
Exam 2 review. 10 sheets of notes and a calculator. Wednesday March 20.

Types of problems.

43) For h > 0, the hyperellipsoid {z : (z−T )TC−1(z−T ) ≤ h2} = {z : D2
z ≤ h2} =

{z : Dz ≤ h}. A future observation (random vector) xf is in this region if Dxf
≤ h. A

large sample (1 − α)100% prediction region is a set An such that P (xf ∈ An)
P→ 1 − α

where 0 < α < 1.

44) The classical (1 − α)100% large sample prediction region is {z : D2
z(x, S) ≤

χ2
p,1−α} and works well if n is large and the data are iid MVN.

45) Let qn = min(1 − α + 0.05, 1 − α + p/n) for α > 0.1 and qn = min(1 − α/2, 1 −
α + 10αp/n), otherwise. If qn < 1 − α + 0.001, set qn = 1 − α. If (T, C) is a consistent
estimator of (µ, dΣ), then {z : Dz ≤ h} is a large sample (1−α)100% prediction regions
if h = D(up) where D(up) is the qnth sample quantile of the Di. The nonparametric
prediction region uses (T, C) = (x, S) and the semiparametric prediction region uses
(T, C) = (TRMV N , CRMV N). The parametric MVN prediction region
{z : D2

z(T, C) ≤ χ2
p,qn

} also uses (T, C) = (TRMV N , CRMV N).
46) These 3 regions can be displayed in an RMVN DD plot with cases in the non-

parametric region corresponding to points to the left of the vertical line corresponding
to D(up)(x, S). Cases in the semiparametric region correspond to points below the hori-
zontal line corresponding to D(up)(TRMV N , CRMV N) while cases in the parametric MVN

region correspond to points below the horizontal line corresponding to
√

χ2
p,qn

. Suppose

x1, ..., xn, xf are iid with nonsingular covariance matrix Σx. The three prediction regions
are asymptotically optimal if the data is MVN. The semiparametric and nonparametric
prediction regions are asymptotically optimal on a large class of EC distributions and
the nonparametric prediction region is a large sample 100(1 − α)% prediction region,
although large sample prediction regions with smaller volume may exist.

47) Suppose m independent large sample 100(1 − α)% prediction regions are made
where x1, ..., xn, xf are iid from the same distribution for each of the m runs. Let Y
count the number of times xf is in the prediction region. Then Y ∼ binomial (m, 1−αn)
where 1 − αn is the true coverage and 1 − αn → 1 − α as n → ∞. Simulation can be
used to see if the true or actual coverage 1 − αn is close to the nominal coverage 1 − α.
A prediction region with 1 − αn < 1 − α is liberal and a region with 1 − αn > 1 − α
is conservative. It is better to be conservative by 5% than liberal by 5%. Parametric
prediction regions tend to have large undercoverage and so are too liberal.

48) For prediction regions, want n > 10p for the nonparametric prediction region and
n > 20p for the semiparametric prediction region.

49) Let Σ = ((σij)) be a positive definite symmetric p × p dispersion matrix. A

generalized correlation matrix ρ = ((ρij)) where

ρij =
σij√
σiiσjj

.

The generalized correlation matrix is the correlation matrix when second moments exist
if Σ = c Cov(x) for some constant c > 0.
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50) Classical principal component analysis (PCA) gets the eigenvalues and eigen-
vectors (λ̂i, êi) of the sample covariance matrix S or of the sample correlation matrix
R.

51) Let U be the subset of at least half of the cases from which the robust estimator is
computed. Let SU and RU denote the sample covariance matrix and sample correlation
matrix computed from the cases in U . Then the robust estimator C = dSU for some
constant d > 0 and RU is the generalized correlation matrix corresponding to C. The
robust PCA uses U corresponding to the RMVN estimator.

52) Want n > 10p for the classical PCA and n > 20p for the robust PCA.

