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1 Introduction

Classification is an important goal in many branches of mathematics. The idea
is to describe the members of some class of mathematical objects, up to isomor-
phism or other important equivalence, in terms of relatively simple invariants.
Where this is impossible, it is useful to have concrete results saying so. In model
theory and descriptive set theory, there is a large body of work, showing that
certain classes of mathematical structures admit classification, while others do
not. In the present paper, we describe some recent work on classification in
computable structure theory.

Section 1 gives some background from model theory and descriptive set the-
ory. From model theory, we give sample structure and non-structure theorems
for classes that include structures of arbitrary cardinality. We also describe the
notion of Scott rank, which is useful in the more restricted setting of countable
structures. From descriptive set theory, we describe the basic Polish space of
structures for a fixed countable language with fixed countable universe. We
give sample structure and non-structure theorems based on the complexity of
the isomorphism relation, and on Borel embeddings.

Section 2 gives some background on computable structures. We describe
three approaches to classification for these structures. The approaches are all
equivalent. However, one approach, which involves calculating the complexity
of the isomorphism relation, has turned out to be more productive than the
others. Section 3 describes results on the isomorphism relation for a number
of mathematically interesting classes—various kinds of groups and fields. In
Section 4, we consider a setting similar to that in descriptive set theory. We
describe an effective analogue of Borel embedding which allows us to make
distinctions even among classes of finite structures. Section 5 gives results on
computable structures of high Scott rank. Some of these results make use of
computable embeddings.

We shall assume some background in computability—m-reducibility, arith-
metical and hyperarithmetical hierarchies, Σ1

1 and Π1
1 sets and relations. This

material may be found in [46], or in [1].
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1.1 Background from model theory

In classical model theory, the basic setting is the class K of models for a count-
able complete elementary first order theory. If the theory has an infinite model,
then there are models of all infinite cardinalities. For the theory of vector spaces
over the rationals, each model is determined up to isomorphism by its dimen-
sion. More generally, for an ℵ1-categorical theory T , each model is determined,
up to isomorphism, by the dimension of a “strongly minimal” formula, with
parameters satisfying a principal type [39], [2]. This is the prototypical struc-
ture theorem. For the theory of dense linear orderings without endpoints, or
other unstable theory, there are 2κ non-isomorphic models of cardinality κ, for
all κ ≥ ℵ1, too many to allow nice invariants [51]. (See [25] for a discussion of
further structure and non-structure theorems in the setting of models having
arbitrary cardinality.)

Vaught [54] focused attention on countable models. Let T be a countable
complete elementary first order theory, and consider the number of countable
models, up to isomorphism. There are familiar examples illustrating some pos-
sible numbers. For the theory of dense linear orderings without endpoints, the
number is 1. For the theory of vector spaces over the rationals, the number is
ℵ0. For true arithmetic, the number is 2ℵ0 . Ehrenfeucht found an example for
which the number is 3: the theory of dense linear orderings without endpoints,
with a strictly increasing sequence of constants. The example is easily modified
to give examples for which the number is n, for all n ≥ 3. The Ehrenfeucht
examples are described in [54]. Vaught showed that for a countable complete
theory, the number of isomorphism types of countable models cannot be 2.

Vaught conjectured that for a countable complete theory, the number of
countable models, up to isomorphism is either ≤ ℵ0 or 2ℵ0 . Vaught’s Conjecture
has been proved for many special kinds of theories, including theories of linear
orderings [47] and trees [53], ω-stable theories [52], and superstable theories
of finite rank [6]. In the setting of Vaught’s Conjecture, the statement that
T has 2ℵ0 isomorphism types of countable models is a non-structure theorem.
The statement that T has only countably many isomorphism types of countable
models is a kind of structure theorem. While it does not provide descriptions
for the models, it holds out the possibility that there may be nice descriptions.

1.2 Infinitary formulas

In describing countable structures, certain infinitary (but still first order) sen-
tences are useful. For a language L, the Lω1ω formulas are infinitary formulas
in which the disjunctions and conjunctions over countable sets. For a thor-
ough discussion of Lω1ω, see Keisler’s beautiful book [28]. Scott [49] proved the
following.

Theorem 1.1 (Scott Isomorphism Theorem). Let A be a countable struc-
ture (for a countable language L). Then there is an Lω1ω sentence σ whose
countable models are just the isomorphic copies of A.
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A sentence σ with the property of Theorem 1.1 is called a Scott sentence for
A. In proving Theorem 1.1, Scott assigned countable ordinals to tuples in A,
and to A itself. There are several different definitions of Scott rank in use. We
begin with a family of equivalence relations.

Definition 1. Let a, b be tuples in A.

1. a ≡0 b if a and b satisfy the same quantifier-free formulas,

2. for α > 0, a ≡α b if for all β < α, for each c, there exists d, and for each
d, there exists c, such that a, c ≡β b, d.

Our relations ≡α differ from Scott’s in that we consider tuples c and d, where
Scott considered only single elements c and d.

Definition 2.

1. The Scott rank of a tuple a in A is the least β such that for all b, a ≡β b
implies (A, a) ∼= (A, b).

2. The Scott rank of the structure A, denoted by SR(A), is the least ordinal
α greater than the ranks of all tuples in A.

Example. If A is an ordering of type ω, then SR(A) = 2.

Morley [40] showed that if T is a counter-example to Vaught’s Conjecture,
then the number of isomorphism types of countable models must be ℵ1. The
idea is behind the proof is that each model must have countable Scott rank, and
for each countable ordinal α, the number of models of rank α must be countable
or 2ℵ0 . Vaught’s Conjecture holds for T iff for some countable ordinal α either
there are 2ℵ0 non-isomorphic models of rank α, or else all countable models
have Scott rank at most α. Shelah’s proof of Vaught’s Conjecture for ω-stable
theories [52] involves putting a fixed countable ordinal bound on the Scott ranks
of all models. For more information related to Scott rank, see [48].

1.3 Background from descriptive set theory

Next, we turn to descriptive set theory. We mention only a few notions and
results. For more information, see [24] or [5]. We describe a version of the basic
setting. The structures are countable, with fixed universe ω. The languages are
also countable. For a given language L, we have a list (ϕn)n∈ω of all atomic
sentences involving symbols from L plus constants from ω. We may identify a
structure A with the function f ∈ 2ω such that

f(n) =
{

1 if A |= ϕn

0 if A |= ¬ϕn

The class of all structures for the language, or functions in 2ω, has a natural
metric topology, where the distance between f, g ∈ 2ω is 1/2n if n is least such
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that f(n) 6= g(n). The class of structures for the language forms a Polish space;
i.e., it is separable and complete. The basic open neighborhoods have the form
Nσ = {f ∈ 2ω : f ⊇ σ}, where σ ∈ 2<ω. The Borel subsets are generated from
the basic open neighborhoods, by taking countable unions and complements.
We may also consider Borel subsets of a product of classes. We have Borel
relations on a given class, and Borel functions from one class to another.

