Types of Problems—Review for Some of the QUAL problems

Notation: Let AT = A’ be the transpose of A.

0) Covariance and Expected Value = Mean, and the Multivariate Normal
(MVN) Distribution:

Notation: Unless told otherwise, assume expectations exist and that conformable
matrices and vectors are used.

The population mean of a random n x 1 vector & = (x1,...,7,)7 is E(x) = p =
(E(z1), ..., E(z,))T and the n x n population covariance matrix
Cov(z) = g = E(z — E(z))(x — E(x))" = (0:;) where Cov(z;, ;) = 0;;. The
population covariance matriz of  with y is

Cov(z,y) = By = Bl(x — E(z))(y - E(y))"].

If X and Y are n x 1 random vectors, a a conformable constant vector, and A and
B are conformable constant matrices, then

E(X+Y)=EX)+E(Y), El@a+Y)=a+E(Y), & E(AXB)= AE(X)B.
Also
Cov(a + AX) = Cov(AX) = ACov(X)A”.

Note that E(AY) = AE(Y) and Cov(AY) = ACov(Y)A”.
If X (mx1)and Y (n x 1) are random vectors, and A and B are conformable
constant matrices, then

Cov(AX,BY) = ACov(X,Y)B".

1
If X ~ N,(p, %), then E(X) = p, Cov(X) = X, and m x (t) = exp(t’ p+ §tTEt).

If X ~ N,(u, %) and if A is a ¢ x p matrix, then AX ~ N,(Au, ASA"). If a
(px 1) and b (¢ x 1) are constant vectors, then X +a ~ N,(pu+ a,%) and AX +b ~
N,(Ap +b, AT AT).
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The conditional distribution of a MVN is MVN. If X ~ N,(u,X), then the con-

ditional distribution of X; given that Xy = x5 is multivariate normal with mean
py + X125 (22 — py) and covariance matrix 3p; — 21935, 9. That is,

X1 X 5 =@y ~ Ny(py + T1235, (2 — py), B11 — L1235, By).
Notation:
X1 X5 ~ Ny(py + 1255, (X — ), Ti1 — E1255, 2.

1) Projection Matrices, Generalized Inverses, and the Column Space C(X):
Let A = [a; a3 ... a,] be an n x m matrix. The space spanned by the columns of A
= column space of A = C(A).



Let X = [vy v2 ... v,] be an n X p matrix. Then
C(X)={yeR":y=Xp for some 3 € RP}.

One way to show C(A) = C(B) is to show that i) Az = By € C(B) and ii)
By =Azxz c C(A).

The null space of A = N(A) = {x : Ax = 0} = kernel of A. The subspace

L ={y e R*:y L V}is the orthogonal complement of V.

N(AT) = [C(A)]*, so N(A) = [C(AT)]*.

A generalized inverse of an m X n matrix A is any n X m matrix A~ satisfying
AA A = A. Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A" exists, then A~ = A™!
is unique. Notation: G := A~ means G is a generalized inverse of A.

Let V be a subspace of R¥. Then every y € R¥ can be expressed uniquely as y = w+z
where w € V and z € V1.

Let X = [v1 v2 ... vp] be n X p, and let V = C'(X) = span(vy, ...,v,). Then the n xn
matrix Py = P x is a projection matrix on C(X) if Px y = w V y € R". (Here
Yy =w+ 2z =wy + 2y, so w depends on y.)

Projection Matrix Theorem: a) P x is unique.

b) Px = X(X"X) X" where (X" X )~ is any generalized inverse of X" X.

c) A is a projection matrix on C(A) iff A is symmetric and idempotent. Hence P x is
a projection matrix on C(P x ) = C(X).

d) I,, — P x is the projection matrix on [C'(X)]*.

e) A Px iffi) y € C(X) implies Ay = y and ii) y L C'(X) implies Ay = 0.
f) Px X = X, and Px W = W if each column of W € C(X).

g) Pxv; =v;.

h) If C(Xg) is a subspace of C(X), then PxPx =Px Px =Px .

i) rank(P x) = tr(P x ) = rank(X).