53) Both R and SAS output give the eigenvectors as shown in symbols for the following

table.
PC1 PC2 · · · PCp
ê1 ê2 · · · êp

R output shows the square roots of the eigenvalues
√

λ̂1,
√

λ̂2, ...,
√

λ̂p

while SAS output gives the eigenvalues λ̂i.
54) Given the eigenvalues or square roots of the eigenvalues, be able to sketch a

scree plot of i versus λ̂i.

55) The trace explained or variance explained by the first k principal components is
∑k

i=1 λ̂i
∑p

i=1 λ̂i

where the denominator is equal to p if the correlation option R or RU is used,

as recommended in point 58).

56) Use k principal components if the trace explained is bigger than some percentage
like 90%, 80% or 70%. There is often a sharp bend in the scree plot when the components
are no longer useful.

57) When R or RU is used, the correlation of the ith variable with the jth principal
component is proportional to the ith entry of the jth eigenvector êj. To try to explain
the jth principal component, look at entries in êj that are large in magnitude and ignore
entries close to zero. Sometimes only one entry is large. Sometimes all of the large entries
have approximately the same size and sign, then the principal component is interpreted
as an average of these entries. If exactly two entries are of similar large magnitude but
of different sign, the principal component is interpreted as a difference of the two entries.
If there are j ≥ 2 large entries that differ in magnitude, then the principal component is
interpreted as a linear combination of the corresponding variables.

58) PCA based on R or RU is easier to interpret than PCA based on S or SU .
i) If S is used, the variance explained by the first principal component could be large

because one variable has much larger variance than the other variables.
ii) If S is used, the correlation of the ith variable with the jth principal component is

proportional to the ith entry of the jth eigenvector êj divided by the standard deviation
of ith variable: eij/

√
Sii.

Hence PCA based on S is harder to interpret if p random variables do not have similar
sample variances. The variances could differ if different units are used or if some variables
are transformed while others are not. Hence PCA based on R or RU is recommended.
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59) Typical Routput is shown. Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation: PC1 PC2 PC3 PC4 PC5

len 0.67271620 -0.21639022 0.05559575 0.15178244 -0.68883916

nasal -0.22213361 -0.66957907 0.05173705 -0.68978370 -0.15440936

bigonal -0.01373814 0.02995162 0.99668240 0.03545927 0.06542933

cephalic -0.67269993 0.21806615 0.02362841 0.16076405 -0.68812686

buxy -0.21306252 -0.67556583 -0.01727087 0.68851877 0.15446292

60) Let Σ̂ be a consistent estimator of Σ. The following theorems show that asymp-
totically, the eigenvalues and eigenvectors of Σ̂ act as those of Σ and vice verca. This
result is useful since eigenvectors are not continuous functions of the dispersion matrix.
The following theorem holds because eigenvalues and the generalized correlation matrix
are continuous functions of the dispersion matrix.

i) Theorem 6.1. Suppose the dispersion matrix Σ has eigenvalue eigenvector pairs

(λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ for some constant c > 0.

Let the eigenvalue eigenvector pairs of Σ̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.

Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj, ρ̂

P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth
eigenvalue of A for j = 1, ..., p.

ii) Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is positive

definite. a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.
If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi − Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of

Σ are unique, then the absolute value of the correlation of êj with ej converges to 1 in

probability: |corr(êj, ej)| P→ 1.
iii) Theorem 6.3. Under (E1), the correlation of the eigenvalues computed from the

classical PCA and robust PCA converges to 1 in probability.
61) Centering uses wi = xi − T where T is the sample mean or the sample mean of

the standardized data for the full data set or for the set U used to compute the robust
estimator. Centering does not change S, SU , R or RU , but the jth principal component
is êT

j wi = êT
j (xi − T ).