We consider classes K, contained in the Polish space described above, such
that K is closed under isomorphism. By results of Scott [49], Vaught [55], and
D. Miller [38], K is Borel iff it is the class of models of some Lω1ω sentence.
We add the assumption that K is Borel. One approach to classification in this
setting is to consider the isomorphism relation on K. A result saying that the
isomorphism relation on a class K is Borel is a weak kind of structure theorem,
and a result saying that the isomorphism relation is not Borel is a non-structure
theorem.

For the class of vector spaces over Q, or the class of algebraically closed fields
of a given characteristic, the isomorphism relation is Borel. More generally, for
any class K with only countably many isomorphism types, the isomorphism
relation is Borel. The converse is not true. For example, if K is the class of
Archimedean ordered fields, then there are 2ℵ0 different isomorphism types, but
the isomorphism relation is still Borel. For the class of linear orderings, the
isomorphism relation is not Borel. Perhaps surprisingly, Hjorth [23] showed
that for the class of torsion-free Abelian groups, the isomorphism relation is not
Borel.

There is a second approach to classification, which involves comparing classes,
and provides a great deal of information. This is the approach of Friedman and
Stanley [16].

Definition 3. Let K,K ′ be classes of structures. We say that Φ is a Borel
embedding of K in K ′ if Φ is a Borel function from K to K ′, and for A,A′ ∈ K,
A ∼= A′ iff Φ(A) ∼= Φ(A′). (More properly, we might say that Φ is an embedding
of K in K ′ up to isomorphism, or an embedding of K/∼= in K ′/∼=.)

Notation: We write K ≤B K ′ if there is a Borel embedding of K in K ′.

Proposition 1.2. The relation ≤B is a partial order on the set of all classes.

A Borel embedding gives us a way of transferring descriptions from one
class to another. If K ≤B K ′, under the Borel embedding Φ, and K ′ has simple
invariants, then we may describe A ∈ K by giving the invariants for Φ(A). We
say that K is Borel complete if for all K ′, K ′ ≤B K; equivalently, K ′ ≤B K,
where K ′ is the class of all structures for a language with at least one at least
binary relation symbol. Our intuition says that K ′ cannot be classified, so
the statement that K is Borel complete is a convincing non-structure theorem.
Friedman and Stanley [16] produced Borel embeddings of undirected graphs in
fields of arbitrary characteristic, trees, and linear orderings, showing that all of
these classes are “Borel complete”. We shall say more later about some of these
embeddings.
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2 Computable structures

We now turn to computable structures. The languages that we consider are
computable; i.e., the set of non-logical symbols is computable, and we can ef-
fectively determine the kind (relation or function) and the arity. The structures
have universe a subset of ω, and we identify a structure A with its atomic di-
agram D(A). A structure A is computable if D(A) is computable. Then a
computable index for A is a number e such that ϕe is the characteristic func-
tion of D(A). We write Ae for the structure with index e (if there is such a
structure).

2.1 Computable infinitary formulas

In describing computable structures, it is helpful to use computable infinitary
formulas. Roughly speaking, these are infinitary formulas in which the dis-
junctions and conjunctions are over computably enumerable sets. For a more
thorough discussion, see [1].

Example: There is a natural computable infinitary sentence whose models are
just the Abelian p-groups—the conjunction of the usual axioms for Abelian
groups, plus

∀x
∨
n

∨
x+ . . .+ x︸ ︷︷ ︸

pn

= 0 .

All together, computable infinitary formulas have the same expressive power
as those in the least admissible fragment of Lω1,ω. The usefulness comes from
the following classification.

Complexity of formulas

1. A computable Σ0 and Π0 formula is a finitary open formula.

2. For α > 0, a computable Σα formula ϕ(x) is a c.e. disjunction of formulas
of the form ∃uψ(u, x), where ψ is computable Πβ for some β < α.

3. For α > 0, a computable Πα formula is a c.e. conjunction of formulas of
the form ∀uψ(u, x), where ψ is computable Σβ for some β < α.

Proposition 2.1. Satisfaction of computable Σα (or Πα) formulas in com-
putable structures is Σ0

α (or Π0
α), with all possible uniformity.

There is a version of Compactness for computable infinitary formulas which,
unlike the usual Compactness, can be used to produce computable structures.
The original result of this kind, for weak second order logic, is due to Kreisel (in
a footnote in [35]). Barwise [4] gave a result for countable admissible fragments
of Lω1ω. The special case below, with its corollaries, may be found in [1].
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Theorem 2.2 (Barwise-Kreisel Compactness). If Γ is a Π1
1 set of com-

putable infinitary sentences and every ∆1
1 subset has a model, then Γ has a

model.

Corollary 2.3. If Γ is a Π1
1 set of computable infinitary sentences and every

∆1
1 subset has a computable model, then Γ has a computable model.

The next two corollaries illustrate the power of computable infinitary for-
mulas to describe computable structures.

Corollary 2.4. If A and B are computable (or hyperarithmetical) structures
satisfying the same computable infinitary sentences, then A ∼= B.

Corollary 2.5 (Nadel [42]). Let A be a computable (or hyperarithmetical)
structure. If a and b are tuples in A satisfying the same computable infinitary
formulas, then there is an automorphism of A taking a to b.

The final corollary is a special case of a stronger result, due to Ressayre [45].

Corollary 2.6 (Ressayre). Let A be a computable (or hyperarithmetical)
structure, and let Γ be a Π1

1 set of computable infinitary sentences involving
finitely many new symbols, in addition to those in the language of A. If ev-
ery ∆1

1 subset of Γ is satisfied in an expansion of A, then A has an expansion
satisfying Γ.

2.2 Structure and non-structure theorems

Certain classes of structures arising in computable structure theory can be clas-
sified simply. Goncharov [18], [17] showed that the Boolean algebras with a
property of “computable categoricity” are the ones with only finitely many
atoms, and the linear orderings with this property are the ones with finitely
many successor pairs. In a talk in Kazan in 1997, Goncharov stated a large
number of further problems, calling for classification of further classes of com-
putable structures. Some of these problems seemed likely to have nice answers,
while others did not. At the end of the talk, Shore asked Goncharov what would
make him give up. Shore’s question was considered in [21]. The aim was to find
convincing statements for structure and non-structure theorems, like those in
model theory and descriptive set theory.

Let K be a class of structures, closed under isomorphism. Let Kc be the
set of computable elements of K. Let I(K) be the set of computable indices for
elements of Kc. We suppose that there is a computable infinitary sentence for
which Kc is the class of computable models. Equivalently, I(K) is hyperarith-
metical. In [21], three different approaches are discussed. All give intuitively
correct answers for some familiar classes (e.g., Q-vector spaces can be classified,
linear orderings cannot).

The first approach involves “Friedberg enumerations”.

Definition 4. An enumeration of Kc/∼= is a sequence (Cn)n∈ω of elements of
Kc such that for all A ∈ Kc, there exists n such that Cn

∼= A; i.e., the sequence
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represents all isomorphism types of computable members of K. The enumeration
is Friedberg if for each A ∈ Kc, there is a unique n such that Cn

∼= A; i.e.,
each isomorphism type appears just once.