Note that P is a projection matrix iff P is symmetric and idempotent. Partition X
as X = [X1 X, let P be the projection matrix for C(X) and let Py be the projection
matrix for C(X;). Since C(P;) =C(X;) CC(X), PP, = P,. Hence P,P = (PP,) =
P =P,

la): Given small X, be able to find the projection matrix P for C'(X).

1b): Given small X, be able to find rank(X), a basis for C'(X), and [C(X)]* =
nullspace of X7.

1c): Be able to show that G := A™.

2) Quadratic Forms Y'AY and terms like AY:

The matrix A in a quadratic form 7 Az is symmetric. A is positive definite
(A>0)ifx’ Az >0V x #0. A is positive semidefinite (A > 0) if z7 Az >0V x.

Let A be symmetric. If A > 0 then the eigenvalues of A are real and nonnegative.
fA>0,let Ay >N >---> A\, >0.If A >0, then A, > 0.

Theorem 2.5 (Seber and Lee Th. 1.5) expected value of a quadratic form:
Let X be a random vector with E(X) = p and Cov(X) = X. Then

E(XTAX)=tr(AX) + [E(X)|TAE(X) = tr(AZ) + u" Ap.



Theorems 2.6 and 2.7: If AY 1L BY, then f(AY) 1L g(BY) where f and g are
functions (such that f(AY) only depends on A and AY and g(BY) only depends on
B and BY). Note that Y'AY = Y'A'A”AY = f(AY) (for a quadratic form A is
symmetric), Y'(I — P)Y = ||[(I — P)Y|]?, and Y'PY = ||PY||? where the squared
Euclidean norm ||Z|?* = Z'Z.

Theorem 2.8. Let Y ~ N,,(u,X). a) Let u = AY and w = BY. Then AY 1L BY
iff Cov(u,w) = AXB” = 0iff BEA” = 0. Note that if & = ¢°I,,, then AY 1 BY if
AB" =0if BA" =0.

b) If A is a symmetric n X n matrix, and B is an m X n matix, then YTAY L BY
iff AYB” =0iff BEA =0.

Craig’s Theorem: Let Y ~ N, (u,X).

a) If ¥ >0, then YYAY 1L Y'BY iff AXB = 0iff BYA = 0.

b) If £ >0, then YAY L Y?BY if AYB =0 (or if BLA = 0).

¢) If ¥ >0, then YTAY L YT BY iff
(x) SAXYBY = 0,XAYXBu =0,XBXAu =0, and u” AXBpu = 0.

Note that if AXB = 0, then (x) holds.

Theorem 2.13. If Y ~ N, (, ¥) where ¥ > 0, then YZAY ~ y?(rank(A), u" Ap/2)
iff AX is idempotent.

Remark 1: If the theorem is for Y ~ N,(u,I) and Z ~ N, (E(Z),c*I), then use
Y = ZJo ~ Ny(p = E(Z) /o, 1)

Theorem 2.14. Let A = AT be symmetric.

a) If Y ~ N,(0, %) where ¥ is a projection matrix, then Y'Y ~ x?(rank(X)) where
(3) = tr(%).

b)IfY ~ N,(0,I),then YTAY ~ y2iff A isidempotent with rank(A) = tr(A) = r.
c) Let Y ~ N,(0,0%I). Then

rank

YTAY

e X2 or YTAY ~ 0% 2

iff A is idempotent of rank r.
d) If Y ~ N,(0,%) where ¥ > 0, then Y?AY ~ x? iff AX is idempotent with
rank(A) = r = rank(AX).