62) Let x be the p × 1 vector of predictors, and partition x = (wT , yT )T where w

is m × 1 and y is q × 1 where m = p − q ≤ q and m, q ≥ 2. Canonical correlation
analysis (CCA) seeks m pairs of linear combinations (aT

1 w, bT
1 y), ..., (aT

mw, bT
my) such

that corr(aT
i w, bT

i y) is large under some constraints on the ai and bi where i = 1, ..., m.
The first pair (aT

1 w, bT
1 y) has the largest correlation. The next pair (aT

2 w, bT
2 y) has

the largest correlation among all pairs uncorrelated with the first pair and the process
continues so that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m − 1 pairs. The correlations are called canonical correlations while the
pairs of linear combinations are called canonical variables.
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63) R output is shown in symbols for the following table.

corr
ρ̂1 · · · ρ̂m

wcoef
w â1 · · · âm

ycoef

y b̂1 · · · b̂m · · · b̂q

64) $out$cor

[1] 0.98596703 0.06797587 $out$ycoef

$out$xcoef [,1] [,2] [,3]

[,1] [,2] L 0.1625452 0.4237524 -2.8492678

S 0.14966183 0.6460117 W 0.2369692 1.5379681 0.9356495

M 0.03236328 -0.8543387 H 0.2530324 -2.6806462 1.7785931

65) Some notation is needed to explain CCA. Let the p×p positive definite symmetric
dispersion matrix

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Let J = Σ
−1/2
11 Σ12Σ

−1/2
22 . Let Σa = Σ

−1
11 Σ12Σ

−1
22 Σ21, ΣA = JJT =

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , Σb = Σ

−1
22 Σ21Σ

−1
11 Σ12 and ΣB = JT J =

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 . Let ei and gi be sets of orthonormal eigenvectors, so eT

i ei = 1,
eT

i ej = 0 for i 6= j, gT
i gi = 1 and gT

i gj = 0 for i 6= j. Let the ei be m × 1 while the gi

are q × 1.
Let Σa have eigenvalue eigenvector pairs (λ1, a1), ..., (λm, am) where λ1 ≥ λ2 ≥ · · · ≥

λm. Let ΣA have eigenvalue eigenvector pairs (λi, ei) for i = 1, ..., m. Let Σb have
eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let ΣB have eigenvalue eigenvector pairs
(λi, gi) for i = 1, ..., q. It can be shown that the m largest eigenvalues of the four matrices
are the same. Hence λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ..., m. It can

be shown that ai = Σ
−1/2
11 ei and bi = Σ

−1/2
22 gi. The eigenvectors ai are not necessarily

orthonormal and the eigenvectors bi are not necessarily orthonormal.

Theorem 7.1. Assume the p × p dispersion matrix Σ is positive definite. Assume

Σ11,Σ22,ΣA,Σa,ΣB and Σb are positive definite and that Σ̂
P→ cΣ for some constant

c > 0. Let di be an eigenvector of the corresponding matrix. Hence di = ai, bi, ei or gi.
Let (λ̂i, d̂i) be the ith eigenvalue eigenvector pair of Σ̂γ .

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ)

P→ λi(Σγ) = λi where γ = A, a, B or b.

b) Σγd̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value of the

correlation of d̂j with dj converges to 1 in probability: |corr(d̂j, dj)| P→ 1.
Sections covered: Olive (2012) 1.1, 1.2, 1.4, ch. 2, ch. 3 (skim

∮

3.4) skim ch.4 with
emphasis on p. 62, DGK, MG, FCH, RFCH and RMVN estimators, DD plot. From

∮

5.1, Def. 5.1, Applications 5.1 and 5.2. Sections 6.1,6.2,7.1,7.2.
Johnson and Wichern (1988): 1.3, 1.4, ch. 2 is a review of linear algebra p. 45, 46,

and sections 2.4, 2.5, 2.6 are important. Ch. 3: p. 89, 100, 103-4,
∮

3.5 are important.
Ch. 4:

∮

4.2, 4.3 (omit proofs), p. 144-145, 155-157. Ch. 8, 10. Skip section 10.6.

