Types of Problems-Review for Some of the QUAL problems

Notation: Let $\boldsymbol{A}^{T}=\boldsymbol{A}^{\prime}$ be the transpose of \boldsymbol{A}.
0) Covariance and Expected Value $=$ Mean, and the Multivariate Normal (MVN) Distribution:

Notation: Unless told otherwise, assume expectations exist and that conformable matrices and vectors are used.

The population mean of a random $n \times 1$ vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ is $E(\boldsymbol{x})=\boldsymbol{\mu}=$ $\left(E\left(x_{1}\right), \ldots, E\left(x_{n}\right)\right)^{T}$ and the $n \times n$ population covariance matrix $\operatorname{Cov}(\boldsymbol{x})=\boldsymbol{\Sigma}_{\boldsymbol{x}}=E(\boldsymbol{x}-E(\boldsymbol{x}))(\boldsymbol{x}-E(\boldsymbol{x}))^{T}=\left(\sigma_{i, j}\right)$ where $\operatorname{Cov}\left(x_{i}, x_{j}\right)=\sigma_{i, j}$. The population covariance matrix of \boldsymbol{x} with \boldsymbol{y} is

$$
\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{\Sigma}_{\boldsymbol{x}, \boldsymbol{y}}=E\left[(\boldsymbol{x}-E(\boldsymbol{x}))(\boldsymbol{y}-E(\boldsymbol{y}))^{T}\right]
$$

If \boldsymbol{X} and \boldsymbol{Y} are $n \times 1$ random vectors, \boldsymbol{a} a conformable constant vector, and \boldsymbol{A} and \boldsymbol{B} are conformable constant matrices, then

$$
E(\boldsymbol{X}+\boldsymbol{Y})=E(\boldsymbol{X})+E(\boldsymbol{Y}), E(\boldsymbol{a}+\boldsymbol{Y})=\boldsymbol{a}+E(\boldsymbol{Y}), \& E(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B})=\boldsymbol{A} E(\boldsymbol{X}) \boldsymbol{B}
$$

Also

$$
\operatorname{Cov}(\boldsymbol{a}+\boldsymbol{A} \boldsymbol{X})=\operatorname{Cov}(\boldsymbol{A} \boldsymbol{X})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{A}^{T}
$$

Note that $E(\boldsymbol{A} \boldsymbol{Y})=\boldsymbol{A} E(\boldsymbol{Y})$ and $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{Y})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{Y}) \boldsymbol{A}^{T}$.
If $\boldsymbol{X}(m \times 1)$ and $\boldsymbol{Y}(n \times 1)$ are random vectors, and \boldsymbol{A} and \boldsymbol{B} are conformable constant matrices, then

$$
\operatorname{Cov}(\boldsymbol{A} \boldsymbol{X}, \boldsymbol{B} \boldsymbol{Y})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{B}^{T}
$$

If $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $E(\boldsymbol{X})=\boldsymbol{\mu}, \operatorname{Cov}(\boldsymbol{X})=\boldsymbol{\Sigma}$, and $m_{\boldsymbol{X}}(\boldsymbol{t})=\exp \left(\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{\Sigma} \boldsymbol{t}\right)$.
If $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and if \boldsymbol{A} is a $q \times p$ matrix, then $\boldsymbol{A} \boldsymbol{X} \sim N_{q}\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$. If \boldsymbol{a} $(p \times 1)$ and $\boldsymbol{b}(q \times 1)$ are constant vectors, then $\boldsymbol{X}+\boldsymbol{a} \sim N_{p}(\boldsymbol{\mu}+\boldsymbol{a}, \boldsymbol{\Sigma})$ and $\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b} \sim$ $N_{q}\left(\boldsymbol{A} \boldsymbol{\mu}+\boldsymbol{b}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$.

$$
\text { Let } \boldsymbol{X}=\binom{\boldsymbol{X}_{1}}{\boldsymbol{X}_{2}}, \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}} \text {, and } \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right) \text {. }
$$

The conditional distribution of a MVN is MVN. If $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the conditional distribution of \boldsymbol{X}_{1} given that $\boldsymbol{X}_{2}=\boldsymbol{x}_{2}$ is multivariate normal with mean $\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right)$ and covariance matrix $\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$. That is,

$$
\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2} \sim N_{q}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

Notation:

$$
\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2} \sim N_{q}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{X}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)
$$

1) Projection Matrices, Generalized Inverses, and the Column Space $C(\boldsymbol{X})$:

Let $\boldsymbol{A}=\left[\begin{array}{llll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{m}\end{array}\right]$ be an $n \times m$ matrix. The space spanned by the columns of \boldsymbol{A} $=$ column space of $\boldsymbol{A}=C(\boldsymbol{A})$.

Let $\boldsymbol{X}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots & \boldsymbol{v}_{p}\end{array}\right]$ be an $n \times p$ matrix. Then $C(\boldsymbol{X})=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: \boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}\right.$ for some $\left.\boldsymbol{\beta} \in \mathbb{R}^{p}\right\}$.

One way to show $C(\boldsymbol{A})=C(\boldsymbol{B})$ is to show that i) $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{B} \boldsymbol{y} \in C(\boldsymbol{B})$ and ii) $\boldsymbol{B} \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in C(\boldsymbol{A})$.

The null space of $\boldsymbol{A}=N(\boldsymbol{A})=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}=$ kernel of \boldsymbol{A}. The subspace $V^{\perp}=\left\{\boldsymbol{y} \in \mathbb{R}^{k}: \boldsymbol{y} \perp V\right\}$ is the orthogonal complement of V.
$N\left(\boldsymbol{A}^{T}\right)=[C(\boldsymbol{A})]^{\perp}$, so $N(\boldsymbol{A})=\left[C\left(\boldsymbol{A}^{T}\right)\right]^{\perp}$.
A generalized inverse of an $m \times n$ matrix \boldsymbol{A} is any $n \times m$ matrix \boldsymbol{A}^{-}satisfying $\boldsymbol{A} \boldsymbol{A}^{-} \boldsymbol{A}=\boldsymbol{A}$. Other names are conditional inverse, pseudo inverse, g-inverse, and pinverse. Usually a generalized inverse is not unique, but if \boldsymbol{A}^{-1} exists, then $\boldsymbol{A}^{-}=\boldsymbol{A}^{-1}$ is unique. Notation: $\boldsymbol{G}:=\boldsymbol{A}^{-}$means \boldsymbol{G} is a generalized inverse of \boldsymbol{A}.

Let V be a subspace of \mathbb{R}^{k}. Then every $\boldsymbol{y} \in \mathbb{R}^{k}$ can be expressed uniquely as $\boldsymbol{y}=\boldsymbol{w}+\boldsymbol{z}$ where $\boldsymbol{w} \in V$ and $\boldsymbol{z} \in V^{\perp}$.