The complexity of the enumeration is that of the sequence of computable
indices for elements of K. Saying that Kc/∼= has a hyperarithmetical Fried-
berg enumeration is an assertion of classifiability. Lack of repetition in the list
reflects understanding of the different isomorphism types. This approach has
considerable appeal. For one thing, in mathematical practice, a classification is
often given by a list—think of the classification of finite simple groups. Another
attractive feature of this approach is that it fits with an established body of
work on enumerations, in computability and computable structure theory [15].

The second approach to classification considered in [21] is related to Scott
ranks and Scott sentences. The result below, a consequence of Corollary 2.5,
says which Scott ranks are possible for computable structures. We have al-
ready mentioned computable ordinals. These are the order types of computable
well orderings of ω, and they form a countable initial segment of the ordinals.
The first non-computable ordinal is denoted by ωCK

1 . Nadel used a different
definition of Scott rank, but his work in [42] shows the following.

Theorem 2.7. For a computable structure A, SR(A) ≤ ωCK
1 + 1.

There are computable structures taking the maximum possible rank. Harri-
son [22] proved the following.

Proposition 2.8 (Harrison). There is a computable ordering of type
ωCK

1 (1 + η) (with a first interval of type ωCK
1 , followed by densely many more).

Proof. Kleene showed that there is a computable tree T ⊆ ω<ω with a path but
no hyperarithmetical path. Let < be the Kleene-Brouwer ordering on T . Under
this ordering, σ < τ iff either σ properly extends τ or else there is some first
n on which σ and τ differ, and for this n, σ(n) < τ(n). Harrison showed that
(T,<) has order type ωCK

1 (1 + η) + α, where α is a computable ordinal. There
is an initial segment of type ωCK

1 (1 + η).

The Harrison ordering has Scott rank ωCK
1 + 1. If a is an element outside

the initial interval of type ωCK
1 , then a has Scott rank ωCK

1 .

Theorem 2.9. For a computable structure A,

1. SR(A) < ωCK
1 if there is some computable ordinal β such that the orbits

of all tuples are defined by computable Πβ formulas.

2. SR(A) = ωCK
1 if the orbits of all tuples are defined by computable infini-

tary formulas, but there is no bound on the complexity of these formulas.

3. SR(A) = ωCK
1 + 1 if there is some tuple whose orbit is not defined by any

computable infinitary formula.
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If a computable structure has low Scott rank, then we expect it to have a
simple Scott sentence. Nadel [42], [43] showed the following.

Theorem 2.10 (Nadel). A computable (or hyperarithmetical) structure has
computable Scott rank iff it has a computable infinitary Scott sentence.

Proposition 2.11. Suppose K is a class of structures closed under isomor-
phism. If there is a computable bound on the Scott ranks of elements of Kc,
then there is a computable ordinal α such that the elements of Kc all have
computable Πα Scott sentences.

If we understand that goal of computable classification is to describe each
computable member of K, so as to distinguish its computable copies from other
computable structures, then something weaker than a Scott sentence may suffice.
A pseudo-Scott sentence for A is a sentence whose computable models are just
the computable copies of A. We do not know whether there is a computable
structure with a computable infinitary pseudo-Scott sentence but no computable
infinitary Scott sentence. What we can prove is the following.

Proposition 2.12. Let K be a class of structures closed under isomorphism.
Then the following are equivalent.

1. There is a computable ordinal α such that any elements of Kc satisfying
the same computable Πα sentences are isomorphic.

2. Each A ∈ Kc has a computable infinitary pseudo-Scott sentence.

The statements in Proposition 2.12 are structure theorems.

We turn to the third approach.

Definition 5. The isomorphism problem for K is

E(K) = {(a, b) : a, b ∈ I(K) & Aa
∼= Ab} .

The statement that E(K) is hyperarithmetical is one more structure theo-
rem. For the class of computable models of a computable infinitary sentence,
the three approaches are equivalent.

Theorem 2.13. If I(K) is hyperarithmetical, then the following are equivalent:

1. there is a computable ordinal α such that any two members of Kc satisfying
the same computable Πα sentences are isomorphic,

2. E(K) is hyperarithmetical,

3. Kc/∼= has a hyperarithmetical Friedberg enumeration.
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Proof. It is not difficult to show that 1 implies 2 and 2 implies 3. To see that 3
implies 1, we form a hyperarithmetical structure A∗ including all structures in
Kc, made disjoint. We also include a set corresponding to I(K) and a relation
Q associating each index a ∈ I(K) with the elements of the corresponding
structure Aa. Let I be a hyperarithmetical subset of I(K), representing indices
in the Friedberg enumeration. We add this to A∗. Let a, b be new constants, and
let Γ(a, b) be a Π1

1 set of computable infinitary formulas saying a, b ∈ I, x 6= y,
and for all computable ordinals α, Aa and Ab satisfy the same computable Πα

sentences. If 1 fails, then every ∆1
1 subset of Γ(a, b) is satisfiable in A∗. Then

using Corollary 2.6, we can show that the whole set is satisfiable. This is a
contradiction.

3 Isomorphism problems

Proposition 2.12 says that the three approaches to classification for computable
structures are all equivalent. The first approach, involving Friedberg enumer-
ations, is certainly appealing. However, the third approach, involving isomor-
phism problems, has proved to be more productive. When we attempt to de-
termine, for various specific classes K, whether there is a hyperarithmetical
Friedberg enumeration of Kc/∼=, it seems that we must first calculate the com-
plexity of E(K). In this section, we give a number of these calculations, mainly
from [7], [8].

Of course, if I(K) is hyperarithmetical, then E(K) must be Σ1
1, since the

isomorphism relation may be defined by a statement that asserts the existence
of a function that is total and bijective and preserves the basic relations and
operations. For some classes of structures, it is well-known that the isomorphism
problem is m-complete Σ1

1.

Theorem 3.1 (Folklore). For each of following classes K, E(K) is m-complete
Σ1

1:

1. linear orderings

2. undirected graphs

3. Boolean algebras

4. Abelian p-groups

5. arbitrary structures for language with at least one at least binary relation
symbol.

The ideas go back to Kleene and the fact that the class of indices for com-
putable trees without paths, and the class of indices for well orderings are m-
complete Π1

1 (see [46]). For 1, we show that for any Σ1
1 set S, there is a uniformly

computable sequence (An)n∈ω such that if n ∈ S, then An is a Harrison order-
ing, and if n /∈ S, then An is a well ordering. We have an m-reduction of S to
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the set of indices for the Harrison ordering. For parts 2-5, the proof is similar.
In each case, the class K contains a structure A such that for any Σ1

1 set S,
there is a uniformly computable sequence (An)n∈ω in K such that An

∼= A iff
n ∈ S. For complete proofs of all parts of the theorem, see [21].

