
Exam 3 review. 7 sheets of notes and a calculator. Wednesday, May 1.

Types of problems.

See the discriminant analysis problems from exam 2 review, especially 75)-84).
86) For PCA, a biplot is a plot of the first principal component versus the second prin-

cipal component. The plotted points are êT
j xi for j = 1, 2 where the classical biplot uses

i = 1, ..., n and the robust plot uses cases in the RMVN set U . Let êj = (ê1j, ê2j, ..., êpj)
T .

Then êkj is called the loading of the kth variable on the jth principal component. An
arrow with the kth variable name is the vector from the origin (0, 0)T to the loadings
(êk1, êk2)

T . So if the arrow is in the first quadrant, both loadings are positive, etc. If
the arrow is long to the right but short down, then the loading with the first principal
component is large and positive while the loading with the second principal component
is small and negative. Be able to interpret the classical and robust biplots, as in HW8 B
and Q8.

87) The one sample Hotelling’s T 2 test is used to test H0 : µ = µ0 versus HA : µ 6=
µ0. The test rejects H0 if T 2

H = n(x − µ0)
TS−1(x − µ0) >

(n − 1)p

n − p
Fp,n−p,1−α where

P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.

If a multivariate location estimator T satisfies
√

n(T − µ)
D→ Np(0, D), then a com-

peting test rejects H0 if T 2
C = n(T −µ0)

TD̂
−1

(T −µ0) >
(n − 1)p

n − p
Fp,n−p,1−α if H0 holds

and D̂ is a consistent estimator of D. The scaled F cutoff can be used since T 2
C

D→ χ2
p if

H0 holds, and
(n − 1)p

n − p
Fp,n−p,1−α → χ2

p,1−α as n → ∞.

88) Let pval be an estimate of the pvalue. As a benchmark for hypothesis testing,
use α = 0.05 if α is not given.

89) Typically use T 2
C = T 2

H in the following 4 step one sample Hotelling’s T 2
C test.

i) State the hypotheses H0 : µ = µ0 H1 : µ 6= µ0.

ii) Find the test statistic T 2
C = n(T − µ0)

T D̂
−1

(T −µ0).
iii) Find pval =

P

(

n − p

(n − 1)p
T 2

C < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then conclude that
µ 6= µ0 while if you fail to reject H0 conclude that the population mean µ = µ0 or that
there is not enough evidence to conclude that µ 6= µ0. Reject H0 if pval < α and fail to
reject H0 if pval ≥ α.

90) The multivariate matched pairs test is used when there are k = 2 treatments
applied to the same n cases with the same p variables used for each treatment. Let
yi be the p variables measured for treatment 1 and zi be the p variables measured for
treatment 2. Let xi = yi − zi. Let µ = E(x) = E(y) − E(z). Want to test if µ = 0,
so E(y) = E(z). The test can also be used if (xi, yi) are matched (highly dependent)
in some way. For example if identical twins are in the study, xi and yi could be the
measurements on each twin. Let (x, Sx) be the sample mean and covariance matrix of
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the xi.

91) The large sample multivariate matched pairs test has 4 steps.
i) State the hypotheses H0 : µ = 0 H1 : µ 6= 0.
ii) Find the test statistic T 2

M = nxTS−1
x x.

iii) Find pval =

P

(

n − p

(n − 1)p
T 2

M < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then conclude that
µ 6= 0 while if you fail to reject H0 conclude that the population mean µ = 0 or that
there is not enough evidence to conclude that µ 6= 0. Reject H0 if pval < α and fail to
reject H0 if pval ≥ α. Give a nontechnical sentence if possible.

92) Repeated measurements = longitudinal data analysis. Take p measurements on
the same unit, often the same measurement, eg blood pressure, at several time periods.
The variables are X1, ..., Xp where often Xk is the measurement at the kth time period.
The E(x) = (µ1, ..., µp)

T = (µ + τ1, ..., µ + τp)
T . Let yij = xij − xi,j+1 for i = 1, ..., n and

j = 1, ..., p−1. Then y = (x1−x2, x2−x3, ..., xp−1−xp)
T . If µY = E(yi), then µY = 0 is

equivalent to µ1 = · · · = µp where E(Xk) = µk. Let Sy be the sample covariance matrix
of the yi.

93) The large sample repeated measurements test has 4 steps.
i) State the hypotheses H0 : µy = 0 H1 : µy 6= 0.

ii) Find the test statistic T 2
R = nyT S−1

y y.
iii) Find pval =

P

(

n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then conclude that
µy 6= 0 while if you fail to reject H0 conclude that the population mean µy = 0 or that
there is not enough evidence to conclude that µy 6= 0. Reject H0 if pval < α and fail to
reject H0 if pval ≥ α. Give a nontechnical sentence, if possible.

