Math 585, HW 2 Spring 2024, Due Friday, Feb. 2. Two pages, problems A)-E).
A) This problem makes plots similar to Figure 2.1. Data sets of $n=100$ cases from two $N_{2}\left(\mathbf{0}, \boldsymbol{\Sigma}_{i}\right)$ distributions are generated and plotted in a scatterplot along with the $10 \%, 30 \%, 50 \%, 70 \%, 90 \%$ and 98% highest density regions where

$$
\boldsymbol{\Sigma}_{1}=\left(\begin{array}{cc}
1 & 0.9 \\
0.9 & 4
\end{array}\right) \text { and } \boldsymbol{\Sigma}_{2}=\left(\begin{array}{cc}
1 & -0.4 \\
-0.4 & 1
\end{array}\right)
$$

On the computer, double click on the Arc icon. (Using the mouse, move the pointer (cursor) to the icon and press the leftmost mouse button twice, rapidly. This procedure is known as double clicking on the icon.) The Arc window should appear with a "greater than" > prompt. The menu File should be in the upper left corner of the window. Move the pointer to File and hold the leftmost mouse button down. Then the menu will appear. Drag the pointer down to the menu command load. Then click on data and then click on demo-bn.lsp. (You may need to use the slider bar in the middle of the screen to see the file demo-bn.lsp: click on the arrow pointing to the right until the file appears.) In the future these menu commands will be denoted by "File $>$ Load $>$ Data $>$ demo-bn.lsp." These are the commands needed to activate the file demo-bn.lsp.
a) In the Arc dialog window, enter the numbers
$\begin{array}{lllll}0 & 0 & 1 & 4 & 0.9\end{array}$ and 100 . Then click on $O K$.
The graph can be printed with the menu commands "File $>$ Print," but it will generally save paper by placing the plots in the Word editor.

Activate Word (often by double clicking on the start icon and then the Word icon). Click on the screen and type "Problem 2Aa." In Arc, use the menu commands "Edit>Copy." In Word, click on the Paste icon near the upper left corner of Word and hold down the leftmost mouse button. This will cause a menu to appear. Drag the pointer down to Paste. The plot should appear on the screen. (Older versions of Word, use the menu commands "Edit>Paste.") In the future, "paste the output into Word" will refer to these mouse commands.
b) Either click on new graph on the current plot in Arc or reload demo-bn.lsp. In the Arc dialog window, enter the numbers
$\begin{array}{lllll}0 & 0 & 1 & 1 & -0.4\end{array}$ and 100. Then place the plot in Word.
After editing your Word document, get a printout by clicking on the upper left icon, select "Print" then select "Print". (Older versions of Word use the menu commands "File>Print.")

To save your output on your flash drive J, click on the icon in the upper left corner of Word. Then drag the pointer to "Save as." A window will appear, click on the Word Document icon. A "Save as" screen appears. Click on the right "check" on the top bar, and then click on "Removable Disk (J:)". Change the file name to HW2A.docx, and then click on "Save."

To exit from Word and Arc, click on the " X " in the upper right corner of the screen. In Word a screen will appear and ask whether you want to save changes made in your document. Click on No. In Arc, click on OK.

Arc is described in more detail in Section 15.2 and Cook and Weisberg (1999a).
B), 3.15 Suppose that

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right) \sim N_{4}\left(\left(\begin{array}{c}
9 \\
16 \\
4 \\
1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0.8 & -0.4 & 0 \\
0.8 & 1 & -0.56 & 0 \\
-0.4 & -0.56 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right)
$$

a) Find the distribution of X_{3}.
b) Find the distribution of $\left(X_{2}, X_{4}\right)^{T}$.
c) Which pairs of random variables X_{i} and X_{j} are independent?
d) Find the correlation $\rho\left(X_{1}, X_{3}\right)$.
C) 3.3. Recall that if $\boldsymbol{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the conditional distribution of \boldsymbol{X}_{1} given that $\boldsymbol{X}_{2}=\boldsymbol{x}_{2}$ is multivariate normal with mean $\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right)$ and covariance $\Sigma_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$.

Let $\sigma_{12}=\operatorname{Cov}(\mathrm{Y}, \mathrm{X})$ and suppose Y and X follow a bivariate normal distribution

$$
\binom{Y}{X} \sim N_{2}\left(\binom{15}{20}, \quad\left(\begin{array}{cc}
64 & \sigma_{12} \\
\sigma_{12} & 81
\end{array}\right)\right) .
$$

a) If $\sigma_{12}=10$ find $E(Y \mid X)$.
b) If $\sigma_{12}=10$, find $\mathrm{V}(Y \mid X)$.
c) If $\sigma_{12}=10$, find $\rho(Y, X)$, the correlation between Y and X.
d) What is σ_{12} if Y and X are independent?
D) 3.4. Suppose that

$$
\boldsymbol{X} \sim(1-\gamma) E C_{p}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g_{1}\right)+\gamma E C_{p}\left(\boldsymbol{\mu}, c \boldsymbol{\Sigma}, g_{2}\right)
$$

where $c>0$ and $0<\gamma<1$. Following Example 3.2, show that \boldsymbol{X} has an elliptically contoured distribution assuming that all relevant expectations exist.
E) Let \boldsymbol{X} be an $n \times p$ constant matrix and let $\boldsymbol{\beta}$ be a $p \times 1$ constant vector. Suppose $\boldsymbol{Y} \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$. Find the distribution of $(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{Y}$ if $(\boldsymbol{I}-\boldsymbol{H})^{T}=(\boldsymbol{I}-\boldsymbol{H})=(\boldsymbol{I}-\boldsymbol{H})^{2}$ is an $n \times n$ matrix and if $\boldsymbol{H} \boldsymbol{X}=\boldsymbol{X}$. Simplify.