4



66) In supervised classification, there are k known groups or populations and m cases.
Each case is assigned to exactly one group based on its measurements wi. Assume that
for each population there is a probability density function (pdf) fj(z) where z is a p× 1
vector and j = 1, ..., k. Hence if the random vector x comes from population j, then x

has pdf fj(z). Assume that there is a random sample of nj cases x1,j, ..., xnj ,j for each
group. Let (xj, Sj) denote the sample mean and covariance matrix for each group. Let
wi be a new p × 1 random vector from one of the k groups, but the group is unknown.
Usually there are many wi, and discriminant analysis attempts to allocate the wi to the
correct groups.

67) The maximum likelihood discriminant rule allocates case w to group a if f̂a(w)
maximizes f̂j(w) for j = 1, ..., k. This rule is robust to nonnormality and the assumption

of equal population dispersion matrices, but f̂j is hard to compute for p > 1.

68) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likelihood dis-
criminant rule. See HW6 D, Q6.

For the following rules, assume that costs of correct and incorrect allocation are
unknown or equal, and assume that the probabilities ρa(wi) that wi is in group a are
unknown or equal: ρa(wi) = 1/k for a = 1, ..., k. Often it is assumed that the k groups
have the same covariance matrix Σx. Then the pooled covariance matrix estimator is

Spool =
1

n − k

k
∑

j=1

(nj − 1)Sj

where n =
∑k

j=1 nj . Let (µ̂j, Σ̂j) be the estimator of multivariate location and dispersion

for the jth group, eg the sample mean and sample covariance matrix (µ̂j, Σ̂j) = (xj, Sj).

69) Assume the population dispersion matrices are equal: Σj ≡ Σ for j = 1, ..., k.

Let Σ̂pool be an estimator of Σ. Then the linear discriminant rule is allocate w to the
group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., k. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) = (xj , Spool).
LDA is robust to nonnormality and somewhat robust to the assumption of equal popu-
lation covariance matrices.

70) The quadratic discriminant rule is allocate w to the group with the largest value
of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T
Σ̂

−1

j (w − µ̂j)

where j = 1, ..., k. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) = (xj, Sj).
QDA has some robustness to nonnormality.

71) The distance discriminant rule allocates w to the group with the smallest squared

distance D2
w(µ̂j, Σ̂j) = (w − µ̂j)

T
Σ̂

−1

j (w − µ̂j) where j = 1, ..., k. This rule is robust to
nonnormality and the assumption of equal Σj , but needs nj > 10p for j = 1, ..., k.
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72) Assume that k = 2 and that there is a group 0 and a group 1. Let ρ(w) = P (w ∈
group 1). Let ρ̂(w) be the logistic regression (LR) estimate of ρ(w). Logistic regression

produces an estimated sufficient predictor ESP = α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and allocates
w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates w to group 1 if ESP > 0
and allocates w to group 0 if ESP < 0.

73) Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is a plot
of ESP versus Yi (on the vertical axis) with ρ̂(xi) ≡ ρ̂(ESP ) added as a visual aid
where xi is the vector of predictors for case i. Also divide the ESP into J slices with
approximately the same number of cases in each slice. Then compute the sample mean
= sample proportion in slice s: ρ̂s = Y s =

∑

s Yi/ms where ms is the number of cases
in slice s. Then plot the resulting step function as a visual aid. If n0 and n1 are the
sample sizes of both groups and ni > 5p, then the logistic regression model was useful
if the step function of observed slice proportions scatter fairly closely about the logistic
curve ρ̂(ESP ). If the LR response plot is good, n0 > 5p and n1 > 5p, then the LR rule
is robust to nonnormality and the assumption of equal population dispersion matrices.
Know how to tell a good LR response plot from a bad one. See HW6 E, Q6.