Let $\boldsymbol{X}=\left[\boldsymbol{v}_{1} \boldsymbol{v}_{2} \ldots \boldsymbol{v}_{p}\right]$ be $n \times p$, and let $V=C(\boldsymbol{X})=\operatorname{span}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right)$. Then the $n \times n$ matrix $\boldsymbol{P}_{V}=\boldsymbol{P}_{\boldsymbol{X}}$ is a projection matrix on $C(\boldsymbol{X})$ if $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y}=\boldsymbol{w} \forall \boldsymbol{y} \in \mathbb{R}^{n}$. (Here $\boldsymbol{y}=\boldsymbol{w}+\boldsymbol{z}=\boldsymbol{w}_{\boldsymbol{y}}+\boldsymbol{z} \boldsymbol{y}$, so \boldsymbol{w} depends on \boldsymbol{y}.)

Projection Matrix Theorem: a) $\boldsymbol{P}_{\boldsymbol{X}}$ is unique.
b) $\boldsymbol{P}_{\boldsymbol{X}}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}$ where $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$is any generalized inverse of $\boldsymbol{X}^{T} \boldsymbol{X}$.
c) \boldsymbol{A} is a projection matrix on $C(\boldsymbol{A})$ iff \boldsymbol{A} is symmetric and idempotent. Hence $\boldsymbol{P}_{\boldsymbol{X}}$ is a projection matrix on $C\left(\boldsymbol{P}_{\boldsymbol{X}}\right)=C(\boldsymbol{X})$.
d) $\boldsymbol{I}_{n}-\boldsymbol{P}_{\boldsymbol{X}}$ is the projection matrix on $[C(\boldsymbol{X})]^{\perp}$.
e) $\boldsymbol{A}=\boldsymbol{P}_{\boldsymbol{X}}$ iff i) $\boldsymbol{y} \in C(\boldsymbol{X})$ implies $A \boldsymbol{y}=\boldsymbol{y}$ and ii) $\boldsymbol{y} \perp C(\boldsymbol{X})$ implies $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$.
f) $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{X}=\boldsymbol{X}$, and $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{W}=\boldsymbol{W}$ if each column of $\boldsymbol{W} \in C(\boldsymbol{X})$.
g) $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{v}_{i}=\boldsymbol{v}_{i}$.
h) If $C\left(\boldsymbol{X}_{R}\right)$ is a subspace of $C(\boldsymbol{X})$, then $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{P}_{\boldsymbol{X}_{R}}=\boldsymbol{P}_{\boldsymbol{X}_{R}} \boldsymbol{P}_{\boldsymbol{X}}=\boldsymbol{P}_{\boldsymbol{X}_{R}}$.
i) $\operatorname{rank}\left(\boldsymbol{P}_{\boldsymbol{X}}\right)=\operatorname{tr}\left(\boldsymbol{P}_{\boldsymbol{X}}\right)=\operatorname{rank}(\boldsymbol{X})$.

Note that \boldsymbol{P} is a projection matrix iff \boldsymbol{P} is symmetric and idempotent. Partition \boldsymbol{X} as $\boldsymbol{X}=\left[\begin{array}{ll}\boldsymbol{X}_{1} & \boldsymbol{X}_{2}\end{array}\right]$, let \boldsymbol{P} be the projection matrix for $\mathcal{C}(\boldsymbol{X})$ and let \boldsymbol{P}_{1} be the projection matrix for $\mathcal{C}\left(\boldsymbol{X}_{1}\right)$. Since $\mathcal{C}\left(\boldsymbol{P}_{1}\right)=\mathcal{C}\left(\boldsymbol{X}_{1}\right) \subseteq \mathcal{C}(\boldsymbol{X}), \boldsymbol{P} \boldsymbol{P}_{1}=\boldsymbol{P}_{1}$. Hence $\boldsymbol{P}_{1} \boldsymbol{P}=\left(\boldsymbol{P} \boldsymbol{P}_{1}\right)^{\prime}=$ $\boldsymbol{P}_{1}^{\prime}=\boldsymbol{P}_{1}$.

1a): Given small \boldsymbol{X}, be able to find the projection matrix \boldsymbol{P} for $C(\boldsymbol{X})$.
1b): Given small \boldsymbol{X}, be able to find $\operatorname{rank}(\boldsymbol{X})$, a basis for $C(\boldsymbol{X})$, and $[\mathcal{C}(\boldsymbol{X})]^{\perp}=$ nullspace of \boldsymbol{X}^{T}.

1c): Be able to show that $\boldsymbol{G}:=\boldsymbol{A}^{-}$.
2) Quadratic Forms $\boldsymbol{Y}^{\prime} \boldsymbol{A} \boldsymbol{Y}$ and terms like $\boldsymbol{A} \boldsymbol{Y}$:

The matrix \boldsymbol{A} in a quadratic form $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ is symmetric. \boldsymbol{A} is positive definite $(\boldsymbol{A}>0)$ if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0 \forall \boldsymbol{x} \neq \mathbf{0}$. \boldsymbol{A} is positive semidefinite $(\boldsymbol{A} \geq 0)$ if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0 \forall \boldsymbol{x}$.

Let \boldsymbol{A} be symmetric. If $\boldsymbol{A} \geq 0$ then the eigenvalues of \boldsymbol{A} are real and nonnegative. If $\boldsymbol{A} \geq 0$, let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. If $\boldsymbol{A}>0$, then $\lambda_{n}>0$.

Theorem 2.5 (Seber and Lee Th. 1.5) expected value of a quadratic form: Let \boldsymbol{X} be a random vector with $E(\boldsymbol{X})=\boldsymbol{\mu}$ and $\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{\Sigma}$. Then

$$
E\left(\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+[E(\boldsymbol{X})]^{T} \boldsymbol{A} E(\boldsymbol{X})=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu} .
$$

Theorems 2.6 and 2.7: If $\boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{B} \boldsymbol{Y}$, then $f(\boldsymbol{A} \boldsymbol{Y}) \Perp g(\boldsymbol{B} \boldsymbol{Y})$ where f and g are functions (such that $f(\boldsymbol{A} \boldsymbol{Y})$ only depends on \boldsymbol{A} and $\boldsymbol{A} \boldsymbol{Y}$ and $g(\boldsymbol{B} \boldsymbol{Y})$ only depends on \boldsymbol{B} and $\boldsymbol{B} \boldsymbol{Y}$). Note that $\boldsymbol{Y}^{\prime} \boldsymbol{A} \boldsymbol{Y}=\boldsymbol{Y}^{\prime} \boldsymbol{A}^{\prime} \boldsymbol{A}^{-} \boldsymbol{A} \boldsymbol{Y}=f(\boldsymbol{A} \boldsymbol{Y})$ (for a quadratic form \boldsymbol{A} is symmetric), $\boldsymbol{Y}^{\prime}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}=\|(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}\|^{2}$, and $\boldsymbol{Y}^{\prime} \boldsymbol{P} \boldsymbol{Y}=\|\boldsymbol{P} \boldsymbol{Y}\|^{2}$ where the squared Euclidean norm $\|\boldsymbol{Z}\|^{2}=\boldsymbol{Z}^{\prime} \boldsymbol{Z}$.

