
Exam 1 review. 7 sheets of notes and a calculator. Wednesday Feb. 14.

Types of problems.

1) Given a small data set, find Y , S, MED(n) and MAD(n). See HW1 A and quiz 1.

Recall that Y =

∑n
i=1 Yi

n
and the sample variance

VAR(n) = S2 = S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
,

and the sample standard deviation (SD) S = Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest and written
as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the sample median,
sort the data from smallest to largest and find the middle value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median of the Di by
ordering them from smallest to largest and finding the middle value or values.

2) Know that a scatterplot of x versus y is used to visualize the conditional distri-
bution of y|x. A scatterplot matrix is an array of scatterplots. It is used to examine
the bivariate relationships of the p random variables. See HW1 D, Q1.

3) Suppose that all values of the variable w to be transformed are positive. The log

rule says use log(w) if max(wi)/min(wi) > 10. Know how to use this rule. See Q1, HW1
E.

4) There are several guidelines for choosing power transformations. First, sup-
pose you have a scatterplot of two variables xλ1

1 versus xλ2

2 where both x1 > 0 and x2 > 0.
Also assume that the plotted points follow a nonlinear one to one function. The ladder

rule: consider the ladder of powers

−1,−0.5,−1/3, 0, 1/3, 0.5, and 1.

To spread small values of the variable, make λi smaller. To spread large values of the
variable, make λi larger. Know how to use this rule. See Q1.

5) The population mean of a random p × 1 vector x = (x1, ..., xp)
T is E(x) = µ =

(E(x1), ..., E(xp))
T and the p × p population covariance matrix

Cov(x) = Σx = E(x−E(x))(x−E(x))T = ((σi,j)) where Cov(xi, xj) = σi,j. The p × p

population correlation matrix Cor(x) = ρ = ((ρij)). The population covariance matrix

of x with y is Cov(x, y) = Σx,y = E[(x− E(x))(y − E(y))T ].
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6) If X and Y are p × 1 random vectors, a a conformable constant vector, and A

and B are conformable constant matrices, then

E(X + Y ) = E(X) + E(Y ), E(a + Y ) = a + E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT . See HW1 B.

7) The n × p data matrix

W =









xT
1
...

xT
n









=













x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p













=
[

v1 v2 . . . vp

]

8) The sample mean or sample mean vector

x =
1

n

n
∑

i=1

xi = (x1, ..., xp)
T .

9) The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = ((Sij)).

10) The sample correlation matrix R = ((rij)).

11) The spectral decomposition A =
∑p

i=1 λieie
T
i = λ1e1e

T
1 + · · · + λpepe

T
p .

12) Let A =
∑p

i=1 λieie
T
i be a positive definite p × p symmetric matrix. Let P =

[e1 e2 · · · ep] be the p×p orthogonal matrix with ith column ei. Let Λ1/2 = diag(
√

λ1, ...,
√

λp).

The square root matrix A1/2 = PΛ1/2P T is a positive definite symmetric matrix such
that A1/2A1/2 = A.

13) The population squared Mahalanobis distance D2
x(µ,Σ) = (x−µ)T Σ−1(x−µ).

14) The sample squared Mahalanobis distance D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x − µ̂).

15) The generalized sample variance = |S| = det(S).

16) The hyperellipsoid {x|D2
x ≤ h2} = {x : (x − x)T S−1(x − x) ≤ h2} is centered

at x and has volume is
2πp/2

pΓ(p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If x = 0, the axes

are given by the eigenvectors êi where the half length in the direction of êi is h
√

λ̂i. Here

êT
i êj = 0 for i 6= j while êT

i êi = 1.
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17) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.

18) If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ). If a

is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ). See Q2, HW2 E.

Let X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

19) All subsets of a MVN are MVN: (Xk1
, ..., Xkq

)T ∼ Nq(µ̃, Σ̃) where µ̃i =

E(Xki
) and Σ̃ij = Cov(Xki

, Xkj
). In particular, X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0. See Q2, HW2 B.

20)

Let

(

Y
X

)

∼ N2

( (

µY

µX

)

,

(

σ2
Y Cov(Y, X)

Cov(X, Y ) σ2
X

) )

.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
21) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then the

conditional distribution of X1 given that X2 = x2 is multivariate normal with mean
µ1 + Σ12Σ

−1
22 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

22) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 −µ2),Σ11 − Σ12Σ

−1
22 Σ21).

23) Be able to compute the above quantities if X1 and X2 are scalars. See Q2, HW2 C.

24) A p × 1 random vector X has an elliptically contoured distribution, if X has
density

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (1)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution. If the second
moments exist, then

E(X) = µ (2)

and
Cov(X) = cXΣ (3)

for some constant cX > 0.
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25) The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X − µ). (4)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (5)

U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

26) The classical estimator (x, S) of multivariate location and dispersion is the sample
mean and sample covariance matrix where

x =
1

n

n
∑

i=1

xi and S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T. (6)

27) Let the p × 1 column vector T (W ) be a multivariate location estimator, and let
the p× p symmetric positive definite matrix C(W ) be a dispersion estimator. Then the
ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (7)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of
center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance uses (T, C) = (x, S).