94) The F tables give left tail area and the pval is a right tail area. Table 15.5 gives

Fk,d,0.95. If α = 0.05 and
n − p

(n − 1)p
T 2

C < Fk,d,0.95, then fail to reject H0. If
n − p

(n − 1)p
T 2

C ≥
Fk,d,0.95 then reject H0.

a) For the one sample Hotelling’s T 2
C test, and the matched pairs T 2

M test, k = p and
d = n − p. See HW8 D) and Q8.

b) For the repeated measures T 2
R test, k = p− 1 and d = n− p + 1. See HW8 E) and

Q8.

95) If n > 10p, the tests in 89), 91) and 93) are robust to nonnormality. For the one
sample Hotelling’s T 2

C test and the repeated measurements test, make a DD plot. For
the multivariate matched pairs test, make a DD plot of the xi, of the yi and of the zi.

96) Suppose there are two independent random samples X1,1, ..., Xn1,1 and X1,2, ..., Xn2,2

from populations with mean and covariance matrices (µi,Σxi
) for i = 1, 2 where the µi

are p × 1 vectors. Let dn = min(n1 − p, n2 − p). The
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large sample two sample Hotelling’s T 2
0 test is a 4 step test:

i) State the hypotheses H0 : µ1 = µ2 H1 : µ1 6= µ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then conclude
that the population means are not equal while if you fail to reject H0 conclude that the
population means are equal or that there is not enough evidence to conclude that the
population means differ. Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a
nontechnical sentence if possible.

97) Tests for covariance matrices are very nonrobust to nonnormality. Let a plot of x
versus y have x on the horizontal axis and y on the vertical axis. A good diagnostic is to
use the DD plot. So a diagnostic for H0 : Σx = Σ0 is to plot Di(x, S) versus Di(x,Σ0)
for i = 1, ..., n. If n > 10p and H0 is true, then the plotted points in the DD plot should
cluster tightly about the identity line.

98) A test for sphericity is a test of H0 : Σx = dIp for some unknown constant d > 0.
As a diagnostic, make a “DD plot” of D2

i (x, S) versus D2
i (x, Ip). If n > 10p and H0

is true, then the plotted points in the “DD plot” should cluster tightly about the line
through the origin with slope d.

99) Now suppose there are k samples, and want to test H0 : Σx1
= · · · = Σxk

, that
is, all k populations have the same covariance matrix. As a diagnostic, make a DD plot
of Di(xj, Sj) versus Di(xj, Spool) for j = 1, ..., k and i = 1, ..., ni.

100) The multivariate linear model yi = BTxi + εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables X1, X2, ..., Xp. The ith case is
(xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in the model, then xi1

could be omitted from the case. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n. Also E(ei) = 0

while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are unknown matrices of
parameters to be estimated, and E(Z) = XB while E(Yij) = xT

i βj.

The data matrix W = [X Y ] except usually the first column 1 of X is omitted if
X1 = 1. The n × m matrix

Z =













Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m













=
[

Y 1 Y 2 . . . Y m

]

=









yT
1
...

yT
n









.

The n × p matrix

X =













x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p













=
[

v1 v2 . . . vp

]

=









xT
1
...

xT
n









where often v1 = 1.

3



The p × m matrix

B =













β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m













=
[

β1 β2 . . . βm

]

.

The n ×m matrix

E =













ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m













=
[

e1 e2 . . . em

]

=









εT
1
...

εT
n









.

Warning: The ei are error vectors, not orthonormal eigenvectors.

101) The univariate linear model is Yi = xi,1β1 +xi,2β2 + · · ·+xi,pβp +ei = xT
i β+ei =

βTxi + ei for i = 1, . . . , n. In matrix notation, these n equations become Y = Xβ + e,
where Y is an n × 1 vector of response variables, X is an n × p matrix of predictors, β

is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

102) Each response variable in a multivariate linear model follows a univariate linear
model Y j = Xβj +ej for j = 1, ..., m where it is assumed that E(ej) = 0 and Cov(ej) =
σjjIn.

103) The one way MANOVA model is a generalization of the Hotelling’s T 2 test from
2 groups to p ≥ 2 groups, assumed to have different means but a common covariance
matrix Σε. Want to test H0 : µ1 = · · · = µp. This model is a multivariate linear model
so there are m response variables Y1, ..., Ym measured for each group. Each Yi follows a
one way ANOVA model for i = 1, ..., m.