Theorem 2.8. Let $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. a) Let $\boldsymbol{u}=\boldsymbol{A} \boldsymbol{Y}$ and $\boldsymbol{w}=\boldsymbol{B} \boldsymbol{Y}$. Then $\boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{B} \boldsymbol{Y}$ iff $\operatorname{Cov}(\boldsymbol{u}, \boldsymbol{w})=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}^{T}=\mathbf{0}$ iff $\boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{A}^{T}=\mathbf{0}$. Note that if $\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{I}_{n}$, then $\boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{B} \boldsymbol{Y}$ if $\boldsymbol{A} \boldsymbol{B}^{T}=\mathbf{0}$ if $\boldsymbol{B} \boldsymbol{A}^{T}=\mathbf{0}$.
b) If \boldsymbol{A} is a symmetric $n \times n$ matrix, and \boldsymbol{B} is an $m \times n$ matix, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{B} \boldsymbol{Y}$ iff $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}^{T}=\mathbf{0}$ iff $\boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{A}=\mathbf{0}$.

Craig's Theorem: Let $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
a) If $\boldsymbol{\Sigma}>0$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{Y}^{T} \boldsymbol{B} \boldsymbol{Y}$ iff $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}=\mathbf{0}$ iff $\boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{A}=\mathbf{0}$.
b) If $\boldsymbol{\Sigma} \geq 0$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{Y}^{T} \boldsymbol{B} \boldsymbol{Y}$ if $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}=\mathbf{0}$ (or if $\boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{A}=\mathbf{0}$).
c) If $\boldsymbol{\Sigma} \geq 0$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \Perp \boldsymbol{Y}^{T} \boldsymbol{B} \boldsymbol{Y}$ iff
(*) $\boldsymbol{\Sigma} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{\Sigma}=\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{\mu}=\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{A} \boldsymbol{\mu}=\mathbf{0}$, and $\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{\mu}=0$.
Note that if $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}=\mathbf{0}$, then $(*)$ holds.
Theorem 2.13. If $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}>0$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \sim \chi^{2}\left(\operatorname{rank}(\boldsymbol{A}), \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\mu} / 2\right)$ iff $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent.

Remark 1: If the theorem is for $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{I})$ and $\boldsymbol{Z} \sim N_{n}\left(E(\boldsymbol{Z}), \sigma^{2} \boldsymbol{I}\right)$, then use $\boldsymbol{Y}=\boldsymbol{Z} / \sigma \sim N_{n}(\boldsymbol{\mu}=E(\boldsymbol{Z}) / \sigma, \boldsymbol{I})$.

Theorem 2.14. Let $\boldsymbol{A}=\boldsymbol{A}^{T}$ be symmetric.
a) If $\boldsymbol{Y} \sim N_{n}(\mathbf{0}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}$ is a projection matrix, then $\boldsymbol{Y}^{T} \boldsymbol{Y} \sim \chi^{2}(\operatorname{rank}(\boldsymbol{\Sigma}))$ where $\operatorname{rank}(\boldsymbol{\Sigma})=\operatorname{tr}(\boldsymbol{\Sigma})$.
b) If $\boldsymbol{Y} \sim N_{n}(\mathbf{0}, \boldsymbol{I})$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \sim \chi_{r}^{2}$ iff \boldsymbol{A} is idempotent with $\operatorname{rank}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A})=r$.
c) Let $\boldsymbol{Y} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$. Then

$$
\frac{\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y}}{\sigma^{2}} \sim \chi_{r}^{2} \quad \text { or } \quad \boldsymbol{Y}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{Y} \sim \sigma^{2} \chi_{\mathrm{r}}^{2}
$$

iff \boldsymbol{A} is idempotent of rank r.
d) If $\boldsymbol{Y} \sim N_{n}(\mathbf{0}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}>0$, then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \sim \chi_{r}^{2}$ iff $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent with $\operatorname{rank}(\boldsymbol{A})=r=\operatorname{rank}(\boldsymbol{A} \boldsymbol{\Sigma})$.
e) If $\boldsymbol{Y} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$ then $\frac{\boldsymbol{Y}^{T} \boldsymbol{Y}}{\sigma^{2}} \sim \chi^{2}\left(n, \frac{\boldsymbol{\mu}^{T} \boldsymbol{\mu}}{2 \sigma^{2}}\right)$.
f) If $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{I})$ then $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \sim \chi^{2}\left(r, \boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu} / 2\right)$ iff \boldsymbol{A} is idempotent with $\operatorname{rank}(\boldsymbol{A})=$ $\operatorname{tr}(\boldsymbol{A})=r$.
g) If $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}\right)$ then $\frac{\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y}}{\sigma^{2}} \sim \chi^{2}\left(r, \frac{\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu}}{2 \sigma^{2}}\right)$ iff \boldsymbol{A} is idempotent with $\operatorname{rank}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A})=r$.
3) MLE: The following problem is typical. It is assumed than $\sigma>0$ and $\boldsymbol{\beta} \in \mathbb{R}^{p}$.

Suppose $Y_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+\epsilon_{i}$ with $Q(\boldsymbol{\beta}) \geq 0$. Let c_{n} be a constant that does not depend on $\boldsymbol{\beta}$ or σ^{2}. Suppose the likelihood function is

$$
L\left(\boldsymbol{\beta}, \sigma^{2}\right)=c_{n} \frac{1}{\sigma^{n}} \exp \left(\frac{-1}{2 \sigma^{2}} Q(\boldsymbol{\beta})\right) .
$$

a) Suppose that $\hat{\boldsymbol{\beta}}_{Q}$ minimizes $Q(\boldsymbol{\beta})$. Show that $\hat{\boldsymbol{\beta}}_{Q}$ is the MLE of $\boldsymbol{\beta}$.
b) Then find the MLE $\hat{\sigma}^{2}$ of σ^{2}.

Solution: a) For fixed $\sigma>0, L\left(\boldsymbol{\beta}, \sigma^{2}\right)$ is maximized by minimizing $Q(\boldsymbol{\beta}) \geq 0$. So $\hat{\boldsymbol{\beta}}_{Q}$ maximizes $L\left(\boldsymbol{\beta}, \sigma^{2}\right)$ regardless of the value of $\sigma^{2}>0$. So $\hat{\boldsymbol{\beta}}_{Q}$ is the MLE.
b) Let $Q=Q\left(\hat{\boldsymbol{\beta}}_{Q}\right)$. Then the MLE $\hat{\sigma}^{2}$ is found by maximizing the profile likelihood, $L_{p}\left(\sigma^{2}\right)=L\left(\hat{\boldsymbol{\beta}}_{Q}, \sigma^{2}\right)=c_{n} \frac{1}{\sigma^{n}} \exp \left(\frac{-1}{2 \sigma^{2}} Q\right)$. Let $\tau=\sigma^{2}$. The $L_{p}(\tau)=c_{n} \frac{1}{\tau^{n / 2}} \exp \left(\frac{-1}{2 \tau} Q\right)$, and the \log profile likelihood $\log L_{p}(\tau)=d-\frac{n}{2} \log (\tau)-\frac{Q}{2 \tau}$. Thus