74) Given LR output, as shown below in symbols and for a real data set, and given
x to classify, be able to a) compute ESP, b) classify x in group 0 or group 1, c) compute
ρ̂(x). See HW6 E, Q6.

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status Terms = (Bottom Left) Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004
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75) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it is known
that xij came from group j where there are k ≥ 2 groups. Use the discriminant analysis
method to classify the training data. If mj of the nj group j cases are correctly classified,
then the apparent error rate for group j is 1−mj/nj . If mA =

∑k
j=1 mj of the n =

∑k
j=1 nj

cases were correctly classified. Then the apparent error rate AER = 1 − mA/n.
76) For the ddiscr method, get the apparent error rate for each of the k groups with

the following commands. Replace ddiscr by ddiscr2 for the ddiscr2 method.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$err

Get apparent error rates for ddiscr, LDA and QDA with the following commands.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$toterr

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3 and x7 with the following com-
mands.

out <- ddiscr(x[,c(1,3,7)],w=x[,c(1,3,7)],group,xwflag=T)

out$toterr

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4 and x5 with the following
commands.

out <- ddiscr(x[,-c(1,4,5)],w=x[,-c(1,4,5)],group,xwflag=T)

out$toterr

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)
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77) Expect the apparent error rate to be too low: the method works better on the
training data than on the new data to be classified.

78) Cross validation (CV): for i = 1, ..., n where the training data has n cases, compute
the discriminant rule with case i left out and see if the rule correctly classifies case i. Let
mC be the number of cases correctly classified. Then the CV error rate is 1 − mC/n.

79) Suppose the training data has n cases. Randomly select a subset L of m cases
to be left out when computing the discriminant rule. Hence n − m cases are used to
compute the discriminant rule. Let mL be the number of cases from subset L that are
correctly classified. Then the “leave a subset out” error rate is 1−mL/m. Here m should
be large enough to get a good rate. Often m uses between 0.1n and 0.5n.

80) Variable selection is the search for a subset of variables that does a good job of
classification.

81) Forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the AER. So W1

and W2 are in the model at the end of Step 2).
Step k) Have W1, ..., Wk−1 in the model. Add variable Wk that minimizes the AER.

So W1, ..., Wk are in the model at the end of Step k).
Step p) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
82) Backward elimination: suppose X1, ..., Xp are variables.
Step 1) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p−1 variables W1, ..., Wp−1

minimizes the AER.
Step 3) Delete variable Wp−1 = Xj such that the model with p−2 variables W1, ..., Wp−2

minimizes the AER.
Step k) W1, ..., Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj such that the

model with p − k + 1 variables W1, ..., Wp−k+1 minimizes the AER.
Step p) Have W1 and W2 in the model. Delete variable W2 such that the model with

1 variable W1 minimizes the AER.
83) Other criterion can be used and proc stepdisc in SAS does variable selection.
84) In R, using LDA, leave one variable out at a time as long as the AER does not

increase much, to find a good subset quickly.
85) For PCA, the summary(out) statement shows

Importance of components: PC1 PC2 · · · PCk · · · PCp

Standard deviation
√

λ̂1

√

λ̂2 · · ·
√

λ̂k · · ·
√

λ̂p

Proportion of variance λ̂1
∑p

i=1
λ̂i

λ̂2
∑p

i=1
λ̂i

· · · λ̂k
∑p

i=1
λ̂i

· · · λ̂p
∑p

i=1
λ̂i

Cumulative Proportion λ̂1
∑p

i=1
λ̂i

∑

2

j=1
λ̂j

∑p

i=1
λ̂i

· · ·
∑k

j=1
λ̂j

∑p

i=1
λ̂i

· · · 1

Recall that if R or RU is used, then
∑p

i=1 λ̂i = p. Typically want to keep the first m

principal components where

∑m
j=1 λ̂j

∑p
i=1 λ̂i

> a where the threshold a is a number like 0.9, 0.8

or 0.7.
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