parameter β could be replaced
with µ or θ. The LS criterion Q(β) =

∑n
i=1(Yi − β)2, and β̂ = Y , the sample mean.

Proof :
dQ(β)

dβ
= −2

n
∑

i=1

(Yi − β).
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Setting the derivative equal to 0 and calling the unique solution β̂ gives
∑n

i=1 Yi = nβ̂ or

β̂ = Y . The second derivative
d2Q(β)

dβ2
= 2n > 0,

hence β̂ is the global minimizer.
Simple linear regression (SLR): Yi = β1 + xiβ2 + ei or Y = Xβ + e where

X = [1 x] and β = (β1 β2)
T . The LS criterion Q(β1, β2) =

∑n
i=1(Yi − β1 − xiβ2)

2.

The least squares (OLS) line is Ŷ = β̂1 + β̂2X where the slope

β̂2 ≡ β̂ =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
=

∑n
i=1(Xi −X)Yi

∑n
j=1(Xj − X)2

=
n

∑

i=1

kiYi

with

ki =
Xi − X

∑n
j=1(Xj − X)2

=
Xi −X

(n − 1)S2
X

,

and the intercept β̂1 ≡ α̂ = Y − β̂2X.
By the chain rule,

∂Q

∂β1

= −2
n

∑

i=1

(Yi − β1 − β2Xi)

and
∂2Q

∂β2
1

= 2n.

Similarly,
∂Q

∂β2
= −2

n
∑

i=1

Xi(Yi − β1 − β2Xi)

and
∂2Q

∂β2
2

= 2

n
∑

i=1

X2
i .

Setting the first partial derivatives to zero and calling the solutions β̂1 and β̂2 shows
that the OLS estimators β̂1 and β̂2 satisfy the normal equations:

n
∑

i=1

Yi = nβ̂1 + β̂2

n
∑

i=1

Xi and

n
∑

i=1

XiYi = β̂1

n
∑

i=1

Xi + β̂2

n
∑

i=1

X2
i .

The first equation gives β̂1 = Y − β̂2X.
There are several equivalent formulas for the slope β̂2.

β̂2 ≡ β̂ =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
=

∑n
i=1 XiYi − 1

n
(
∑n

i=1 Xi)(
∑n

i=1 Yi)
∑n

i=1 X2
i − 1

n
(
∑n

i=1 Xi)2
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=

∑n
i=1(Xi − X)Yi

∑n
i=1(Xi − X)2

=

∑n
i=1 XiYi − nX Y

∑n
i=1 X2

i − n(X)2
= ρ̂sY /sX .

Here the sample correlation ρ̂ ≡ ρ̂(X, Y ) = corr(X, Y ) =

∑n
i=1(Xi −X)(Yi − Y )

(n − 1)sXsY
=

∑n
i=1(Xi −X)(Yi − Y )

√

∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

where the sample standard deviation

sW =

√

√

√

√

1

n − 1

n
∑

i=1

(Wi − W )2

for W = X, Y. Notice that the term n − 1 that occurs in the denominator of ρ̂, s2
Y , and

s2
X can be replaced by n as long as n is used in all 3 quantities.

SLR through the origin: Yi = xiβ + ei or Y = xβ + e. The LS criterion
Q(β) =

∑n
i=1(Yi − xiβ)2, and β̂ =

∑n
i=1 xiYi/

∑n
i=1 x2

i .
Known intercept: Yi = a + xiβ + ei where the intercept a is known.

Q(β) =
∑n

i=1(Yi − a − xiβ)2.
Known slope: Yi = β + xib + ei where the slope b is known.

Q(β) =
∑n

i=1(Yi − β − xib)
2. Here, β may be replaced by α.

5) WLS:
For the WLS model Y |x = xTβ + e where the ei are independent wtih E(ei) = 0 and

V (ei) = σ2
i . Hence Y = Y |X = Xβ + e where E(e) = 0 and Cov(e) = diag(σ2

i ).
An alternative model is Y |xTβ = xT β+u where the ui are independent with E(ui) =

0 and V (ui) = τ 2
i . Hence Y = Y |Xβ = Xβ + u where E(u) = 0 and Cov(u) =

diag(τ 2
i ).

6) Non-full rank linear models:
The nonfull rank linear model is Y = Xβ + e where X has rank r < p ≤ n, and

X is an n × p matrix.
Theorem 3.1. i) P = X(XTX)−XT is the unique projection matrix on C(X) and

does not depend on the generalized inverse (XT X)−.

ii) β̂ = (XTX)−XTY does depend on (XT X)− and is not unique.
iii) Ŷ = Xβ̂ = PY , r = Y − Ŷ = Y − Xβ̂ = (I − P )Y and RSS = rTr are

unique and so do not depend on (XTX)−.
iv) β̂ is a solution to the normal equations: XTXβ̂ = XTY .
v) Rank(P ) = r and rank(I − P ) = n − r.

vi) If Cov(Y ) = Cov(e) = σ2I , then MSE =
RSS

n − r
=

rTr

n − r
is an unbiased estimator

of σ2.
vii) Let the columns of X1 form a basis for C(X). For example, take r linearly

independent columns of X to form X1. Then P = X1(X
T
1 X1)

−1XT
1 .