Items 1, 2, and 5 in Theorem 3.1 match our intuition. Whatever classifi-
cation means, it should be impossible for these classes. Items 3 and 4 may be
less clear. There are well-known results describing the structure of countable
Abelian p-groups [27] in terms of the Ulm sequence and the dimension of the
divisible part. Similarly, there are results of Ketonen [29], [44] describing the
structure of countable Boolean algebras. Theorem 3.1 says that the invariants
for computable Abelian p-groups, and computable Boolean algebras are not not
uniformly simple. For the classes in the following theorem, which is proved in
[7], our intuition may not say whether there should be a structure theorem, but
the proofs make it clear that these are as bad as linear orderings or undirected
graphs.

Theorem 3.2. For the following classes K, E(K) is m-complete Σ1
1.

1. Ordered real closed fields (not necessarily Archimedean),

2. Arbitrary fields of any fixed characteristic.

The proof for 1 uses a lemma of van den Dries. For an ordered real closed
field F , we define an equivalence relation ∼, where a ∼ b if there are polynomials
p(x) and q(x), with rational coefficients, such that p(a) ≥ b and q(b) ≥ a. The
equivalence classes are intervals, so we have an induced ordering on F/∼. We
can pass from a computable linear ordering L to a computable real closed field
F (L) such that {x ∈ F : x ≥ 0}/ ∼ has order type L.

For 2, we get the characteristic zero case from 1. An alternate proof of that
case, which extends to arbitrary characteristic, uses the Friedman and Stanley
embedding of undirected graphs in fields (see Section 4).

Friedman and Stanley conjectured (in 1989) that the class of countable
torsion-free Abelian groups is Borel complete [16]. The conjecture remains open,
although Hjorth [23] succeeded in showing that the isomorphism relation on this
class is not Borel. In [9], Hjorth’s proof is adapted to give the following result.

Theorem 3.3. Let K be the class of torsion-free Abelian groups. Then E(K)
is not hyperarithmetical.

The proof involves coding trees in torsion-free Abelian groups (Hjorth used
slightly different structures). For each α, we can show that E(K) is ∆0

α hard, but
the coding method varies with α, so we do not get the fact that the isomorphism
problem is m-complete Σ1

1.

So far, we have considered classes for which the isomorphism problem is
complicated. Now, we turn to classes where the isomorphism problem should
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be less complicated. We consider classes with simple invariants. Perhaps the
nicest examples are vector spaces over a fixed field and algebraically closed fields
of fixed characteristic. For these classes, results on the isomorphism problems
match our intuition. For the vector spaces, we assume that the relevant field
is infinite, so that the class has infinite members of finite as well as infinite
dimension. We also suppose that the field is computable. The following result
is in [7].

Theorem 3.4. For the following classes K, E(K) is m-complete Π0
3.

1. Vector spaces over a fixed infinite computable field,

2. Algebraically closed fields of fixed characteristic.

Proof. In each case, we show that E(K) is Π0
3 by noting that I(K) is Π0

2 and
the following relation, on pairs (a, b) in I(K), is Π0

3:

“For all n, the structure Aa has at least n independent elements if
and only if Ab does.”

For completeness, we show that for any Π0
3 set S, there is a uniformly computable

sequence (An)n∈ω in K such that n ∈ S iff An has infinite dimension.

In [9], Theorem 3.4 is generalized to the class K of models of a strongly
minimal theory satisfying some extra conditions. The models are classified by
dimension. We add a model-theoretic condition (acl(∅) is infinite) to guarantee
that there are infinite models of finite as well as infinite dimension. We also need
some effectiveness conditions (e.g., T is decidable with effective elimination of
quantifiers).

It is also relatively simple to classify the computable Archimedean real closed
fields, since each is determined, up to isomorphism, by the Dedekind cuts that
are filled. The following result is in [7].

Theorem 3.5. If K is the class of Archimedean real closed fields, then E(K)
is m-complete Π0

3.

At this point, we return to the class of Abelian p-groups. Although we
have an algebraic classification of countable Abelian p-groups, we have seen
that the isomorphism problem is m-complete Σ1

1. In fact, there is a single
computable Abelian p-group whose inclusion in the class guarantees this. Below,
we consider subclasses of Abelian p-groups that are “reduced” and have Ulm
sequences of bounded length. For these subclasses, the isomorphism problem is
hyperarithmetical, with complexity increasing with the bound on the length.

Below, we summarize the definitions leading to the Ulm sequence. For more
information, see [27]. An Abelian p-group is reduced if it has no nontrivial
divisible subgroup. Let G be a countable reduced Abelian p-group. We begin
with the sequence of subgroups Gα, where G0 = G, Gα+1 = pGα, and for
limit α, Gα = ∩β<αGβ . Let P be the set of elements of G of order p, and let
Pα = P ∩ Gα. Since G is reduced, there is a countable ordinal α such that
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Gα = {0}. The least such α is the length λ(G). For each β < α, Pβ/Pβ+1 is a
vector space over the field with p elements. We write uβ(G) for the dimension,
which is either finite or ∞. The Ulm sequence is the sequence (uβ(G))β<λ(G).

Ulm’s Theorem says that a countable reduced Abelian p-group is determined,
up to isomorphism, by its Ulm sequence. Previous papers, including [3] and [8]
have given formulas, for any α and k, of complexity (depending on α), expressing
that the αth Ulm invariant is at least k. Let Kα be the class of reduced Abelian
p-groups of length at most α. In [8], there are results for these classes. It is
shown that E(Kω) is Π0

3, E(Kω·2) is Π0
5, and in general, E(Kω·α) is Π0

α̂, where
α̂ = sup

γ<α
(2γ + 3)

We have a problem in expressing a meaningful completeness result. Until
now, we have considered classes K for which I(K) was simpler than E(K).
However, I(Kω) is Π0

3, the same complexity as E(Kω) (and, in general, I(Kω·α)
is Π0

α̂, the same as E(Kω·α)) . It is conceivable that when we decide whether
(a, b) ∈ E(Kω), the main difficulty is determining whether a, b ∈ I(K). The
following definition, stated in [8], separates the isomorphism problem from the
problem of determining membership in the class.

Definition 6. Suppose A ⊆ B, and let Γ be a complexity class (e.g. Π0
3).

1. We say that A is Γ within B if there is some R ∈ Γ such that A = R∩B.

2. We say that S ≤m A within B if there is a computable f : ω → B such
that for all n, n ∈ S iff f(n) ∈ A.

3. We say that A is m-complete Γ within B if A is Γ within B and for all
S ∈ Γ, we have S ≤m A within B.

The relevant example is where B = I(K)2 for some class K, and A = E(K).
Note that the condition of being m-complete Γ within B is stronger that simply
being m-complete Γ, since the “negative” examples produced by the reduction
must be members of B. We will often write “Within K” to mean “Within
I(K)2.” All previous theorems in this section remain true when “Within K”
is added to the statement. Using these definitions, we state the result from [8],
with the appropriate completeness.