Y'Y T
e) If Y ~ N,(0,0°T) then —— ~ X2 (n, i “) .
o
f)

202
IfY ~ N,(u, I) then YTAY ~ \*(r, " Ap/2) iff A isidempotent with rank(A) =
tr(A) =
g) f'Y ~ N,(u,0%I) then

rank(A) =tr(A) =r.
3) MLE: The following problem is typical. It is assumed than ¢ > 0 and 3 € RP?.
Suppose Y; = I8 + ¢ with Q(B) > 0. Let ¢, be a constant that does not depend
on 3 or o2. Suppose the likelihood function is

YTAY

202

TA
~ x> (r, L “) iff A is idempotent with

LB = o (509))



a) Suppose that BQ minimizes Q(3). Show that BQ is the MLE of 3.
b) Then find the MLE 62 of o2. A
Solution: a) For fixed o > 0, L(8, 0*) is maximized by minimizing Q(8) > 0. So 3

maximizes L(3, %) regardless of the value of o2 > 0. So BQ is the MLE.
b) Let Q = Q(BQ) Then the MLE 62 is found by maximizing the profile likelihood,
P 1 —1 1 —1
2 2
Ly,(0%) = L(Bg,0") = cn o OXP (27‘2@). Let 7 = 02. The L,(7) = ¢, —a7 OXP (?Q)’
and the log profile likelihood log L, (7) = d — glog(f) — % Thus

dlogLy(t) —-n  Q sa

= — =0
dr 27 + 272
or —n7 +Q =0 or 7 = 6% = Q/n, unique. Then
d*> logL,(t) n 20Q n  2nT  -n

dr? 2r2 273|272 273 272

which proves that 62 is the MLE of o2,

Note: A negative second derivative shows that 62 is a local max. The result that 62
was the unique solution to setting the first derivative of the profile likelihood equal to
zero makes 62 the global max.

Common errors: Students use Q(3) instead of Q(B) in the profile likelihood. Students
forget to write the word “unique.”

Variant: Q(8) = |Y — XB||*> = (Y — XB8)T(Y — X3) is the least squares criterion.
Recognize that Q(3) is minimized by B = BOLS, and proceed as in the above problem.

Note: If the e; are iid N(0,0%) and least squares is used, then the MLE of 3 is the
least squares estimator 8 = (X7 X)"'X”Y and the MLE of o2 is

- 1
603 =" LPrsE= -3

4) LS Estimators for p < 2:

Given a least squares model with p < 2, derive or find the least squares estimator B

Tip: If the LS model is Y; = &3 + ¢; for i = 1,...,n, then the LS criterion is
QB) =X (Yi—xB)> =" 1(B).

To derive the LS estimator, let Q(01, 2) = > .1, (Yi — B1 — B2x;)? be the residual sum
of squares where (3; vary on R. Take the partial derivatives, set them to 0, and solve
for the least squares estimators. If p = 2, we will assume 2nd derivatives do not need
to be taken. If p = 1, show the solution is unique and show that the second derivative
evaluated at B is positive. The [3; could be replaced by other symbols such as 7;.

Location model: Y; = +¢; or Y = 15 + e. The parameter § could be replaced
with g or 6. The LS criterion Q(8) =Y i, (Y; — 8)?, and (3 =Y, the sample mean.

dQ(5) -
Proof : a5 = -2 ;(Y; - f).



Settlng the derivative equal to 0 and calling the unique solution ﬁ gives > | Y; = nﬁ or
=Y. The second derivative
’Q(3)
ds?

=2n >0,

hence 3 is the global minimizer.
Simple linear regression (SLR): Y; = 81 + x;0; + ¢; or Y = X3 + e where

X =1 z]and B8 = (B B2)T. The LS Crlterlon Q(Br, B2) = > (Yi — b1 — x;02)*.
The least squares (OLS) line is Y = 31 + (52X where the slope

T = D)6 =F) _ (=T XFY

S S NG A GERAD SO0 '2

with

and the intercept Bl =a=Y — BQX.
By the chain rule,

0Q
— =2 Y, — X
a5, ~ 22 i XD
and 520
— =2n.
.
Similarly,
oQ =
— =—2) Xi(Yi— (01— (X,
o5 ~ 22Nl Pi- X
and )
0°Q .
—=2) X
o

Setting the first partial derivatives to zero and calling the solutions B and (35 shows
that the OLS estimators 3; and 3 satisfy the normal equations:

ZYi = 7131 -l—ﬁAzZXi and
i=1 i=1

ZXz’Yi =5 ZXi +322Xi2-
=1 =1 =1

The first equation gives Bl =Y — 327 )
There are several equivalent formulas for the slope ;.