104) For the one way MANOVA model, make a DD plot of the residuals ε̂i where
i = 1, ..., n. Use the plot to check whether the εi follow a multivariate normal distribution
or some other elliptically contoured distribution. Want n > 10p.

105) For the one way MANOVA model, write the data as Yijk where i = 1, ..., p
and j = 1, ..., ni. So k corresponds to the kth variable Yk for k = 1, ..., m. Then
Ŷijk = µ̂ik = Y i0k for i = 1, ..., p. So for the kth variable, mean µ1k, ..., µpk are of interest.

The residuals are rijk = Yijk − Ŷijk. For each variable Yk make a response plot of Y i0k

versus Yijk and a residual plot of Y i0k versus rijk. Both plots will consist of p dot plots of
nk cases located at the Y i0k. The dot plots should follow the identity line in the response
plot and the horizontal r = 0 line in the residual plot for each of the m response variables
Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot plot. If each ni ≥ 5,
want max(R1k, ..., Rpk) ≤ 2min(R1k, ..., Rpk). The one way MANOVA model may be
reasonable if the m response and residual plots satisfy the above graphical checks.
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106) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0 and conclude
that not all of the p treatment means are equal. If pval > α, fail to reject H0 and conclude
that all p treatment means are equal or that there is not enough evidence to conclude
that not all of the p treatment means are equal. Give a nontechnical sentence as the
conclusion, if possible.

107) The one way MANOVA test assumes that Σx1
= · · · = Σxp , but has some

resistance to this assumption. See point 105).
108) Know how to use randomization to assign units to treatment groups with the

R/Splus function sample that is used to draw a random permutation of {1, 2, ..., n}. If
the units are a1, ..., a9 and the sample(9) command gives 6 7 9 5 1 4 2 8 3, then
a6, a7 and a9 are assigned treatment 1, a5, a1 and a4 are assigned treatment 2, and a2, a8

and a3 are assigned treatment 3.

109) Factor analysis is use to write Σ̂ ≈ L̂L̂
T

+ Ψ̂ = Σ̂F . Factor analysis clusters
variables into groups called factors and suggests that the m < p factors explain the
dispersion more simply than X1, ..., Xp. L̂ = [L1, ..., Lm] is the matrix of factor loadings.

110) Factor analysis output is a lot like PCA output, but replace PC1, ..., PCp by

Factor 1, ..., Factor m:
Factor 1 Factor 2 · · · Factor m

L̂1 L̂2 · · · L̂m

111) To try to explain Factor j, look at entries in L̂j that are large in magnitude and
ignore entries close to zero. Sometimes only one entry is large. Sometimes all of the large
entries have approximately the same size and sign, then the Factor is interpreted as an
average of these entrees. If all of the large entries have approximately the same size but
different signs then the Factor is interpreted as the sum of the variables with the positive
sign − the sum of the variables with a minus sign. Thus if exactly two entries are of
similar large magnitude but of different sign, the Factor is interpreted as a difference of
the two entrees. If there are k ≥ 2 large entrees that differ in magnitude, then the Factor
is interpreted as a linear combination of the corresponding variables.

112) The proportion of variance explained and cumulative proportion of variance
explained are interpreted as for PCA. Use the k factor model if the proportion of the
variance explained by the first k Factors is larger than some percentage such as 50%,
60%, 70%, 80% or 90%.

113) For a k factor model, want the degrees of freedom d ≥ 0 where
d = 0.5(p − k)2 − 0.5(p + k).

114) If the 1 factor model is not adequate, R will give a test for whether a k factor
model is sufficient. A k factor model with pval < 0.05 is not sufficient: more factors are
needed. A k factor model with pval > 0.05 is sufficient.

115) Let Γ̂ be an orthogonal matrix. The L̂ΓL̂
T

Γ = L̂Γ̂Γ̂
T
L̂

T
= L̂L̂

T
. The varimax

and promax rotations seek Γ̂ such that L̂Γ = L̂Γ̂ has loadings that are easier to interpret
than the loadings of L̂. The promax rotation attempts to produce loading with a lot of
zeroes.
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116) The multivariate linear regression model is a special case of the multivariate
linear model where at least one predictor variable Xj is continuous. The MANOVA
model is a multivariate linear model where all of the predictors are categorical variables
so the Xj are coded and are often indicator variables.