$$
\frac{d \log L_{p}(\tau)}{d \tau}=\frac{-n}{2 \tau}+\frac{Q}{2 \tau^{2}} \stackrel{\text { set }}{=} 0
$$

or $-n \tau+Q=0$ or $\hat{\tau}=\hat{\sigma}^{2}=Q / n$, unique. Then

$$
\frac{d^{2} \log L_{p}(\tau)}{d \tau^{2}}=\frac{n}{2 \tau^{2}}-\left.\frac{2 Q}{2 \tau^{3}}\right|_{\hat{\tau}}=\frac{n}{2 \tau^{2}}-\frac{2 n \hat{\tau}}{2 \hat{\tau}^{3}}=\frac{-n}{2 \hat{\tau}^{2}}<0
$$

which proves that $\hat{\sigma}^{2}$ is the MLE of σ^{2}.
Note: A negative second derivative shows that $\hat{\sigma}^{2}$ is a local max. The result that $\hat{\sigma}^{2}$ was the unique solution to setting the first derivative of the profile likelihood equal to zero makes $\hat{\sigma}^{2}$ the global max.

Common errors: Students use $Q(\boldsymbol{\beta})$ instead of $Q(\hat{\boldsymbol{\beta}})$ in the profile likelihood. Students forget to write the word "unique."

Variant: $Q(\boldsymbol{\beta})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})$ is the least squares criterion. Recognize that $Q(\boldsymbol{\beta})$ is minimized by $\hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}_{O L S}$, and proceed as in the above problem.

Note: If the e_{i} are iid $N\left(0, \sigma^{2}\right)$ and least squares is used, then the MLE of $\boldsymbol{\beta}$ is the least squares estimator $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}$ and the MLE of σ^{2} is

$$
\hat{\sigma}_{M}^{2}=\frac{n-p}{n} M S E=\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2}
$$

4) LS Estimators for $p \leq 2$:

Given a least squares model with $p \leq 2$, derive or find the least squares estimator $\hat{\boldsymbol{\beta}}$.
Tip: If the LS model is $Y_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i}$ for $i=1, \ldots, n$, then the LS criterion is $Q(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}=\sum_{i=1}^{n} r_{i}^{2}(\boldsymbol{\beta})$.

To derive the LS estimator, let $Q\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}$ be the residual sum of squares where β_{i} vary on \mathbb{R}. Take the partial derivatives, set them to 0 , and solve for the least squares estimators. If $p=2$, we will assume 2 nd derivatives do not need to be taken. If $p=1$, show the solution is unique and show that the second derivative evaluated at $\hat{\beta}$ is positive. The β_{i} could be replaced by other symbols such as η_{i}.

Location model: $Y_{i}=\beta+e_{i}$ or $\boldsymbol{Y}=\mathbf{1} \beta+\boldsymbol{e}$. The parameter β could be replaced with μ or θ. The LS criterion $Q(\beta)=\sum_{i=1}^{n}\left(Y_{i}-\beta\right)^{2}$, and $\hat{\beta}=\bar{Y}$, the sample mean.

$$
\text { Proof : } \frac{d Q(\beta)}{d \beta}=-2 \sum_{i=1}^{n}\left(Y_{i}-\beta\right)
$$

Setting the derivative equal to 0 and calling the unique solution $\hat{\beta}$ gives $\sum_{i=1}^{n} Y_{i}=n \hat{\beta}$ or $\hat{\beta}=\bar{Y}$. The second derivative

$$
\frac{d^{2} Q(\beta)}{d \beta^{2}}=2 n>0
$$

hence $\hat{\beta}$ is the global minimizer.
Simple linear regression (SLR): $Y_{i}=\beta_{1}+x_{i} \beta_{2}+e_{i}$ or $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where $\boldsymbol{X}=\left[\begin{array}{ll}\mathbf{1} & \boldsymbol{x}\end{array}\right]$ and $\boldsymbol{\beta}=\left(\beta_{1} \beta_{2}\right)^{T}$. The LS criterion $Q\left(\beta_{1}, \beta_{2}\right)=\sum_{i=1}^{n}\left(Y_{i}-\beta_{1}-x_{i} \beta_{2}\right)^{2}$.

The least squares (OLS) line is $\hat{Y}=\hat{\beta}_{1}+\hat{\beta}_{2} X$ where the slope

$$
\hat{\beta}_{2} \equiv \hat{\beta}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}=\sum_{i=1}^{n} k_{i} Y_{i}
$$

with

$$
k_{i}=\frac{X_{i}-\bar{X}}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}=\frac{X_{i}-\bar{X}}{(n-1) S_{X}^{2}}
$$

and the intercept $\hat{\beta}_{1} \equiv \hat{\alpha}=\bar{Y}-\hat{\beta}_{2} \bar{X}$.
By the chain rule,

$$
\frac{\partial Q}{\partial \beta_{1}}=-2 \sum_{i=1}^{n}\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)
$$

and

$$
\frac{\partial^{2} Q}{\partial \beta_{1}^{2}}=2 n
$$

Similarly,

$$
\frac{\partial Q}{\partial \beta_{2}}=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)
$$

and

$$
\frac{\partial^{2} Q}{\partial \beta_{2}^{2}}=2 \sum_{i=1}^{n} X_{i}^{2}
$$

Setting the first partial derivatives to zero and calling the solutions $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ shows that the OLS estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ satisfy the normal equations:

$$
\begin{aligned}
\sum_{i=1}^{n} Y_{i} & =n \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{i=1}^{n} X_{i} \text { and } \\
\sum_{i=1}^{n} X_{i} Y_{i} & =\hat{\beta}_{1} \sum_{i=1}^{n} X_{i}+\hat{\beta}_{2} \sum_{i=1}^{n} X_{i}^{2}
\end{aligned}
$$

The first equation gives $\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}$.
There are several equivalent formulas for the slope $\hat{\beta}_{2}$.

$$
\hat{\beta}_{2} \equiv \hat{\beta}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}}
$$

$$
=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_{i}^{2}-n(\bar{X})^{2}}=\hat{\rho} s_{Y} / s_{X} .
$$

Here the sample correlation $\hat{\rho} \equiv \hat{\rho}(X, Y)=\operatorname{corr}(X, Y)=$

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1) s_{X} s_{Y}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

where the sample standard deviation

$$
s_{W}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(W_{i}-\bar{W}\right)^{2}}
$$

for $W=X, Y$. Notice that the term $n-1$ that occurs in the denominator of $\hat{\rho}, s_{Y}^{2}$, and s_{X}^{2} can be replaced by n as long as n is used in all 3 quantities.

SLR through the origin: $Y_{i}=x_{i} \beta+e_{i}$ or $Y=\boldsymbol{x} \beta+\boldsymbol{e}$. The LS criterion $Q(\beta)=\sum_{i=1}^{n}\left(Y_{i}-x_{i} \beta\right)^{2}$, and $\hat{\beta}=\sum_{i=1}^{n} x_{i} Y_{i} / \sum_{i=1}^{n} x_{i}^{2}$.