7) Estimability and the Gauss Markov Theorem:
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Let a and b be constant vectors. Then aT β is estimable if there exists a linear
unbiased estimator bTY so E(bT Y ) = aT β. Also, aTβ is estimable iff aT = bT X iff
a = XT b iff a ∈ C(XT ).

The linear estimator aTY of cTθ is the best linear unbiased estimator (BLUE) of
cTθ if E(aTY ) = cT θ, and if for any other unbiased linear estimator bT Y of cT θ,
V (aTY ) ≤ V (bT Y ). Note that E(bTY ) = cTθ.

The next theorem shows that the least squares estimator of an estimable function
aTβ is aT β̂ = bT Xβ̂ = bT PY . Note that bTY is also an unbiased estimator of aTβ

since E(bT Y ) = bTXβ = aT β.
Theorem 3.2 (see Seber and Lee Th 3.2) Let Y = Xβ + e where where X has

rank r ≤ p ≤ n, E(e) = 0, and Cov(e) = σ2I .
a) The quantity aTβ is estimable iff aT = bT X iff a = XT b (for some constant

vector b) iff a ∈ C(XT ).
b) Let θ̂ = Xβ̂ and θ = Xβ. Suppose there exists a constant vector c such that

E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators of cT θ, the least
squares estimator cT θ̂ is the unique BLUE.

c) Gauss Markov Theorem: If aT β is estimable and a least squares estimator β̂

is any solution to the normal equations XTXβ̂ = XTY , then aT β̂ is the unique BLUE
of aT β.

Proof: a) If aTβ is estimable, then aTβ = E(bT Y ) = bT Xβ for all β ∈ R
p. Thus

aT = bTX or a = XT b. Hence aTβ is estimable iff aT = bT X iff a = XT b iff
a ∈ C(XT ).

b) Since θ̂ = Xβ̂ = PY , it follows that E(cT θ̂) = E(cTPY ) = cTPXβ = cT Xβ =
cTθ. Thus cT θ̂ = cT PY = (Pc)TY is a linear unbiased estimator of cT θ. Let dTY be
any other linear unbiased estimator of cT θ. Hence E(dT Y ) = dT θ = cTθ for all θ ∈
C(X). So (c−d)Tθ = 0 for all θ ∈ C(X). Hence (c−d) ∈ [C(X)]⊥ and P (c−d) = 0,
or Pc = Pd. Thus V (cT θ̂) = V (cT PY ) = V (dTPY ) = σ2dTP T Pd = σ2dTPd.
Then V (dTY ) − V (cT θ̂) = V (dTY ) − V (dT PY ) = σ2[dTd − dT Pd] = σ2dT (In −
P )d = σ2dT (In − P )T (In − P )d = gT g ≥ 0 with equality iff g = (In − P )d = 0, or
d = Pd = Pc. Thus cT θ̂ has minimum variance and is unique.

c) Since aT β is estimable, aT β̂ = bT Xβ̂. Then aT β̂ = bT θ̂ is the unique BLUE of
aTβ = bT θ by b).

Gauss Markov Theorem-Full Rank Case: Let Y = Xβ + e where X is full
rank, E(e) = 0, and Cov(e) = σ2I . Then aT β̂ is the unique BLUE of aTβ for every
constant p × 1 vector a.

Notation: β is “estimable” by β̂ for the full rank model, but not for the non-full rank
model.

8) Hypothesis Testing:
Theorem 2.16. Let θ = Xη ∈ C(X) where Yi = xT

i η+ri(η) and the residual ri(η)
depends on η. The least squares estimator β̂ is the value of η ∈ R

p that minimizes
the least squares criterion
∑n

i=1 r2
i (η) = ‖Y − Xη‖2.

LS CLT (Least Squares Central Limit Theorem): Consider the MLR model
Yi = xT

i β+ei and assume that the zero mean errors are iid with E(ei) = 0 and VAR(ei) =
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σ2. Also assume that maxi(h1, ..., hn) → 0 in probability as n → ∞ and

XT X

n
→ W −1

as n → ∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ). (1)

Partial F Test Theorem: Suppose H0 : Lβ = 0 is true for the partial F test where
L is a full rank r × p matrix. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XTX)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a large sample
right tail δ test for the OLS model for a large class of zero mean error distributions.

Assume H0 is true. By the OLS CLT,
√

n(Lβ̂−Lβ) =
√

nLβ̂
D→ Nr(0, σ2 LWLT ).

Thus
√

n(Lβ̂)T (σ2LWLT )−1
√

nLβ̂
D→ χ2

r. Let σ̂2 = MSE and Ŵ = n(XT X)−1. Then

n(Lβ̂)T [MSE Ln(XTX)−1LT ]−1Lβ̂ = rFR
D→ χ2

r .