117) The multivariate linear regression model yi = BT xi + εi for i = 1, ..., n
has m ≥ 2 response variables Y1, ..., Ym and p predictor variables X1, X2, ..., Xp. The ith
case is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The constant xi1 = 1 is in the model, and

is often omitted from the case and the data matrix. The model is written in matrix form
as Z = XB +E. The model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n.
Also E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are unknown
matrices of parameters to be estimated, and E(Z) = XB while E(Yij) = xT

i βj.
118) Each response variable in a multivariate linear regression model follows a uni-

variate linear regression model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

119) For each variable Yk make a response plot of Ŷik versus Yik and a residual plot
of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression model is appropriate,
then the plotted points should cluster about the identity line in each of the m response
plots. If outliers are present or if the plot is not linear, then the current model or data
need to be changed or corrected. If the model is good, then the each of the m residual
plots should be ellipsoidal with no trend and should be centered about the r = 0 line.
There should not be any pattern in the residual plot: as a narrow vertical strip is moved
from left to right, the behavior of the residuals within the strip should show little change.
Outliers and patterns such as curvature or a fan shaped plot are bad.

120) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors. Use
power transformations to remove strong nonlinearities.

121) Consider testing LB = 0 where L is a r × p full rank matrix. Let W e = Ê
T
Ê

and W e/(n − p) = Σ̂ε. Let H = B̂
T
LT [L(XT X)−1LT ]−1LB̂. Let λ1 ≥ λ2 ≥ · · · ≥ λm

be the ordered eigenvalues of W −1
e H . Then there are four commonly used test statistics.

The Wilk’s Λ statistic is Λ(L) = |(H +W e)
−1W e| = |W−1

e H +I|−1 =
m
∏

i=1

(1+λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m
∑

i=1

λi

1 + λi

.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m
∑

i=1

λi =

1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

The Roy’s maximum root statistic is λmax(L) = λ1.

122) Under regularity conditions, −[n − p + 1 − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm,

(n − p)V (L)
D→ χ2

rm, (n − p)U(L)
D→ χ2

rm, and if h = max(r, m),

n − p − h + r

h
λmax(L) ≈ F (h, n− p − h + r).

The Hotelling Lawley statistic is robust against nonnormality.
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123) For the Wilk’s Lambda test,

pval = P

(

−[n − p + 1 − 0.5(m − r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)

.

For the Pillai’s trace test, pval = P
(

n − p

rm
V (L) < Frm,n−rm

)

.

For the Hotelling Lawley trace test, pval = P
(

n − p

rm
U(L) < Frm,n−rm

)

.

The above three tests are large sample tests, P(reject H0|H0 is true) → α as n → ∞,
under regularity conditions.

For the Roy’s largest root test, use

pval = P

(

n − p − h + r

h
λmax(L) < Fh,n−p−h+r

)

.

The F statistic is an upper bound on the F statistic that provides a lower bound on
the nominal level of significance, α, under regularity conditions.

124) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1]:
i) State the hypotheses H0: the nontrivial predictors are not needed in the mreg model
H1: at least one of the nontrivial predictors is needed
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. If H0 is rejected, conclude that
there is a mreg relationship between the response variables Y1, ..., Ym and the predictors
X2, ..., Xp. If you fail to reject H0, conclude that there is a not a mreg relationship
between Y1, ..., Ym and the predictors X2, ..., Xp. (Get the variable names from the story
problem.)

125) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1 is in
the jth position. Let bT

j be the jth row of B. i) State the hypotheses H0 :

bbT
j = 0 H1 : bT

j 6= 0

ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. Give a nontechnical sentence
restating your conclusion in terms of the story problem. If H0 is rejected, then conclude
that Xj is needed in the mreg model for Y1, ..., Ym given that the other predictors are
in the model. If you fail to reject H0, then conclude that Xj is not needed in the mreg
model for Y1, ..., Ym given that the other predictors are in the model. (Get the variable
names from the story problem.)

126) The 4 step MANOVA partial F test of hypotheses has a full model using all
of the variables and a reduced model where r of the variables are deleted. The ith row of
L has a 1 in the position corresponding to the ith variable to be deleted. Omitting the
jth variable corresponds to the Fj test while omitting variables X2, ..., Xp corresponds to
the MANOVA F test.
i) State the hypotheses H0: the reduced model is good H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval < α, reject H0 and conclude that the full model should be used.
If pval ≥ α, fail to reject H0 and conclude that the reduced model is good.
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127) The 4 step MANOVA F test should reject H0 if the response and residual plots
look good, n is large enough and at least one response plot does not look like the corre-
sponding residual plot. A response plot for Yj will look like a residual plot if the identity

line appears almost horizontal, hence the range of Ŷj is small.
128) The mpack function mltreg produces the m response and residual plots, gives