Known intercept: $Y_{i}=a+x_{i} \beta+e_{i}$ where the intercept a is known. $Q(\beta)=\sum_{i=1}^{n}\left(Y_{i}-a-x_{i} \beta\right)^{2}$.

Known slope: $Y_{i}=\beta+x_{i} b+e_{i}$ where the slope b is known. $Q(\beta)=\sum_{i=1}^{n}\left(Y_{i}-\beta-x_{i} b\right)^{2}$. Here, β may be replaced by α.
5) WLS:

For the WLS model $Y \mid \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{\beta}+e$ where the e_{i} are independent wtih $E\left(e_{i}\right)=0$ and $V\left(e_{i}\right)=\sigma_{i}^{2}$. Hence $\boldsymbol{Y}=\boldsymbol{Y} \mid \boldsymbol{X}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where $E(\boldsymbol{e})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{e})=\operatorname{diag}\left(\sigma_{i}^{2}\right)$.

An alternative model is $Y \mid \boldsymbol{x}^{T} \boldsymbol{\beta}=\boldsymbol{x}^{T} \boldsymbol{\beta}+\boldsymbol{u}$ where the u_{i} are independent with $E\left(u_{i}\right)=$ 0 and $V\left(u_{i}\right)=\tau_{i}^{2}$. Hence $\boldsymbol{Y}=\boldsymbol{Y} \mid \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{u}$ where $E(\boldsymbol{u})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{u})=$ $\operatorname{diag}\left(\tau_{i}^{2}\right)$.
6) Non-full rank linear models:

The nonfull rank linear model is $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where \boldsymbol{X} has rank $r<p \leq n$, and \boldsymbol{X} is an $n \times p$ matrix.

Theorem 3.1. i) $\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}$ is the unique projection matrix on $C(\boldsymbol{X})$ and does not depend on the generalized inverse $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$.
ii) $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T} \boldsymbol{Y}$ does depend on $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$and is not unique.
iii) $\hat{\boldsymbol{Y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{P} \boldsymbol{Y}, \boldsymbol{r}=\boldsymbol{Y}-\hat{\boldsymbol{Y}}=\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}=(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}$ and $R S S=\boldsymbol{r}^{T} \boldsymbol{r}$ are unique and so do not depend on $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-}$.
iv) $\hat{\boldsymbol{\beta}}$ is a solution to the normal equations: $\boldsymbol{X}^{T} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}^{T} \boldsymbol{Y}$.
v) $\operatorname{Rank}(\boldsymbol{P})=r$ and $\operatorname{rank}(\boldsymbol{I}-\boldsymbol{P})=n-r$.
vi) If $\operatorname{Cov}(\boldsymbol{Y})=\operatorname{Cov}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}$, then $M S E=\frac{R S S}{n-r}=\frac{\boldsymbol{r}^{T} \boldsymbol{r}}{n-r}$ is an unbiased estimator of σ^{2}.
vii) Let the columns of \boldsymbol{X}_{1} form a basis for $C(\boldsymbol{X})$. For example, take r linearly independent columns of \boldsymbol{X} to form \boldsymbol{X}_{1}. Then $\boldsymbol{P}=\boldsymbol{X}_{1}\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} \boldsymbol{X}_{1}^{T}$.
7) Estimability and the Gauss Markov Theorem:

Let \boldsymbol{a} and \boldsymbol{b} be constant vectors. Then $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable if there exists a linear unbiased estimator $\boldsymbol{b}^{T} \boldsymbol{Y}$ so $E\left(\boldsymbol{b}^{T} \boldsymbol{Y}\right)=\boldsymbol{a}^{T} \boldsymbol{\beta}$. Also, $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^{T}=\boldsymbol{b}^{T} \boldsymbol{X}$ iff $\boldsymbol{a}=\boldsymbol{X}^{T} \boldsymbol{b}$ iff $\boldsymbol{a} \in C\left(\boldsymbol{X}^{T}\right)$.

The linear estimator $\boldsymbol{a}^{T} \boldsymbol{Y}$ of $\boldsymbol{c}^{T} \boldsymbol{\theta}$ is the best linear unbiased estimator (BLUE) of $\boldsymbol{c}^{T} \boldsymbol{\theta}$ if $E\left(\boldsymbol{a}^{T} \boldsymbol{Y}\right)=\boldsymbol{c}^{T} \boldsymbol{\theta}$, and if for any other unbiased linear estimator $\boldsymbol{b}^{T} \boldsymbol{Y}$ of $\boldsymbol{c}^{T} \boldsymbol{\theta}$, $V\left(\boldsymbol{a}^{T} \boldsymbol{Y}\right) \leq V\left(\boldsymbol{b}^{T} \boldsymbol{Y}\right)$. Note that $E\left(\boldsymbol{b}^{T} \boldsymbol{Y}\right)=\boldsymbol{c}^{T} \boldsymbol{\theta}$.

The next theorem shows that the least squares estimator of an estimable function $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is $\boldsymbol{a}^{T} \hat{\boldsymbol{\beta}}=\boldsymbol{b}^{T} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{b}^{T} \boldsymbol{P} \boldsymbol{Y}$. Note that $\boldsymbol{b}^{T} \boldsymbol{Y}$ is also an unbiased estimator of $\boldsymbol{a}^{T} \boldsymbol{\beta}$ since $E\left(\boldsymbol{b}^{T} \boldsymbol{Y}\right)=\boldsymbol{b}^{T} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{a}^{T} \boldsymbol{\beta}$.

Theorem 3.2 (see Seber and Lee Th 3.2) Let $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where where \boldsymbol{X} has rank $r \leq p \leq n, E(\boldsymbol{e})=\mathbf{0}$, and $\operatorname{Cov}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}$.
a) The quantity $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^{T}=\boldsymbol{b}^{T} \boldsymbol{X}$ iff $\boldsymbol{a}=\boldsymbol{X}^{T} \boldsymbol{b}$ (for some constant vector $\boldsymbol{b})$ iff $\boldsymbol{a} \in C\left(\boldsymbol{X}^{T}\right)$.
b) Let $\hat{\boldsymbol{\theta}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}$ and $\boldsymbol{\theta}=\boldsymbol{X} \boldsymbol{\beta}$. Suppose there exists a constant vector \boldsymbol{c} such that $E\left(\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}\right)=\boldsymbol{c}^{T} \boldsymbol{\theta}$. Then among the class of linear unbiased estimators of $\boldsymbol{c}^{T} \boldsymbol{\theta}$, the least squares estimator $\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}$ is the unique BLUE.
c) Gauss Markov Theorem: If $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable and a least squares estimator $\hat{\boldsymbol{\beta}}$ is any solution to the normal equations $\boldsymbol{X}^{T} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}^{T} \boldsymbol{Y}$, then $\boldsymbol{a}^{T} \hat{\boldsymbol{\beta}}$ is the unique BLUE of $\boldsymbol{a}^{T} \boldsymbol{\beta}$.