Z?:1(Xi - Y)(Yz — ?) _ Z?:l XiYi — %(Z?:l Xi)(zzlﬂ Y;)
Z?:1(Xi - X)2 Z?:l Xi2 - %(Z?:l Xi)2

32532



ST -X)Y, S XY, -nX Y ,
= n =~ = n — = pSy/Sx.
Zi:l(Xi - X)? Zi:l Xi2 —n(X)?

Here the sample correlation p = 6(X,Y) = corr(X,Y) =

Y i (X = X)(Vi - Y) Y (Xi = X)(Vi - Y)

(= Dsxsy S - X, (G- V)2

where the sample standard deviation

S -

i=1

Sw =
n—1

for W = X, Y. Notice that the term n — 1 that occurs in the denominator of p, s?., and
s can be replaced by n as long as n is used in all 3 quantities.

SLR through the origin: Y; = 2;6+¢; or Y = xf + e. The LS criterion
Q(A) =2 (Vi —xif8)% and B =370 ;i) 3oL, of.

Known intercept: Y; = a + x;0 + e; where the intercept a is known.
QB) =2, (Yi —a—z:8)%

Known slope: Y; = 3+ x;b + e; where the slope b is known.
Q(B) =1, (Yi — 8 —x;b)% Here, § may be replaced by a.

5) WLS:

For the WLS model Y|z = £’ 3 + ¢ where the ¢; are independent wtih E(e;) = 0 and
V(e;) =02 Hence Y = Y|X = X3+ e where E(e) = 0 and Cov(e) = diag(c?).

An alternative model is Y|zT 3 = x? 3+u where the u; are independent with F(u;) =
0 and V(u;) = 72. Hence Y = Y|XB = X3 + u where F(u) = 0 and Cov(u) =
diag(?).

6) Non-full rank linear models:

The nonfull rank linear model is Y = X3 + e where X has rank » < p <n, and
X is an n X p matrix.

Theorem 3.1. i) P = X(X?X)~ X7 is the unique projection matrix on C'(X) and
does not depend on the generalized inverse (X7 X)~.

i) 8= (XTX)"X"Y does depend on (X7 X)~ and is not unique.

i)Y =XB=PY,r=Y -Y =Y — X3 = (I —P)Y and RSS = r"r are
unique and so do not depend on (X7 X)~.

iv) B is a solution to the normal equations: XTXB =XTy.

v) Rank(P) = r and rank(I — P)=n —r.

RSS  rlr

vi) If Cov(Y) = Cov(e) = %I, then MSFE = = is an unbiased estimator
n—r n-—r

of o2.
vii) Let the columns of X; form a basis for C'(X). For example, take r linearly
independent columns of X to form X;. Then P = X (X1 X,)"'X7.

7) Estimability and the Gauss Markov Theorem:



Let @ and b be constant vectors. Then a’3 is estimable if there exists a linear
unbiased estimator b'Y so E(b’Y) = a”3. Also, a”B is estimable iff a” = b X iff
a=X"biffac C(X").

The linear estimator a’Y of ¢’ is the best linear unbiased estimator (BLUE) of
c’0 if E(a”Y) = €70, and if for any other unbiased linear estimator b’Y of ¢’#,
V(a"Y) < V(b"Y). Note that E(b"Y") = c’0.

The next theorem shows that the least squares estimator of an estimable function
a’Bis aTB = b X3 = b" PY. Note that b"Y is also an unbiased estimator of a’3
since E('Y) = b' X3 = a” 3.

Theorem 3.2 (see Seber and Lee Th 3.2) Let Y = X3 + e where where X has
rank r < p <n, E(e) =0, and Cov(e) = o*I.

a) The quantity a’8 is estimable iff a” = b" X iff a = X7b (for some constant
vector b) iff a € C(X7T).

b) Let 0 = XB and @ = X 3. Suppose there exists a constant vector ¢ such that
E(c"@) = ¢"0. Then among the class of linear unbiased estimators of €78, the least
squares estimator ¢’ is the unique BLUE.

c) Gauss Markov Theorem: If a3 is estimable and a least squares estimator B
is any solution to the normal equations X” X3 = X”Y, then a”f3 is the unique BLUE
of a’ 3.