Theorem 3.6. Let Kω·α be the class of reduced Abelian p-groups of length
at most ω · α, and let α̂ = sup

γ<α
(2γ + 3). Then E(Kω·α) is m-complete Π0

α̂

within Kα.

Now we return to torsion-free groups, to consider a simpler subclass of those.
The torsion-free Abelian groups are, essentially, subgroups of vector spaces over
the rationals. The rank of such a group is the dimension of the least Q-vector
space in which the group can be embedded. For groups of finite rank, the
isomorphism problem is simple because there are simple isomorphisms.

We say that a structure A is computably categorical if for any B ' A, there
is some computable function f : B → A which is an isomorphism. (For more
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about computable categoricity, see [1].) If all computable members of a class K
are computably categorical, then E(K) must be Σ0

3, at least within K.
Any torsion-free Abelian group of finite rank is computably categorical. Us-

ing this, it is possible to prove the following [9].

Theorem 3.7. Let K be either the class of all torsion-free Abelian groups of
finite rank, or the class of torsion-free Abelian groups of rank 1. Then E(K) is
m-complete Σ0

3 within K.

3.1 Optimal Scott sentences and index sets

Classification involves describing the structures in a class, up to isomorphism.
One way to do this is by giving Scott sentences. If we consider only computable
structures, it is enough to give pseudo-Scott sentences. How do we know when
we have an optimal Scott sentence, or pseudo-Scott sentence?

For inspiration, we go to the setting of descriptive set theory, with arbitrary
countable structures and Scott sentences in Lω1ω. As we said in Section 1,
a class K closed under automorphism is Borel iff it is the class of models of
some Lω1ω sentence. More is true. The class K is Σ0

α, or Π0
α, iff it is the

class of models of some Σα, or Πα sentence. If K(A) is the class of copies of a
given A, then the form of the optimal Scott sentence matches the complexity
of K. D. Miller [38] showed that if K(A) is ∆0

α, then it is d-Σ0
α. A. Miller [37]

gave examples of structures A such that K(A) is Σ0
α, Π0

α, or d-Σ0
α for various

countable ordinals. He showed that K(A) cannot be properly Σ0
2.

Now, we return to the computable setting, with computable structures and
computable infinitary sentences. Let A be a computable structure, and let K
be the class of structures for the language of A. If A has a computable Πα Scott
sentence, or pseudo-Scott sentence, then it is easy to see that I(A) is Π0

α, within
I(K). Similarly, if A has a computable d-Σα Scott sentence, or pseudo-Scott
(i.e., one of the form ϕ & ¬ψ, where ϕ and ψ are computable Σα), then I(A)
is d-Σ0

α within I(K).
In [12], there are preliminary results supporting the thesis that for com-

putable structures A of various familiar kinds, when we have found an optimal
Scott sentence, or pseudo-Scott sentence, then the complexity of I(A) matches
that of the sentence, and I(A) is m-complete in the complexity class. We begin
with vector spaces.

Theorem 3.8. Let K be the class of vector spaces over Q, let Kf consist of the
finite dimensional members of K, and let A be a computable member of K.

1. If dimA = 0 then I(A) is m-complete Π0
1 within Kf .

2. If dimA = 1 then I(A) is m-complete Π0
2 within Kf .

3. If 1 < dimA < ℵ0 then I(A) is m-complete d-Σ0
2 within Kf .

4. If dimA = ℵ0 then I(A) is m-complete Π0
3 within K.

13



For 3, the Scott sentence for A, within Kf , says that there are at least n
linearly independent elements and there are not at least n+ 1. For 2, we might
first write a Scott sentence of the same kind, but this is not optimal. The
optimal sentence says that any two elements are linearly dependent.

The situation for Archimedean ordered real closed fields is similar.

Theorem 3.9. Let K be the class of computable Archimedean real closed ordered
fields, and let A be a computable member of K.

1. If the transcendence degree of A is 0, then I(A) is m-complete Π0
2 within K.

2. If the transcendence degree of A is finite but greater than 0, then I(A) is
m-complete d-Σ0

2 within K.

3. If the transcendence degree of A is infinite then I(A) is m-complete Π0
3

within K.

There is a computable Π2 sentence ϕ characterizing the Archimedean real
closed ordered fields. For 1, there is a computable Π2 Scott sentence, the con-
junction of ϕ and a sentence saying that all elements are algebraic. For 2, fix a
transcendence base, of size n, say. There is a computable Σ2 Scott sentence—
the conjunction of ϕ and a sentence saying that the cuts of the transcendence
base are filled, and there do not exist n+ 1 algebraically independent elements.
For 3, there is a computable Π3 Scott sentence—the conjunction of ϕ and a
sentence saying the appropriate cuts are filled, and every element lies in one of
the cuts that should be filled.

Now, we turn to Abelian p-groups. The proof of Theorem 3.6 does some
index set calculations. In each case, the completeness was witnessed by a single
reduced Abelian p-group. We get the following.

Proposition 3.10. Let A be the reduced Abelian p-group of length ω · α, with
uγ(A) = ∞ for all γ < α. Let α̂ = supωγ<α(2γ + 3). Then I(A) is m-complete
Π0

α̂ within the class of reduced Abelian p-groups of length ≤ ω · α.

A theorem of Khisamiev [30], [31] gives a description of the Ulm invariants of
computable Abelian p-groups of length less than ω2. For each of these groups,
we can determine the complexity of the index set.

Theorem 3.11. Let K be the class of reduced Abelian p-groups of length ω M + N
for some M,N ∈ ω. Let A ∈ K.

1. If AωM is minimal for the given length (i.e., it has the form ZpN ), then
I(A) is m-complete Π0

2M+1 within K.

2. If AωM is finite but not minimal for the given length, then I(A) is
m-complete d-Σ0

2M+1 within K.
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3. If there is a unique k < N such that uωM+k(A) = ∞, and for all m < k,
uωM+m(A) = 0, then I(A) is m-complete Π0

2M+2 within K.

4. If there is a unique k < N such that uωM+k(A) = ∞ and for some
m < k we have 0 < uωM+m(A) < ∞, then I(A) is m-complete d-Σ0

2M+2

within K.

5. If there exist m < k < N such that uωM+m(A) = uωM+k(A) = ∞, then
I(A) is m-complete Π0

2M+3 within K.

In most cases here, the first Scott sentence that we write down, describing
the Ulm sequence in a straightforward way, is not optimal. To specify that
uωM+k(A) = ∞, it suffices, via a Ramsey’s Theorem argument, to say that for
all r, the group AωM has a subgroup of type Zpk+1 . This gives a simpler Scott
sentence.

In [12], the models of the original Ehrenfeucht theory T illustrate a further
pattern. Recall that T is the theory of a dense linear ordering without endpoints,
with an infinite increasing sequence of constants. The three non-isomorphic
models are as follows:

1. the prime model, in which the sequence has no upper bound,

2. a “middle” model, in which the sequence has an upper bound but no least
upper bound, and

3. the saturated model, in which the sequence has a least upper bound.

