Math 583 HW 3 Fall 2017. Due Wednesday, Sept. 13. Quiz 3 on Friday, Sept. 15 is similar to HW 3. Use 3 sheets of notes.

Problem numbers are from the Olive text.

A) 1.3. Suppose $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ are iid $p \times 1$ random vectors from a multivariate tdistribution with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ with d degrees of freedom. Then $E(\boldsymbol{x}_i) = \boldsymbol{\mu}$ and $\operatorname{Cov}(\boldsymbol{x}) = \frac{d}{d-2}\boldsymbol{\Sigma}$ for d > 2. Assuming d > 2, find the limiting distribution of $\sqrt{n}(\boldsymbol{\overline{x}} - \boldsymbol{c})$ for appropriate vector \boldsymbol{c} .

B) 2.1. Consider the Cushny and Peebles data set (see Staudte and Sheather 1990, p. 97) listed below. Find shorth(7). Show work.

 $0.0 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.3 \quad 1.3 \quad 1.4 \quad 1.8 \quad 2.4 \quad 4.6$

See example done in class and Olive (2020, pp. 91-91).

C) 2.6. To find the sample median of a list of n numbers where n is odd, order the numbers from smallest to largest and the median is the middle ordered number. The sample median estimates the population median. Suppose the sample is $\{14, 3, 5, 12, 20, 10, 9\}$. Find the sample median for each of the three bootstrap samples listed below.

Sample 1: 9, 10, 9, 12, 5, 14, 3

Sample 2: 3, 9, 20, 10, 9, 5, 14

Sample 3: 14, 12, 10, 20, 3, 3, 5

Copy and paste the two source commands from near the top of slrhw.txt for the following R problems.

D) 2.9. a) Type the *R* command predsim() and paste the output into *Word*.

This program computes $\mathbf{x}_i \sim N_4(\mathbf{0}, diag(1, 2, 3, 4))$ for i = 1, ..., 100 and $\mathbf{x}_f = \mathbf{x}_{101}$. One hundred such data sets are made, and ncvr, scvr, and mcvr count the number of times \mathbf{x}_f was in the nonparametric, semiparametric, and parametric MVN 90% prediction regions. The volumes of the prediction regions are computed and voln, vols, and volm are the average ratio of the volume of the *i*th prediction region over that of the semiparametric region. Hence vols is always equal to 1. For multivariate normal data, these ratios should converge to 1 as $n \to \infty$.

b) Were the three coverages near 90%?

E) 2.10. Consider the multiple linear regression model $Y_i = \beta_1 + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + e_i$ where $\beta = (1, 1, 0, 0)^T$. The function regbootsim2 bootstraps the regression model, finds bootstrap confidence intervals for β_i and a bootstrap confidence region for $(\beta_3, \beta_4)^T$ corresponding to the test H_0 : $\beta_3 = \beta_4 = 0$ versus H_A : not H_0 . See Olive (2017, p. 82). The lengths of the CIs along with the proportion of times the CI for β_i contained β_i are given. The fifth interval gives the length of the interval $[0, D_{(c)}]$ where H_0 is rejected if $D_0 > D_{(c)}$ and the fifth "coverage" is the proportion of times the test fails to reject H_0 . Since nominal 95% CIs were used and the nominal level of the test is 0.05 when H_0 is true, we want the coverages near 0.95. The CI lengths for the first 4 intervals should be near 0.392. The residual bootstrap is used. (See next page.)

Copy and paste the commands for this problem into R, and include the output in *Word*.