Proof: a) If a”3 is estimable, then a”’3 = E(b'Y) = b" X3 for all B € R?. Thus
a” = b'X or a = XTb. Hence a”B is estimable iff a” = b’ X iff a = X'b iff
acOXh.

b) Since 8 = X 3 = PY, it follows that E(c78) = E(c"PY) = ¢c"PX3 = " X3 =
c’0. Thus ¢’0 = " PY = (P¢)’Y is a linear unbiased estimator of ¢76. Let d”Y be
any other linear unbiased estimator of ¢”0. Hence E(d"Y) = d'0 = 7 for all 8 ¢
C(X). So (c—d)T@ =0 for all @ € C(X). Hence (c—d) € [C(X)]* and P(c—d) =0,
or Pc = Pd. Thus V(c'0) = V(c"PY) = V(d'PY) = ¢2d'PTPd = o2d" Pd.
Then V(d'Y) — V(cT0) = V(d'Y) — V(d'PY) = ¢*[d'd — d"Pd] = o2d" (I, —
P)d = 0%d" (I, — P)'(I, — P)d = g"g > 0 with equality iff g = (I,, — P)d = 0, or
d = Pd = Pec. Thus ¢76 has minimum variance and is unique.

¢) Since a” @ is estimable, a3 = b" X 3. Then a3 = b"0 is the unique BLUE of
a’B=b"0 by b).

Gauss Markov Theorem-Full Rank Case: Let Y = X3 + e where X is full
rank, E(e) = 0, and Cov(e) = 0?I. Then a3 is the unique BLUE of a”f for every
constant p X 1 vector a.

Notation: 3 is “estimable” by B for the full rank model, but not for the non-full rank
model.

8) Hypothesis Testing:

Theorem 2.16. Let § = Xn € C(X) where Y; = z7'n+7;(n) and the residual r;(n)
depends on m. The least squares estimator B is the value of 1n € RP that minimizes
the least squares criterion
> ri(m) = [IY — Xn|*.

LS CLT (Least Squares Central Limit Theorem): Consider the MLR model
Y; = ! B+e; and assume that the zero mean errors are iid with E(e;) = 0 and VAR(e;) =



o?. Also assume that max;(hy, ..., h,) — 0 in probability as n — oo and
xX'xX
n

—w!

as n — o0o. Then the least squares (OLS) estimator B satisfies

V(B — B8) 2 N0, W). (1)

Partial F Test Theorem: Suppose Hy : L3 = 0 is true for the partial F' test where
L is a full rank 7 x p matrix. Under the OLS full rank model, a)
B 1
- rMSE
b) If e ~ N, (0,0%I), then Fr ~ F,_,.
c) For a large class of zero mean error distributions rFr 5 X2
d) The partial F' test that rejects Hy : L3 = 0 if Fr > F,,_,(1 —¢) is a large sample
right tail ¢ test for the OLS model for a large class of zero mean error distributions.
Assume Hy is true. By the OLS CLT, v/n(LB — L3) = v/nL3 2 N,(0,0> LWL").
Thus (LB (e2LWLT)"\/nLB 2 y2. Let 6% = MSE and W = n(X7X)~'. Then

(LB [L(XTX)" L] H(LP).

Fg

(LB [MSE In(X"X) 'L"] 'LB = rFr 2 2.

Partial F test: Let the full model Y = X3 + e with a constant 3; in the model: 1
is the 1st column of X. Let the reduced model Y = X rB3; + e also have a constant in
the model where the columns of X i are a subset of k of the columns of X. Let Pg be
the projection matrix on C(Xg) so PPr = Pr. Then Fp = SSEﬁij)SEfg)E(F)
r = dfg — dfr = p — k = number of predictors in the full model but not in the reduced
model. MSE = MSE(F) = SSE(F)/(n —p) where SSE = SSE(F) =Y (I — P)Y.
SSE(R) — SSE(F) =Y (P — PR)Y where SSE(R) =Y' (I — PR)Y.