Theorem 3.12. Let K be the class of models of the original Ehrenfeucht theory,
and let A1, A2, and A3 be the prime model, the middle model, and the saturated
model, respectively. Then

1. I(A1) is m-complete Π0
2 within K.

2. I(A2) is m-complete Σ0
3 within K.

3. I(A3) is m-complete Π0
3 within K.

In related work, Csima, Montalban, and Shore [14] calculated the index sets
for Boolean algebras up to elementary equivalence. The calculation was based
on elementary invariants isolated by Tarski (see Chapter 7 of [34], or [19]).

4 Computable embeddings

In [10], there is a notion of computable embedding, inspired by that of Borel
embedding. The goal was a definition that would allow meaningful comparisons
even of classes of finite structures. There are different possible definitions. The
one chosen in [10] is essentially uniform enumeration reducibility. Recall that B
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is enumeration reducible to A, or B ≤e A, if there is a computably enumerable
set Φ of pairs (α, b), where α is a finite set and b is a number such that B =
{b : (∃α ⊆ A) (α, b) ∈ Φ}.

Note: Given Φ, for each set A, there is a unique set B such that B ≤e A via
Φ. Thus, Φ yields a function from P (ω) to P (ω).

As in the setting of descriptive set theory, we consider structures that need
not be computable. We suppose that each structure has universe a subset
of ω. For simplicity, we suppose that the language consists of finitely many
relation symbols—we could allow more general languages. Each class consists
of structures for a single language, and, modulo the restriction on the universes,
each class is closed under isomorphism.

Definition 7. Let K,K ′ be classes of structures. A computable transformation
from K to K ′ is a computably enumerable set Φ of pairs (α, ϕ), where

1. α is a finite set of sentences appropriate to be in the atomic diagram of a
member of K,

2. ϕ is a sentence appropriate to be in the atomic diagram of a member of
K ′, and

3. for each A ∈ K, there exists B ∈ K ′ such that Φ(D(A)) = D(B); i.e.,
D(B) ≤e D(A) via Φ.

Identifying the structures with their atomic diagrams, we write Φ(A) = B.

Definition 8. Let K,K ′ be classes of structures. A computable embedding of
K in K ′ is a computable transformation Φ such that for all A,A′ ∈ K, A ∼= A′

iff Φ(A) ∼= Φ(A′)

We write K ≤c K
′ if there is a computable embedding of K into K ′.

Example 1. Let FLO be the class of finite linear orders, and let FV S be the
class of finite-dimensional vector spaces over Q. Then FLO ≤c FV S.

Proof. Let V be a computable vector space, with a computable sequence (bk)k∈ω

of linearly independent elements. For each finite set S, let V(S) be the linear
span of {bk : k ∈ S}. Let Φ be the set of pairs (α, ϕ) such that for some finite
linear order L, with universe S, α = D(L) and ϕ ∈ D(V(S)).

Example 2. Let UG be the class of undirected graphs, and let Fχ be the class
of fields of any characteristic χ (0, or p, for some prime p). Then UG ≤c Fχ.
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Proof. We adapt a Borel embedding given by Friedman and Stanley [16]. Let F
be a computable algebraically closed field of characteristic χ, with a computable
sequence (bk)k∈ω of algebraically independent elements. For χ 6= 2, for each
graph G, let F(G) be the subfield of F generated by the elements(⋃

k∈G

acl(bk)

)
∪ {
√
di + dj |(di, dj) ∈ R}

where R is the set of all pairs of elements (di, dj) where i, j are elements of G
joined by an edge, and we have acl(di) = acl(bi) and acl(dj) = acl(bj).1 For
χ = 2, we use cube roots instead of square roots to indicate edges. Let Φ be
the set of pairs (α, ϕ), where for some finite undirected graph G, α = D(G) and
ϕ ∈ D(F(G)). It is not at all easy to see that if Φ(A) ∼= Φ(A′), then A ∼= A′.
The difficulty is showing that square roots of the kind representing edges do not
appear in the field by accident. One of several proofs in the literature is given
in [50].

Example 3. Let LO be the class of linear orderings. Then UG ≤c LO.

Proof. Again we adapt a Borel embedding given by Friedman and Stanley [16].
Let L be Q<ω, under the lexicographic ordering. Let (Qa)a∈ω be a uniformly
computable disjoint family of dense subsets of Q. Let (tn)n∈ω be a computable
list of the atomic types of tuples in the language of graphs. For a graph G, we let
L(G) be the sub-ordering of L consisting of the sequences r0q1r1q2r2 . . . qnrnk
such that for some tuple (a1, . . . , an) realizing type tm in G, qi ∈ Qai , for i < n,
ri ∈ Q0, rn ∈ Qn, and k is a natural number with k < m+ 1. We let Φ be the
set of pairs (α, ϕ), where for some finite undirected graph G, α = D(G), and
ϕ ∈ D(L(G)).

The following fact has no analogue in the setting of Borel embeddings.

Proposition 4.1. Suppose K ≤c K
′ via Φ. If A,B ∈ K, where A ⊆ B, then

Φ(A) ⊆ Φ(B).

It follows that if K contains a properly increasing chain of structures of
length α, and K ′ has no such chain, then K 6≤c K

′. Using this proposition,
we can see that there is no computable embedding of the class LO of linear
orderings in the class of vector spaces.

Proposition 4.2. The relation ≤c is a partial order on the set C of all classes
of structures.

1Friedman and Stanley put in only
√

bi + bj . This is enough for a computable embedding.

The added elements
√

di + dj give the embedding a further property of “rank preservation,”
which will be helpful in section 5.
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As usual, from the partial ordering ≤c on C, we get an equivalence relation
≡c, also on C, where K ≡c K

′ iff K ≤c K
′ and K ′ ≤c K. Moreover, ≤c induces

a partial order on the ≡c-classes, which we call c-degrees. Let C be the resulting
degree structure (C/≡c

,≤c).

4.1 Using computable embeddings to compare classes

Familiar classes of finite structures seem to lie in one of two c-degrees. Recall
that FLO is the class of finite linear orders. Let PF be the class of finite prime
fields.

Proposition 4.3.

1. PF <c FLO,

2. the c-degree of PF also contains the class of finite cyclic graphs,

3. the c-degree of FLO, maximum for classes of finite structures, also con-
tains the following classes: finite undirected graphs, finite cyclic groups,
and finite simple groups.

Considering infinite structures, we come to further landmark c-degrees. Re-
call that FV S is the class of finite dimensional vector spaces over Q. Let LO
be the class of linear orders, infinite as well as finite.

Proposition 4.4.

1. FLO <c FV S <c LO,

2. the c-degree of LO, maximum over-all, also contains the class of undirected
graphs, and the class of fields of characteristic 0 (or p).

The class of vector spaces over Q, the class of algebraically closed fields of
fixed characteristic, and the class of models of Th(Z, S) (the integers with suc-
cessor) share some important features. We do not know whether they represent
the same c-degree.