Proof: a) If $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable, then $\boldsymbol{a}^{T} \boldsymbol{\beta}=E\left(\boldsymbol{b}^{T} \boldsymbol{Y}\right)=\boldsymbol{b}^{T} \boldsymbol{X} \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{p}$. Thus $\boldsymbol{a}^{T}=\boldsymbol{b}^{T} \boldsymbol{X}$ or $\boldsymbol{a}=\boldsymbol{X}^{T} \boldsymbol{b}$. Hence $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable iff $\boldsymbol{a}^{T}=\boldsymbol{b}^{T} \boldsymbol{X}$ iff $\boldsymbol{a}=\boldsymbol{X}^{T} \boldsymbol{b}$ iff $\boldsymbol{a} \in C\left(\boldsymbol{X}^{T}\right)$.
b) Since $\hat{\boldsymbol{\theta}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{P} \boldsymbol{Y}$, it follows that $E\left(\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}\right)=E\left(\boldsymbol{c}^{T} \boldsymbol{P} \boldsymbol{Y}\right)=\boldsymbol{c}^{T} \boldsymbol{P} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{c}^{T} \boldsymbol{X} \boldsymbol{\beta}=$ $\boldsymbol{c}^{T} \boldsymbol{\theta}$. Thus $\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}=\boldsymbol{c}^{T} \boldsymbol{P} \boldsymbol{Y}=(\boldsymbol{P} \boldsymbol{c})^{T} \boldsymbol{Y}$ is a linear unbiased estimator of $\boldsymbol{c}^{T} \boldsymbol{\theta}$. Let $\boldsymbol{d}^{T} \boldsymbol{Y}$ be any other linear unbiased estimator of $\boldsymbol{c}^{T} \boldsymbol{\theta}$. Hence $E\left(\boldsymbol{d}^{T} \boldsymbol{Y}\right)=\boldsymbol{d}^{T} \boldsymbol{\theta}=\boldsymbol{c}^{T} \boldsymbol{\theta}$ for all $\boldsymbol{\theta} \in$ $C(\boldsymbol{X})$. So $(\boldsymbol{c}-\boldsymbol{d})^{T} \boldsymbol{\theta}=0$ for all $\boldsymbol{\theta} \in C(\boldsymbol{X})$. Hence $(\boldsymbol{c}-\boldsymbol{d}) \in[C(\boldsymbol{X})]^{\perp}$ and $\boldsymbol{P}(\boldsymbol{c}-\boldsymbol{d})=\mathbf{0}$, or $\boldsymbol{P} \boldsymbol{c}=\boldsymbol{P} \boldsymbol{d}$. Thus $V\left(\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}\right)=V\left(\boldsymbol{c}^{T} \boldsymbol{P} \boldsymbol{Y}\right)=V\left(\boldsymbol{d}^{T} \boldsymbol{P} \boldsymbol{Y}\right)=\sigma^{2} \boldsymbol{d}^{T} \boldsymbol{P}^{T} \boldsymbol{P} \boldsymbol{d}=\sigma^{2} \boldsymbol{d}^{T} \boldsymbol{P} \boldsymbol{d}$. Then $V\left(\boldsymbol{d}^{T} \boldsymbol{Y}\right)-V\left(\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}\right)=V\left(\boldsymbol{d}^{T} \boldsymbol{Y}\right)-V\left(\boldsymbol{d}^{T} \boldsymbol{P} \boldsymbol{Y}\right)=\sigma^{2}\left[\boldsymbol{d}^{T} \boldsymbol{d}-\boldsymbol{d}^{T} \boldsymbol{P} \boldsymbol{d}\right]=\sigma^{2} \boldsymbol{d}^{T}\left(\boldsymbol{I}_{n}-\right.$ $\boldsymbol{P}) \boldsymbol{d}=\sigma^{2} \boldsymbol{d}^{T}\left(\boldsymbol{I}_{n}-\boldsymbol{P}\right)^{T}\left(\boldsymbol{I}_{n}-\boldsymbol{P}\right) \boldsymbol{d}=\boldsymbol{g}^{T} \boldsymbol{g} \geq 0$ with equality iff $\boldsymbol{g}=\left(\boldsymbol{I}_{n}-\boldsymbol{P}\right) \boldsymbol{d}=\mathbf{0}$, or $\boldsymbol{d}=\boldsymbol{P} \boldsymbol{d}=\boldsymbol{P} \boldsymbol{c}$. Thus $\boldsymbol{c}^{T} \hat{\boldsymbol{\theta}}$ has minimum variance and is unique.
c) Since $\boldsymbol{a}^{T} \boldsymbol{\beta}$ is estimable, $\boldsymbol{a}^{T} \hat{\boldsymbol{\beta}}=\boldsymbol{b}^{T} \boldsymbol{X} \hat{\boldsymbol{\beta}}$. Then $\boldsymbol{a}^{T} \hat{\boldsymbol{\beta}}=\boldsymbol{b}^{T} \hat{\boldsymbol{\theta}}$ is the unique BLUE of $\boldsymbol{a}^{T} \boldsymbol{\beta}=\boldsymbol{b}^{T} \boldsymbol{\theta}$ by b).

Gauss Markov Theorem-Full Rank Case: Let $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where \boldsymbol{X} is full rank, $E(\boldsymbol{e})=\mathbf{0}$, and $\operatorname{Cov}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}$. Then $\boldsymbol{a}^{T} \hat{\boldsymbol{\beta}}$ is the unique BLUE of $\boldsymbol{a}^{T} \boldsymbol{\beta}$ for every constant $p \times 1$ vector \boldsymbol{a}.

Notation: $\boldsymbol{\beta}$ is "estimable" by $\hat{\boldsymbol{\beta}}$ for the full rank model, but not for the non-full rank model.
8) Hypothesis Testing:

Theorem 2.16. Let $\boldsymbol{\theta}=\boldsymbol{X} \boldsymbol{\eta} \in C(\boldsymbol{X})$ where $Y_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\eta}+r_{i}(\boldsymbol{\eta})$ and the residual $r_{i}(\boldsymbol{\eta})$ depends on $\boldsymbol{\eta}$. The least squares estimator $\hat{\boldsymbol{\beta}}$ is the value of $\boldsymbol{\eta} \in \mathbb{R}^{p}$ that minimizes the least squares criterion $\sum_{i=1}^{n} r_{i}^{2}(\boldsymbol{\eta})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\eta}\|^{2}$.