B̂, Σ̂ε, the MANOVA partial F test statistic and pval corresponding to the reduced
model that leaves out the variables given by indices (so X2 and X4 in the output below
with F = 0.77 and pval = 0.614), Fj and the pval for the Fj test for variables 1, 2, ..., p
(where p = 4 in the output below so F2 = 1.51 with pval = 0.284) and F0 and pval for the
MANOVA F test (in the output below F0 = 3.15 and pval= 0.06). The command out <-

mltreg(x,y,indices=c(2))would produce a MANOVA partial F test corresponding to
the F2 test while the command out <- mltreg(x,y,indices=c(2,3,4))would produce
a MANOVA partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742
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129) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where ŷi = β̂
T

i xf .

130) Σ̂ε =
Ê

T
Ê

n − p
=

1

n − p

n
∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of the residuals

is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n − 1
. Both Σ̂ε and Sr are

√
n consistent estimators of Σε for a

large class of error distributions for εi.

131) The 100(1−α)% nonparametric prediction region for yf given xf is the nonpara-

metric prediction region from
∮

5.2 applied to ẑi = ŷf + ε̂i = B̂
T
xf + ε̂i for i = 1, ..., n.

This takes the data cloud of the n residual vectors ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf , Sr) = (ẑi − ŷf )

T S−1
r (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − α + 0.05, 1 − α + m/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αm/n), otherwise.

If qn < 1 − α + 0.001, set qn = 1 − α. Let 0 < α < 1 and h = D(Un) where D(Un) is the
qnth sample quantile of the Di. The 100(1−α)% nonparametric prediction region for yf

is
{z : (z − ŷf)

T S−1
r (z − ŷf ) ≤ D2

(Un)} = {z : Dz(ŷf , Sr) ≤ D(Un)}.
a) Consider the n prediction regions for the data where (yf,i, xf,i) = (yi, xi) for

i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the n prediction regions
contain yi where Un/n → 1 − α as n → ∞.

b) If (ŷf , Sr) is a consistent estimator of (E(yf),Σε) then the nonparamtric predic-
tion region is a large sample 100(1 − α)% prediction region for yf .

c) If (ŷf , Sr) is a consistent estimator of (E(yf ),Σε), and the εi come from an ellip-
tically contoured distribution such that the highest density region is {z : Dz(0,Σε) ≤
D1−α}, then the nonparametric prediction region is asymptotically optimal.

132) On the DD plot for the residuals, the cases to the left of the vertical line corre-
spond to cases that would have yf = yi in the nonparametric prediction region if xf = xi

while the cases to the right of the line would not have yf = yi in the nonparametric pre-
diction region.

133) The DD plot for the residuals is interpreted almost exactly as a DD plot for iid
multivariate data is interpreted. Plotted points clustering about the identity line suggests
that the εi may be iid from a multivariate normal distribution while plotted points that
lie above the identity line but cluster about a line through the origin with slope greater
than 1 suggests that the εi may be iid from an elliptically contoured distribution that
is not MVN. The semiparametric and parametric MVN prediction regions correspond to
horizontal lines on the DD plot. Robust distances have not been shown to be consistent
estimators of the population distances, but are useful for a graphical diagnostic.

134) A robust multivariate linear regression method replaces least squares with the
hbreg estimator. The probability that the robust estimator equals the least squares
estimator goes to 1 as n → ∞ for a large class of error distributions. Hence the hypothesis
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tests and nonparametric prediction regions for the classical method can be applied to the
robust method. The entries of B̂ are hard to drive to ±∞ for the robust estimator, and
the residuals corresponding to outliers are often large. Since the residuals are used to
compute Σ̂ε, the tests of hypothesis based on the robust estimator are not robust to
the presence of outliers. But the robust estimator and classical estimator tend to give
different response and residual plots and test statistics when outliers are present.

135) For factor analysis, variables given nonzero loadings by promax are important
for the factor. See Quiz 10 and homework 10.

Emphasis on quiz 7-11 and homework 7-11. Sections covered: Olive (2012) skim ch.4
with emphasis on p. 62, DGK, MB, FCH, RFCH and RMVN estimators, DD plot. From
∮

5.1, Def. 5.1, Applications 5.1 and 5.2. Ch. 6, Ch. 8-12.
Johnson and Wichern (1988):

∮

5.3, 5.5; 6.4, ch. 7, 8, 9, 11
Final: Tuesday, May 7, 8:00-10:00.
Cumulative: 14 sheets of notes and a calculator.
Projects are also due Tuesday, May. 7, by 2:50, but you may turn your project in

earlier.
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