Math 585 HW 10 Spring 2024 Due Friday, April 19 Quiz 10 on Wed. April 17, covers HW10. 2 pages, Problems A)-F)

For the following R problems perform the perform the source("J:/mpack.txt") and source("J:/mrobdata.txt") commands as described in homework 3. Also copy and paste commands from (http://parker.ad.siu.edu/Olive/mrsashw.txt) for the relevant problem into R.
A), 10.2 SAS Institute (1985, p. 498-501) describes a one way MANOVA model. There are two groups for gender: female and male. There were $p=4$ (skull measurements) variables $X_{1}=$ length $X_{2}=$ basilar, $X_{3}=$ zygomat and $X_{4}=$ postorb. There were $n_{1}=18$ females and $n_{2}=22$ males measured. Suppose $t_{0}=0.9567$ and pvalue $=0.6566$. Here t_{o} was Wilk's lambda, but the other three test statistics gave the same pvalue. Do a 4 step one way MANOVA test.
B) Suppose the 15 units are 1 Adatorwovor, 2 Adhikari, 3 Alanzi, 4 Alsibiani, 5 AlTalib, 6 Fan, 7 Kuo, 8 Lamsal, 9 Liu, 10 Meyer, 11 Peiris, 12 Rathnayake, 13 Rupasinghe, 14 Schroeppel and 15 Watagoda. Use the following output to allocate the 15 units to three groups of 5 . Show the three groups.
> sample(15)
[1] $6 \begin{array}{lllllllllllllll}6 & 3 & 4 & 2 & 1 & 10 & 7 & 5 & 12 & 15 & 13 & 8 & 14 & 11 & 9\end{array}$
C), 11.4 The Buxton data has 5 massive outliers in variables len and buxy $=$ height.
a) The R commands for this part do a factor analysis on the Buxton data using the sample covariance matrix. Copy and paste the output into Word.
i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2 ?
iii) What is the cumulative variance explained by the two factors?
b) The R commands for this part do a factor analysis on the Buxton data using the RMVN dispersion matrix. Copy and paste the output into Word.
i) Which variables have nonzero loadings for factor 1 ?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
D) Refer to the factor analysis handout where the factor analysis is applied using covariance matrix ability.cov.
a) Is one factor enough or are two factors needed?
b) For the analysis which used two factors, which factor corresponds to reading and vocabulary?
c) For the analysis which used two factors, which factor had the two smallest loadings on variables reading and vocabulary?
E), 12.1 Consider the Hotelling Lawley test statistic.

Let

$$
T(\boldsymbol{W})=n[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L} \boldsymbol{W} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]
$$

Let

$$
\frac{\boldsymbol{X}^{T} \boldsymbol{X}}{n}=\hat{\boldsymbol{W}}^{-1}
$$

Show $T(\hat{\boldsymbol{W}})=[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]$.
F), 12.2 Consider the Hotelling Lawley test statistic. Let
$T=[\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]^{T}\left[\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \otimes\left(\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right)^{-1}\right][\operatorname{vec}(\boldsymbol{L} \hat{\boldsymbol{B}})]$. Let $\boldsymbol{L}=\boldsymbol{L}_{j}=[0, \ldots, 0,1,0, \ldots, 0]$ have a 1 in the j th position. Let $\hat{\boldsymbol{b}}_{j}^{T}=\boldsymbol{L} \hat{\boldsymbol{B}}$ be the j th row of $\hat{\boldsymbol{B}}$. Let $d_{j}=\boldsymbol{L}_{j}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}_{j}^{T}=$ $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)_{j j}^{-1}$, the j th diagonal entry of $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$. Then $T_{j}=\frac{1}{d_{j}} \hat{\boldsymbol{b}}_{j}^{T} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \hat{\boldsymbol{b}}_{j}$. The Hotelling Lawley statistic $\left.U=\operatorname{tr}\left(\left[(n-p) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}\right]^{-1} \hat{\boldsymbol{B}}^{T} \boldsymbol{L}^{T}\left[\boldsymbol{L}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{T}\right]^{-1} \boldsymbol{L} \hat{\boldsymbol{B}}\right]\right)$. Hence if $\boldsymbol{L}=\boldsymbol{L}_{j}$, then $U_{j}=\frac{1}{d_{j}(n-p)} \operatorname{tr}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\epsilon}}^{-1} \hat{\boldsymbol{b}}_{j} \hat{\boldsymbol{b}}_{j}^{T}\right)$.