LS CLT (Least Squares Central Limit Theorem): Consider the MLR model $Y_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i}$ and assume that the zero mean errors are iid with $E\left(e_{i}\right)=0$ and $\operatorname{VAR}\left(e_{i}\right)=$
σ^{2}. Also assume that $\max _{i}\left(h_{1}, \ldots, h_{n}\right) \rightarrow 0$ in probability as $n \rightarrow \infty$ and

$$
\frac{\boldsymbol{X}^{T} \boldsymbol{X}}{n} \rightarrow \boldsymbol{W}^{-1}
$$

as $n \rightarrow \infty$. Then the least squares (OLS) estimator $\hat{\boldsymbol{\beta}}$ satisfies

$$
\begin{equation*}
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{D} N_{p}\left(\mathbf{0}, \sigma^{2} \boldsymbol{W}\right) \tag{1}
\end{equation*}
$$

Partial F Test Theorem: Suppose $H_{0}: \boldsymbol{L} \boldsymbol{\beta}=\mathbf{0}$ is true for the partial F test where \boldsymbol{L} is a full rank $r \times p$ matrix. Under the OLS full rank model, a)

$$
F_{R}=\frac{1}{r M S E}(\boldsymbol{L} \hat{\boldsymbol{\beta}})^{T}\left[\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right]^{-1}(\boldsymbol{L} \hat{\boldsymbol{\beta}})
$$

b) If $\boldsymbol{e} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$, then $F_{R} \sim F_{r, n-p}$.
c) For a large class of zero mean error distributions $r F_{R} \xrightarrow{D} \chi_{r}^{2}$.
d) The partial F test that rejects $H_{0}: \boldsymbol{L} \boldsymbol{\beta}=\mathbf{0}$ if $F_{R}>F_{r, n-p}(1-\delta)$ is a large sample right tail δ test for the OLS model for a large class of zero mean error distributions.

Assume H_{0} is true. By the OLS CLT, $\sqrt{n}(\boldsymbol{L} \hat{\boldsymbol{\beta}}-\boldsymbol{L} \boldsymbol{\beta})=\sqrt{n} \boldsymbol{L} \hat{\boldsymbol{\beta}} \xrightarrow{D} N_{r}\left(\mathbf{0}, \sigma^{2} \boldsymbol{L} \boldsymbol{W} \boldsymbol{L}^{T}\right)$. Thus $\sqrt{n}(\boldsymbol{L} \hat{\boldsymbol{\beta}})^{T}\left(\sigma^{2} \boldsymbol{L} \boldsymbol{W} \boldsymbol{L}^{T}\right)^{-1} \sqrt{n} \boldsymbol{L} \hat{\boldsymbol{\beta}} \xrightarrow{D} \chi_{r}^{2}$. Let $\hat{\sigma}^{2}=M S E$ and $\hat{\boldsymbol{W}}=n\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$. Then

$$
n(\boldsymbol{L} \hat{\boldsymbol{\beta}})^{T}\left[M S E \operatorname{L} n\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right]^{-1} \boldsymbol{L} \hat{\boldsymbol{\beta}}=r F_{R} \xrightarrow{D} \chi_{r}^{2} .
$$

Partial \mathbf{F} test: Let the full model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ with a constant β_{1} in the model: $\mathbf{1}$ is the 1st column of \boldsymbol{X}. Let the reduced model $\boldsymbol{Y}=\boldsymbol{X}_{R} \boldsymbol{\beta}_{R}+\boldsymbol{e}$ also have a constant in the model where the columns of \boldsymbol{X}_{R} are a subset of k of the columns of \boldsymbol{X}. Let \boldsymbol{P}_{R} be the projection matrix on $C\left(\boldsymbol{X}_{R}\right)$ so $\boldsymbol{P} \boldsymbol{P}_{R}=\boldsymbol{P}_{R}$. Then $F_{R}=\frac{S S E(R)-S S E(F)}{r M S E(F)}$ where $r=d f_{R}-d f_{F}=p-k=$ number of predictors in the full model but not in the reduced model. $M S E=M S E(F)=S S E(F) /(n-p)$ where $S S E=S S E(F)=\boldsymbol{Y}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}$. $S S E(R)-S S E(F)=\boldsymbol{Y}^{T}\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right) \boldsymbol{Y}$ where $S S E(R)=\boldsymbol{Y}^{T}\left(\boldsymbol{I}-\boldsymbol{P}_{R}\right) \boldsymbol{Y}$.

Now assume $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, and when H_{0} is true, $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X}_{R} \boldsymbol{\beta}_{R}, \sigma^{2} \boldsymbol{I}\right)$. Since $(\boldsymbol{I}-\boldsymbol{P})\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right)=\mathbf{0},[S S E(R)-S S E(F)] \Perp M S E(F)$ by Craig's Theorem. When H_{0} is true, $\boldsymbol{\mu}=\boldsymbol{X}_{R} \boldsymbol{\beta}_{R}$ and $\boldsymbol{\mu}^{T} \boldsymbol{A} \boldsymbol{\mu}=0$ where $\boldsymbol{A}=(\boldsymbol{I}-\boldsymbol{P})$ or $\boldsymbol{A}=\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right)$. Hence the noncentrality parameter is 0 , and by Theorem 2.14 g), $S S E \sim \sigma^{2} \chi_{n-p}^{2}$ and $S S E(R)-S S E(F) \sim \sigma^{2} \chi_{p-k}^{2}$ since $\operatorname{rank}\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right)=\operatorname{tr}\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right)=p-k$. Hence under $H_{0}, F_{R} \sim F_{p-k, n-p}$.

An ANOVA table for the partial F test is shown below, where $k=p_{R}$ is the number of predictors used by the reduced model, and $r=p-p_{R}=p-k$ is the number of predictors in the full model that are not in the reduced model.

Source	df	SS	MS	F
Reduced	$n-p_{R}$	$S S E(R)=\boldsymbol{Y}^{T}\left(\boldsymbol{I}-\boldsymbol{P}_{R}\right) \boldsymbol{Y}$	$\mathrm{MSE}(\mathrm{R})$	$F_{R}=\frac{\text { SSE (R)-SSE }}{r M S E}=$
Full	$n-p$	$S S E=\boldsymbol{Y}^{T}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}$	MSE	$\frac{\boldsymbol{Y}^{T}\left(\boldsymbol{P}-\boldsymbol{P}_{R}\right) \boldsymbol{Y} / r}{\boldsymbol{Y}^{T}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y} /(n-p)}$

The ANOVA F test is the special case where $k=1, \boldsymbol{X}_{R}=\mathbf{1}, \boldsymbol{P}_{R}=\boldsymbol{P}_{1}$, and $S S E(R)-S S E(F)=S S T O-S S E=S S R$.

ANOVA table: $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ with a constant β_{1} in the model: $\mathbf{1}$ is the 1st column of $\boldsymbol{X} . M S=S S / d f$.
$S S T O=\boldsymbol{Y}^{T}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{T}\right) \boldsymbol{Y}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}, S S E=\sum_{i=1}^{n} r_{i}^{2}, S S R=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$, $S S T O=S S R+S S E$. SSTO is the SSE (residual sum of squares) for the location model $\boldsymbol{Y}=\mathbf{1} \beta_{1}+\boldsymbol{e}$ that contains a constant but no nontrivial predictors. The location model has projection matrix $\boldsymbol{P}_{1}=\mathbf{1}\left(\mathbf{1}^{T} \mathbf{1}\right)^{-1} \mathbf{1}^{T}=\frac{1}{n} \mathbf{1 1}^{T}$. Hence $\boldsymbol{P} \boldsymbol{P}_{1}=\boldsymbol{P}_{1}$ and $\boldsymbol{P} \mathbf{1}=\boldsymbol{P}_{1} \mathbf{1}=\mathbf{1}$.