Now assume Y ~ N, (X 3,0%I), and when Hy is true, Y ~ N, (X B, cI). Since
(I — P)(P— Pgr) =0, [SSE(R) — SSE(F)] L MSE(F) by Craig’s Theorem. When
Hy is true, p = XgByr and u’ A = 0 where A = (I — P) or A = (P — Pg).
Hence the noncentrality parameter is 0, and by Theorem 2.14 g), SSE ~ azxi_p and
SSE(R) — SSE(F) ~ 0°x;_,, since rank(P — Pg) = tr(P — Pg) = p— k. Hence under
H0> Fr~ Fp—k,n—p-

An ANOVA table for the partial F test is shown below, where k = pg is the number
of predictors used by the reduced model, and » = p — pg = p — k is the number of
predictors in the full model that are not in the reduced model.

where

Source df SS MS F
Reduced n—pr SSE(R)=Y'(I - PRp)Y MSER) Fr= 7SS€$Q§SE =

Y'(P - PR)Y/r

Full — SSE=Y"(I - P)YY MSE
e U-P) YU —P)Y [(n—p)




The ANOVA F test is the special case where k = 1, Xz = 1, Pr = P, and
SSE(R) — SSE(F)=SSTO — SSE = SSR.

ANOVA table: Y = X3 + e with a constant (3; in the model: 1 is the 1st column
of X. MS =SS/df.

n

SSTO = YT(I - %HT)Y =Y (Y, -Y)’, SSE = Y! SSR = 3" (Vi = Y)?,

=1 z?
=1
SSTO =SSR+ SSE. SSTO is the SSE (residual sum of squares) for the location model
Y = 13,+e that contains a constant but no nontrivial predictors. The location model has
1
projection matrix Py = 1(1T1)_11T = —117. Hence PP; = P; and P1 = P11 =1.
n

Source df SS MS F p-value
I
Regression p-1 SSR=Y'(P - -11T)Y MSR F,= MSR/MSE for Hy:
n
Residual n-p SSE=Y'(I-P)Y MSE fBy=-=LF,=0

The matrices in the quadratic forms for SSR and SSE are symmetric and idempotent
and their product is 0. Hence if e ~ N,,(0,0%I)so Y ~ N, (X3,0°I), then SSE IL SSR
by Craig’s Theorem. If Hy is true under normality, then Y ~ N,(15;,0%I), and by
Theorem 2.14 g), SSE ~ 0*x;_, and SSR ~ o*x;_, since rank(I — P) = tr(I — P) =
n—pand rank(P—211") = ¢r(P—2111") = p—1. Hence under normality, Fy ~ F,_1 5.

9) Expected Value, Covariance Matrix and Large Sample Theory for least
squares quantities:

For the full rank model, Y = X3 + e where E(Y) = X3, E(e) = 0 and Cov(e) =
Cov(Y) = oI, E(AY) = AX3 and Cov(AY) = 02 AAT.

A= (XTX) 1XT isused for 3= AY. A=I—P =1I— H is used for the residual
vector Y — Y = AY. A= P = H is used for the vector of fitted values Y.

For the full rank Gaussian linear model, Y ~ N,,(X3,02I), and if A is k x n with
rank k, then AY ~ Ny(AXB,0?AA").

If i(B — B) 2 N,(0,02 W), and A is k x p with rank k, then /n(AB — AB) 2
Ni(0,02 AW AT).

The non-full rank model Y = X3 + e also has E(Y) = X3, E(e) = 0, Cov(e) =
Cov(Y) = 0?I, E(AY) = AX3 and Cov(AY) = 02 AAT.

For the non-full rank model A = (X7X) X7 is used for 3 = AY and P =
X(X'x)-x".

You should be able to handle the linear model written in different ways. The residual
bootstrap model Y* = X3 + e* with E(e*) = 0 and Cov(e*) = Cov(Y™) = 6*I. The
parametric bootstrap model Y* = X3 + e* with Y* ~ N, (X3, MSFE I). In numerical
linear algebra, the least squares solution to “Ax = b” is of interest where the problem is
actually the multiple linear regression model b = Ax + € where A has full rank p, and
we will assume that F(e) = 0, and Cov(€) = o°I,,.
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