Using $\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}(\boldsymbol{C A B})$ and $\operatorname{tr}(a)=a$ for scalar a, show the $(n-p) U_{j}=T_{j}$.
\#Factor Analysis handout
> out1 <- factanal(x, factors = 3)
Uniquenesses: v1 v2 v3 v4 v5 v6
0.0050 .1010 .0050 .2240 .0840 .005

Loadings:
Factor1 Factor2 Factor3
$\begin{array}{lll}\mathrm{v} 1 & 0.944 & 0.182\end{array} 0.267$
$\begin{array}{llll}\mathrm{v} 2 & 0.905 & 0.235 & 0.159\end{array}$
$\begin{array}{llll}\mathrm{v} 3 & 0.236 & 0.210 & 0.946\end{array}$
$\begin{array}{lll}\mathrm{v} 4 & 0.180 & 0.242\end{array} 0.828$
$\begin{array}{lll}\mathrm{v} 5 & 0.242 & 0.881\end{array} 0.286$
v6 $0.193 \quad 0.959 \quad 0.196$
Factor1 Factor2 Factor3
SS loadings $1.893 \quad 1.886 \quad 1.797$
$\begin{array}{llll}\text { Proportion Var } & 0.316 & 0.314 & 0.300\end{array}$
Cumulative Var 0.3160 .6300 .929
\#used varimax rotation
\#factor 1 is almost an average of v 1 and v2
\#factor 2 is almost an average of v5 and v6
\#factor 3 is almost an average of v3 and v4
> out2 <- factanal(x, factors $=3$, rotation = "promax")
> out2
Uniquenesses: v1 v2 v3 v4 v5 v6
0.0050 .1010 .0050 .2240 .0840 .005

Loadings: Factor1 Factor2 Factor3
v1 0.985
v2 0.951
v3 1.003
v4 0.867
v5 0.910
v6 1.033
Factor1 Factor2 Factor3

SS loadings	1.903	1.876	1.772
Proportion Var	0.317	0.313	0.295
Cumulative Var	0.317	0.630	0.925

\#\#promax rotation tries to give 0 loadings to lots of variables \#\#in the factor
\#\#Factor analysis can also be performed by supplying
\#\#a covariance matrix or a correlation matrix.
\#\#As a diagnostic, supply the RMVN dispersion matrix or \#\#the RMVN generalized correlation matrix.

```
> out1 <- factanal(factors = 1, covmat=ability.cov)
```

```
> out1
```

Uniquenesses:

general	picture	blocks	maze reading	vocab	
0.535	0.853	0.748	0.910	0.232	0.280

Loadings: Factor1
general 0.682
picture 0.384
blocks 0.502
maze 0.300
reading 0.877
vocab 0.849

Factor1
SS loadings 2.443
Proportion Var 0.407
Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 75.18 on 9 degrees of freedom.
The p-value is $1.46 \mathrm{e}-12$
$>$
> out2 <- factanal(factors = 2, covmat=ability.cov)
> out2

Uniquenesses:

general	picture	blocks	maze reading	vocab	
0.455	0.589	0.218	0.769	0.052	0.334

Loadings: Factor1 Factor2
general 0.4990 .543
picture 0.1560 .622
blocks 0.2060 .860
maze 0.1090 .468
reading $0.956 \quad 0.182$
vocab 0.7850 .225

Factor1 Factor2
SS loadings $1.858 \quad 1.724$
Proportion Var $0.310 \quad 0.287$
Cumulative Var $0.310 \quad 0.597$

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191
\#\#Want pvalue > 0.05 to suggest that there are enough factors.