There are natural questions about the degree structure itself. Is it a linear
order? Is it a lattice? The first of these questions is answered in [10], and the
second is answered in [32].

Theorem 4.5. There is a family of 2ℵ0 pairwise incomparable c-degrees. There-
fore, C is not a linear order.

The proof of Theorem 4.5 uses the following notion.

Definition 9. We say that sets A,B are bi-immune2 if for any partial com-
putable function f ,

2The term “bi-immune” was used earlier in a quite different way in, for instance, [26].
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1. if ran(f � A) is infinite, then ran(f � A) 6⊆ B,

2. if ran(f � B) is infinite, then ran(f � B) 6⊆ A.

For each natural number n, we have a finite prime field of size pn, where
pn is the nth prime. Below, we write PF (X) for the class of finite prime fields
having size pn for n ∈ X.

Lemma 4.6. If A,B are bi-immune, then PF (A) 6≤c PF (B) and
PF (B) 6≤c PF (A).

Lemma 4.6 reduces the proof of Theorem 4.5 to the following.

Lemma 4.7. There is a family of 2ℵ0 pairwise bi-immune sets.

By relativizing the notion, and the lemma, we obtain further families of
incomparable c-degrees in various intervals.

The result below says that C is not a lattice.

Theorem 4.8. There is a pair of c-degrees with no join and no meet.

Proof. Let A,B be mutually generic. The forcing conditions are the pairs
(p1, p2) with p1, p2 ∈ 2<ω (representing finite partial characteristic functions
for A,B, respectively). Take the c-degrees of PF (A) and PF (B). With some
effort, it can be shown that this pair of degrees has neither meet nor join.

For computable embeddings, the connection between the classes is much
tighter than for Borel embeddings. One piece of evidence for this is Proposition
4.1, on preservation of the substructure relation. As further evidence, we con-
sider transfer of invariants. Suppose K ≤c K

′ via Φ. If there are nice invariants
for elements of K ′, we may use them to describe elements of K. There are two
methods for doing this. The first is trivial. We describe A ∈ K as the structure
whose Φ-image satisfies the description of Φ(A). The second method is more
satisfying, as it allows us to describe A in its own language. The following result
is from [32].

Theorem 4.9. Suppose K ≤c K
′ via Φ. There is a partial computable function

taking computable infinitary sentences ϕ in the language of K ′ to computable
infinitary sentences ϕ∗ in the language of K such that for all A in K, Φ(A) |= ϕ
iff A |= ϕ∗. Moreover, if ϕ is computable Σα, then so is ϕ∗.

Proof. For all A ∈ K, we can build generic copies. The forcing conditions are
members of the set FA of finite 1 − 1 partial functions from ω to A. From a
generic copy A∗ of A, we get Φ(A∗) ∈ K ′. The forcing language, which describes
Φ(A∗), is quite different from the language of K. However, forcing is definable
in the language of K. For each sentence σ in the forcing language and each
tuple b in ω, we can find a formula Force(x) such that A |= Force(a) iff we
have p ∈ FA taking b to a and p forces σ. The formulas defining forcing are in
the language of K. Moreover, they do not depend on A. The sentence ϕ∗ says,
in all A ∈ K, (∃p ∈ FA) [ p “Φ(A∗) |= ϕ” ].

19



5 Computable structures of high Scott rank

We return to computable structures. By Theorem 2.7, these structures all have
Scott rank at most ωCK

1 + 1. We consider examples of computable structures
having different Scott ranks. We begin with structures having computable ranks.
The exact value is unimportant—that depends on our choice of definition.

Proposition 5.1. For all computable structures A in the following classes,
SR(A) < ωCK

1 .

1. well orderings,

2. superatomic Boolean algebras,

3. reduced Abelian p-groups.

For 2, note that a countable superatomic Boolean algebra can be expressed as
a finite join of α-atoms, for some countable ordinal α. In a computable Boolean
algebra A, any element that bounds α-atoms for all computable ordinals α can
be split into two disjoint elements with this feature. It follows that if A bounds
α-atoms for all computable ordinals α, then it has an atomless subalgebra, so it
cannot be superatomic. For 3, we show that for a computable Abelian p-group,
if the length is not computable, then there is a non-zero divisible element.

Next, we consider computable structures of Scott rank ωCK
1 + 1. We have

already discussed one example, the Harrison ordering. This gives rise to some
other structures. In particular, the Harrison Boolean algebra is the interval
algebra of the Harrison ordering. The Harrison Abelian p-group is the Abelian
p-group of length ωCK

1 , with all infinite Ulm invariants, and with a divisible part
of infinite dimension. Clearly, the Harrison Boolean algebra has a computable
copy. The Harrison Abelian p-group does as well.

Theorem 5.2. The Harrison Boolean algebra, and the Harrison Abelian
p-groups have Scott rank ωCK

1 + 1.

In the Harrison Boolean algebra, any non-superatomic element has Scott
rank ωCK

1 . In the Harrison Abelian p-group, any divisible element has Scott
rank ωCK

1 . See [20] for more about these structures.

Finally, we turn to Scott rank ωCK
1 . The following is in [36].

Theorem 5.3 (Makkai). There is an arithmetical structure of Scott rank ωCK
1 .

In [33], Makkai’s example is made computable.

Theorem 5.4. There is a computable structure of rank ωCK
1 .

There are two proofs in [33]. The first simply codes Makkai’s example
in a computable structure, without examining it. The second proof re-works
Makkai’s construction, incorporating suggestions of Shelah and Sacks. The

20



structures are “group trees”. To obtain a group tree, we start with a tree. Next,
we define a family of groups, one for each level of the tree. Using the groups,
we get a new, more homogeneous tree structure. We then throw away most
of the structure. We retain a family of unary functions, one for each element.
Morozov [41] gives a nice description of the construction. He was interested in
the fact that if we start with a computable tree T having a path but no hyper-
arithmetical path, then the resulting group tree (Morozov calls it a “polygon”)
has non-trivial automorphisms but no hyperarithmetical ones. The Harrison
ordering (as originally constructed) has no hyperarithmetical infinite decreasing
sequence, so it also has no non-trivial hyperarithmetical automorphisms.

5.1 Trees

In [13], there are simpler examples of computable structures of rank ωCK
1 , which

are just trees. We consider subtrees of ω<ω and their isomorphic copies. We
write ∅ for the top node. To describe the examples, we need some terminology.
We define tree rank for a ∈ T , and for T itself.

Definition 10.

1. rk(a) = 0 if a is terminal,

2. for an ordinal α > 0, rk(a) = α if all successors of a have ordinal rank,
and α is the first ordinal greater than any of these ranks,

3. rk(a) = ∞ if a does not have ordinal rank.

We let rk(T ) = rk(∅).

Fact. rk(a) = ∞ iff there is a path through a.

For a tree T , let Tn be the set of elements at level n.

Definition 11. The tree T is rank-homogeneous if

1. for all a ∈ Tn and all ordinals α, if there exists b ∈ Tn+1 with
rk(b) = α < rk(a), then a has infinitely many successors a′ with
rk(a′) = α.