Source	df	SS	MS	F	p-value
Regression	p-1	$S S R=\boldsymbol{Y}^{T}\left(\boldsymbol{P}-\frac{1}{n} \mathbf{1 1}^{T}\right) \boldsymbol{Y}$	MSR	$F_{0}=M S R / M S E$	for $H_{0}:$
Residual	n-p	$S S E=\boldsymbol{Y}^{T}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{Y}$	MSE		$\beta_{2}=\cdots=\beta_{p}=0$

The matrices in the quadratic forms for SSR and SSE are symmetric and idempotent and their product is $\mathbf{0}$. Hence if $\boldsymbol{e} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$ so $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, then $S S E \Perp S S R$ by Craig's Theorem. If H_{0} is true under normality, then $\boldsymbol{Y} \sim N_{n}\left(\mathbf{1} \beta_{1}, \sigma^{2} \boldsymbol{I}\right)$, and by Theorem 2.14 g$), S S E \sim \sigma^{2} \chi_{n-p}^{2}$ and $S S R \sim \sigma^{2} \chi_{p-1}^{2}$ since $\operatorname{rank}(\boldsymbol{I}-\boldsymbol{P})=\operatorname{tr}(\boldsymbol{I}-\boldsymbol{P})=$ $n-p$ and $\operatorname{rank}\left(\boldsymbol{P}-\frac{1}{n} \mathbf{1 1}^{T}\right)=\operatorname{tr}\left(\boldsymbol{P}-\frac{1}{n} \mathbf{1 1}^{T}\right)=p-1$. Hence under normality, $F_{0} \sim F_{p-1, n-p}$.
9) Expected Value, Covariance Matrix and Large Sample Theory for least squares quantities:

For the full rank model, $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where $E(\boldsymbol{Y})=\boldsymbol{X} \boldsymbol{\beta}, E(\boldsymbol{e})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{e})=$ $\operatorname{Cov}(\boldsymbol{Y})=\sigma^{2} \boldsymbol{I}, E(\boldsymbol{A} \boldsymbol{Y})=\boldsymbol{A} \boldsymbol{X} \boldsymbol{\beta}$ and $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{Y})=\sigma^{2} \boldsymbol{A} \boldsymbol{A}^{T}$.
$\boldsymbol{A}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ is used for $\hat{\boldsymbol{\beta}}=\boldsymbol{A} \boldsymbol{Y} . \boldsymbol{A}=\boldsymbol{I}-\boldsymbol{P}=\boldsymbol{I}-\boldsymbol{H}$ is used for the residual vector $\boldsymbol{Y}-\hat{\boldsymbol{Y}}=\boldsymbol{A} \boldsymbol{Y} . \boldsymbol{A}=\boldsymbol{P}=\boldsymbol{H}$ is used for the vector of fitted values $\hat{\boldsymbol{Y}}$.

For the full rank Gaussian linear model, $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, and if \boldsymbol{A} is $k \times n$ with rank k, then $\boldsymbol{A} \boldsymbol{Y} \sim N_{k}\left(\boldsymbol{A} \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{A} \boldsymbol{A}^{T}\right)$.

If $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{D} N_{p}\left(\mathbf{0}, \sigma^{2} \boldsymbol{W}\right)$, and \boldsymbol{A} is $k \times p$ with rank k, then $\sqrt{n}(\boldsymbol{A} \hat{\boldsymbol{\beta}}-\boldsymbol{A} \boldsymbol{\beta}) \xrightarrow{D}$ $N_{k}\left(\mathbf{0}, \sigma^{2} \boldsymbol{A} \boldsymbol{W} \boldsymbol{A}^{T}\right)$.

The non-full rank model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ also has $E(\boldsymbol{Y})=\boldsymbol{X} \boldsymbol{\beta}, E(\boldsymbol{e})=\mathbf{0}, \operatorname{Cov}(\boldsymbol{e})=$ $\operatorname{Cov}(\boldsymbol{Y})=\sigma^{2} \boldsymbol{I}, E(\boldsymbol{A} \boldsymbol{Y})=\boldsymbol{A} \boldsymbol{X} \boldsymbol{\beta}$ and $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{Y})=\sigma^{2} \boldsymbol{A} \boldsymbol{A}^{T}$.

For the non-full rank model $\boldsymbol{A}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}$ is used for $\hat{\boldsymbol{\beta}}=\boldsymbol{A} \boldsymbol{Y}$ and $\boldsymbol{P}=$ $\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T}$.

You should be able to handle the linear model written in different ways. The residual bootstrap model $\boldsymbol{Y}^{*}=\boldsymbol{X} \hat{\boldsymbol{\beta}}+\boldsymbol{e}^{*}$ with $E\left(\boldsymbol{e}^{*}\right)=\mathbf{0}$ and $\operatorname{Cov}\left(\boldsymbol{e}^{*}\right)=\operatorname{Cov}\left(\boldsymbol{Y}^{*}\right)=\hat{\sigma}^{2} \boldsymbol{I}$. The parametric bootstrap model $\boldsymbol{Y}^{*}=\boldsymbol{X} \hat{\boldsymbol{\beta}}+\boldsymbol{e}^{*}$ with $\boldsymbol{Y}^{*} \sim N_{n}(\boldsymbol{X} \hat{\boldsymbol{\beta}}, M S E \boldsymbol{I})$. In numerical linear algebra, the least squares solution to " $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ " is of interest where the problem is actually the multiple linear regression model $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{\epsilon}$ where \boldsymbol{A} has full rank p, and we will assume that $E(\boldsymbol{\epsilon})=\mathbf{0}$, and $\operatorname{Cov}(\boldsymbol{\epsilon})=\sigma^{2} \boldsymbol{I}_{n}$.

References:

Christensen, R. (2020), Plane Answers to Complex Questions: the Theory of Linear Models, 5th ed., Springer, New York, NY.

Graybill, F.A. (2000), Theory and Application of the Linear Model, Brooks/Cole, Pacific Grove, CA.

Olive, D.J. (2023), Theory of Linear Models, online course notes, see (http://parker. ad.siu.edu/Olive/linmodbk.htm).

Rencher, A.C., and Schaalje, G.B. (2008), Linear Models in Statistics, 2nd ed., Wiley, Hoboken, NJ.

Searle, S.R., and Gruber, M.H.J. (2017), Linear Models, 2nd ed., Wiley, Hoboken, NJ.

Seber, G.A.F., and Lee, A.J. (2003), Linear Regression Analysis, 2nd ed., Wiley, New York, NY.

Zimmerman, D.L. (2020), Linear Model Theory: Exercises and Solutions, Springer, New York, NY.