28) If p random variables come from an elliptically contoured distribution, then the
subplots in the scatterplot matrix should be linear.

29) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let X be a
random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) → F (x) as

n → ∞ for all points x at which F (x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every ε > 0,

P (‖Xn − X‖ > ε) → 0 as n → ∞.
30) Multivariate Central Limit Theorem (MCLT): If X1, ..., Xn are iid k× 1 random

vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn −µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n
∑

i=1

X i.

31) Suppose
√

n(Tn − µ)
D→ Np(θ,Σ). Let A be a q × p constant matrix. Then

A
√

n(Tn − µ) =
√

n(ATn − Aµ)
D→ Nq(Aθ, AΣAT ).
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32) Suppose A is a conformable constant matrix and Xn
D→ X. Then AXn

D→ AX.

33) Given a table of data W for variables X1, ..., Xp, be able to find the coordinate-

wise median MED(W ) and the sample mean x. If x = (X1, X2, ..., Xp)
T where Xj

corresponds to the jth column of W , then MED(W ) = (MEDX1
(n), ...., MEDXp

(n))T

where MEDXj
(n) = MED(Xj,1, ..., Xj,n) is the sample median of the data in the jth

column. Similarly, x = (X1, ..., Xp)
T where X j is the sample mean of the data in the

jth column. See Q3.

34) A DD plot is a plot of classical vs robust Mahalanobis distances. The DD plot
is used to check i) if the data is MVN (plotted points follow the identity line), ii) if the
data is EC but not MVN (plotted points follow a line through the origin with slope >
1), iii) if the data is not EC (plotted points do not follow a line through the origin) iv)
if multivariate outliers are present (eg some plotted points are far from the bulk of the
data or the plotted points follow two lines). See Q3.

35) Many practical “robust estimators” generate a sequence of K trial fits called
attractors: (T1, C1), ..., (TK, CK). Then the attractor (TA, CA) that minimizes some
criterion is used to obtain the final estimator. One way to obtain attractors is to generate
trial fits called starts, and then use the concentration technique. Let (T

−1,j, C−1,j) be the
jth start and compute all n Mahalanobis distances Di(T−1,j, C−1,j). At the next iteration,
the classical estimator (T0,j, C0,j) is computed from the cn ≈ n/2 cases corresponding
to the smallest distances. This iteration can be continued for k steps resulting in the
sequence of estimators (T

−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j, Ck,j). Then (Tk,j, Ck,j) is the
jth attractor for j = 1, ..., K. Using k = 10 often works well, and the basic resampling
algorithm is a special case k = −1 where the attractors are the starts.

36) The DGK estimator (TDGK , CDGK) uses the classical estimator (T
−1,D, C

−1,D) =
(x, S) as the only start.

37) The median ball (MB) estimator (TMB, CMB) uses (T
−1,M , C

−1,M) = (MED(W ), Ip)
as the only start where MED(W ) is the coordinatewise median. Hence (T0,M , C0,M) is
the classical estimator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

38) Elemental concentration algorithms use elemental starts: (T
−1,j, C−1,j) = (xj , Sj)

is the classical estimator applied to a randomly selected “elemental set” of p + 1 cases.
If the xi are iid with covariance matrix Σx, then the starts (xj, Sj) are identically
distributed with E(xj) = E(xi) and Cov(xj) = Σx/(p + 1).

39) Let the “median ball” be the hypersphere containing the half set of data closest
to MED(W ) in Euclidean distance. The FCH estimator uses the MB attractor if the
DGK location estimator TDGK = Tk,D is outside of the median ball, and the attractor
with the smallest determinant, otherwise. Let (TA, CA) be the attractor used. Then the
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estimator (TFCH , CFCH) takes TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (8)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom.

The RFCH estimator uses two standard “reweight for efficiency steps” while the RMVN
estimator uses a modified method for reweighting.

40) For a large class of elliptically contoured distributions, FCH, RFCH and RMVN
are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where ci = 1 for Np(µ,Σ) data.

41) An estimator (T, C) of multivariate location and dispersion (MLD), needs to
estimate p(p + 3)/2 unknown parameters when there are p random variables. For (x, S)
or (z, R), want n > 10p. Want n > 20p for FCH, RFCH or RMVN.

42) Brand name robust MLD estimators from the Rousseeuw and Yohai paradigm take
too long to compute: fake-brand name estimators that are not backed by breakdown or
large sample theory are actually used. Fake-MCD, Fake-MVE, Fake-S, Fake-MM, Fake-τ ,
Fake-constrained-M and Fake-Stahel-Donoho are especially common.

Sections covered: Olive (2012) 1.1, 1.2, 1.4, ch. 2, ch. 3 (skim
∮

3.4) skim ch.4 with
emphasis on p. 62, DGK, MG, FCH, RFCH and RMVN estimators, DD plot. From

∮

5.1, Def. 5.1, Applications 5.1 and 5.2.
Johnson and Wichern (1988): 1.3, 1.4, ch. 2 is a review of linear algebra p. 45, 46,

and sections 2.4, 2.5, 2.6 are important. Ch. 3: p. 89, 100, 103-4,
∮

3.5 are important.
Ch. 4:

∮

4.2, 4.3 (omit proofs), p. 144-145, 155-157
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