Partial F test: Let the full model Y = Xβ + e with a constant β1 in the model: 1
is the 1st column of X. Let the reduced model Y = XRβR + e also have a constant in
the model where the columns of XR are a subset of k of the columns of X . Let P R be

the projection matrix on C(XR) so PP R = P R. Then FR =
SSE(R) − SSE(F )

rMSE(F )
where

r = dfR − dfF = p − k = number of predictors in the full model but not in the reduced
model. MSE = MSE(F ) = SSE(F )/(n − p) where SSE = SSE(F ) = Y (I − P )Y .
SSE(R) − SSE(F ) = Y T (P − P R)Y where SSE(R) = Y T (I − P R)Y .

Now assume Y ∼ Nn(Xβ, σ2I), and when H0 is true, Y ∼ Nn(XRβR, σ2I). Since
(I − P )(P − P R) = 0, [SSE(R) − SSE(F )] MSE(F ) by Craig’s Theorem. When
H0 is true, µ = XRβR and µT Aµ = 0 where A = (I − P ) or A = (P − P R).
Hence the noncentrality parameter is 0, and by Theorem 2.14 g), SSE ∼ σ2χ2

n−p and
SSE(R)− SSE(F ) ∼ σ2χ2

p−k since rank(P −P R) = tr(P −P R) = p− k. Hence under
H0, FR ∼ Fp−k,n−p.

An ANOVA table for the partial F test is shown below, where k = pR is the number
of predictors used by the reduced model, and r = p − pR = p − k is the number of
predictors in the full model that are not in the reduced model.

Source df SS MS F

Reduced n − pR SSE(R) = Y T (I − P R)Y MSE(R) FR = SSE(R)−SSE
rMSE

=

Full n − p SSE = Y T (I − P )Y MSE
Y T (P − P R)Y /r

Y T (I − P )Y /(n − p)
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The ANOVA F test is the special case where k = 1, XR = 1, P R = P 1, and
SSE(R) − SSE(F ) = SSTO − SSE = SSR.

ANOVA table: Y = Xβ + e with a constant β1 in the model: 1 is the 1st column
of X. MS = SS/df .

SSTO = Y T (I − 1

n
11T )Y =

n
∑

i=1

(Yi − Y )2, SSE =
∑n

i=1 r2
i , SSR =

∑n
i=1(Ŷi − Y )2,

SSTO = SSR+SSE. SSTO is the SSE (residual sum of squares) for the location model
Y = 1β1+e that contains a constant but no nontrivial predictors. The location model has

projection matrix P 1 = 1(1T1)−11T =
1

n
11T . Hence PP 1 = P 1 and P1 = P 11 = 1.

Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR/MSE for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0
The matrices in the quadratic forms for SSR and SSE are symmetric and idempotent

and their product is 0. Hence if e ∼ Nn(0, σ2I) so Y ∼ Nn(Xβ, σ2I), then SSE SSR
by Craig’s Theorem. If H0 is true under normality, then Y ∼ Nn(1β1, σ

2I), and by
Theorem 2.14 g), SSE ∼ σ2χ2

n−p and SSR ∼ σ2χ2
p−1 since rank(I − P ) = tr(I − P ) =

n−p and rank(P− 1
n
11T ) = tr(P− 1

n
11T ) = p−1. Hence under normality, F0 ∼ Fp−1,n−p.

9) Expected Value, Covariance Matrix and Large Sample Theory for least
squares quantities:

For the full rank model, Y = Xβ + e where E(Y ) = Xβ, E(e) = 0 and Cov(e) =
Cov(Y ) = σ2I, E(AY ) = AXβ and Cov(AY ) = σ2AAT .

A = (XT X)−1XT is used for β̂ = AY . A = I −P = I −H is used for the residual
vector Y − Ŷ = AY . A = P = H is used for the vector of fitted values Ŷ .

For the full rank Gaussian linear model, Y ∼ Nn(Xβ, σ2I), and if A is k × n with
rank k, then AY ∼ Nk(AXβ, σ2AAT ).

If
√

n(β̂ − β)
D→ Np(0, σ2 W ), and A is k × p with rank k, then

√
n(Aβ̂ − Aβ)

D→
Nk(0, σ2 AWAT ).

The non-full rank model Y = Xβ + e also has E(Y ) = Xβ, E(e) = 0, Cov(e) =
Cov(Y ) = σ2I, E(AY ) = AXβ and Cov(AY ) = σ2AAT .

For the non-full rank model A = (XT X)−XT is used for β̂ = AY and P =
X(XT X)−XT .

You should be able to handle the linear model written in different ways. The residual
bootstrap model Y ∗ = Xβ̂ + e∗ with E(e∗) = 0 and Cov(e∗) = Cov(Y ∗) = σ̂2I . The
parametric bootstrap model Y ∗ = Xβ̂ + e∗ with Y ∗ ∼ Nn(Xβ̂, MSE I). In numerical
linear algebra, the least squares solution to “Ax = b” is of interest where the problem is
actually the multiple linear regression model b = Ax + ε where A has full rank p, and
we will assume that E(ε) = 0, and Cov(ε) = σ2In.
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