2. for all a ∈ Tn with rk(a) = ∞, a has infinitely many successors a′ with
rk(a′) = ∞.

The following is clear.

Proposition 5.5. If T and T ′ are rank-homogeneous trees, and for all n, Tn

and T ′n represent the same ranks, then T ∼= T ′.

Definition 12. A tree T is thin if for all n, the set of ordinal ranks of elements
of Tn has order type at most ω · n.
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We use thinness in the following way.

Proposition 5.6. If T is a computable thin tree, then for each n, there is some
computable αn such that for all a ∈ Tn, if rk(a) ≥ αn, then rk(a) = ∞.

To show that there is a computable tree of Scott rank ωCK
1 , we show the

following.

Theorem 5.7.

1. There is a computable, thin, rank-homogeneous tree T such that T has a
path but no hyperarithmetical path.

2. If T is a computable, thin, rank-homogeneous tree such that T has a path
but no hyperarithmetical path, then SR(T ) = ωCK

1 .

Proof. Part 1 is proved using Barwise-Kreisel Compactness. There is a Π1
1 set

of computable infinitary sentences describing the desired tree, and we show, in
several steps, that every ∆1

1 subset has a computable model.
For Part 2, first we note that the orbit of each tuple in T is defined by a

computable infinitary formula—this is where we use thinness. It follows that
SR(T ) ≤ ωCK

1 . To show that SR(T ) ≥ ωCK
1 , we show that if a and b are ele-

ments of T at the same level, and are such that rk(a) = ∞ and b has computable
tree rank at least ≥ ω · α, then a ≡α b. In fact, two tuples are α-equivalent if
they generate isomorphic subtrees and for each pair of corresponding elements
in the two subtrees, either the tree ranks match, or else both are at least ω · α.

In [11], examples are given of structures of Scott rank ωCK
1 in further familiar

classes.

Theorem 5.8. Each of the following classes contains computable structures of
Scott rank ωCK

1 :

1. undirected graphs,

2. fields of any fixed characteristic,

3. linear orderings.

To prove Theorem 5.8, we use some special computable embeddings.

Definition 13. Let Φ be an embedding of K in K ′. We say that Φ has the rank
preservation property if for all computable A ∈ K, either A and Φ(A) both have
computable Scott rank, or else they have the same non-computable Scott rank.

Theorem 5.9. For each of the following pairs of classes (K,K ′), there is a
computable embedding of K in K ′ with the rank preservation property:

1. K is the class of trees and K ′ is the class of undirected graphs,
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2. K is the class of undirected graphs and K ′ is the class of fields, of any
desired characteristic,

3. K is the class of undirected graphs and K ′ is the class of linear orderings.

Proof. For 1, if G is the graph corresponding to a tree T , then we have a copy
TG of T , which is definable in G using existential formulas. Each automorphism
of TG extends to an automorphism of G. This implies that if G has Scott rank
less than ωCK

1 , or at most ωCK
1 , then so does T . In addition, for each tuple b in

G, there is an existential formula defining the orbit of b under automorphisms
that fix the elements of TG . This implies that if T has Scott rank less than ωCK

1 ,
or at most ωCK

1 , then so does G.
For 2, we use the embedding of graphs in fields described in Section 4 (a

variant of the one due to Friedman and Stanley). There is a copy of the graph
sitting in the corresponding field as a quotient of a definable structure by a defin-
able congruence relation, and we obtain rank preservation by proving properties
analogous to the ones above.

For 3, we use the embedding of graphs in linear orderings described in Section
4 (due to Friedman and Stanley). There is no copy of the graph definable, even
as a quotient structure, in the corresponding linear ordering. Even so, the orbit
of each tuple in the graph corresponds to an orbit of an element in the linear
ordering, and each orbit in the linear ordering is determined by an existential
formula together with a finite tuple of orbits from the graph.

Definition 14. A computable structure A of non-computable rank is com-
putably approximable if every computable infinitary sentence σ true in A is
also true in some computable B 6∼= A.

For all we know, every computable structure of high rank is computably
approximable. Failure to be computably approximable is equivalent to existence
of a computable infinitary pseudo-Scott sentence.

Sometimes we want a stronger computable approximability.

Definition 15. Suppose A is computable, with non-computable Scott rank. We
say that A is strongly computably approximable if for all Σ1

1 sets S, there is a
uniformly computable sequence (Cn)n∈ω such that if n ∈ S, then Cn

∼= A, and if
n /∈ S, then Cn has computable rank.

Example: The Harrison ordering is strongly computably approximable.

Theorem 5.10. There is a computable tree T such that SR(T ) = ωCK
1 and T

is strongly computably approximable.

The proof of Theorem 5.10 in [13] uses the technical proposition below. The
proposition below refers to Kleene’s system for assigning numbers to ordinals.
The system O, with a partial ordering <O, assigns many notations to a single
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ordinal. However, for path P through O, there is a unique notation a for each
computable ordinal α. In the proof of Theorem 5.10, the path P comes from
an initial segment of a Harrison ordering. We write |a| for the ordinal with
notation a.

Proposition 5.11. Let P be a path through O. Let A be a computable structure.
Let (Aa)a∈P be a uniformly computable family of structures. Suppose that the
following are satisfied:

1. Aa satisfies the computable Σ|a| sentences true in A.

2. (≤a)a∈P are reflexive, transitive binary relations on tuples from the struc-
tures Aa

3. the relations have the back-and-forth property; i.e., ≤0 preserves satisfac-
tion of quantifier-free formulas, and if (Aa, a) ≤b (A′

a, a
′), and b′ <O b,

then for all c′, there exists c such that (Aa′ , a′, c′) ≤b′ (Aa, a, c), and

4. the restriction of ≤b to pairs (a, a′), where a ∈ Aa and a′ ∈ Aa′ , is c.e.
uniformly in b, a, a′.

Then for any Σ1
1 set S, there is a uniformly computable sequence (Cn)n∈ω such

that if n ∈ S, then Cn
∼= A, and if n /∈ S, then Cn

∼= Aa, for some a ∈ P .

Proof. The proof of Proposition 5.11 is a priority construction with actions
described by a Π1

1 set Γ of computable infinitary sentences. To show that every
∆1

1 subset of Γ is satisfied, we use an infinitely nested priority construction. We
then apply Barwise-Kreisel Compactness.

The conditions of Proposition 5.11 seem very strong. However, with effort,
we can show that they are satisfied by a special tree of Scott rank ωCK

1 , and a
family of approximating trees of computable rank.

In [11], Theorem 5.10 is combined with Theorem 5.9, to produce further
structures of Scott rank ωCK

1 that are strongly computably approximable.

Theorem 5.12. There are strongly computably approximable structures of Scott
rank ωCK

1 in each of the following classes:

1. undirected graphs,

2. fields of any characteristic,

3. linear orderings.

Moreover, in each case, the approximating structures have computable Scott
rank.
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