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Abstract. Using the model of real computability developed by Blum,
Cucker, Shub, and Smale, we investigate the difficulty of determining the
answers to several basic topological questions about manifolds. We state
definitions of real-computable manifold and of real-computable paths in
such manifolds, and show that, while BSS machines cannot in general
decide such questions as nullhomotopy and simple connectedness for such
structures, there are nevertheless real-computable presentations of paths
and homotopy equivalence classes under which such computations are
possible.

Key words: Computability, Blum-Shub-Smale computability, homo-
topy, manifold.

1 Introduction

A notable shortcoming of the standard (Turing) model of computation is that
it does not produce a theory of effectiveness relevant to uncountable structures.
Since these structures are a routine part of the practice of pure and applied
mathematics, a growing body of literature has addressed effective mathematics
on uncountable structures (see, for instance [1, 7–9, 12, 15, 17, 18]). In addition
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to all of these, there is a large literature which we shall not review here on com-
putable analysis, which has its own large arsenal of approaches to effectiveness
on geometric structures. The present paper will begin to describe the use of
one of the proposed models for uncountable structures to explore the effective
homotopy theory of manifolds.

In [2], Blum, Shub, and Smale introduced a notion of computation based on
full-precision real arithmetic, which received its canonical form in [1]. Let R∞
be the set of finite sequences of elements from R, and R∞ the bi-infinite direct
sum ⊕

i∈Z
R.

Definition 1 A machine M over R is a finite connected directed graph, con-
taining five types of nodes: input, computation, branch, shift, and output, with
the following properties:

1. The unique input node has no incoming edges and only one outgoing edge.
2. Each computation and shift node has exactly one output edge and possibly

several input branches.
3. Each output node has no output edges and possibly several input edges.
4. Each branch node η has exactly two output edges (labeled 0η and 1η) and

possibly several input edges.
5. Associated with the input node is a linear map gI : R∞ → R∞.
6. Associated with each computation node η is a rational function gη : R∞ →

R∞.
7. Associated with each branch node η is a polynomial function hη : R∞ → R.
8. Associated with each shift node is a map ση ∈ {σl, σr}, where σl(x)i = xi+1

and σr(x)i = xi−1.
9. Associated with each output node η is a linear map Oη : R∞ → R∞.

Each machine computes a partial function from R∞ to R∞ in the natural
way. Such a function is said to be R-computable. There is a list 〈ϕe〉 of all R-
computable functions, indexed by finite tuples e from R∞, such that each ϕe

may be computed uniformly (on any input) from its index e.
In the present paper, we will explore manifolds which are given effectively

(in the sense of R-computation). In the remainder of the present section, we
will describe this sense of effectiveness exactly, and will recall some relevant
definitions from topology. In section 2, we will describe some ineffectiveness
results in homotopy theory: that nullhomotopy and simple-connectedness are
both undecidable. In section 3, we will show that certain important standard
computations — notably the computation of the fundamental group — are still,
modulo the difficulties in section 2, computable.

Definition 2 A real-computable d-manifold M consists of real-computable i, j,
j′, k, the inclusion functions, satisfying the following conditions for all m,n ∈ ω.

– If i(m,n)↓= 1, then ϕj(m,n) is a total real-computable homeomorphism from
Rd into Rd, and ϕj′(m,n) = ϕ−1

j(m,n), and k(m,n)↓= k(n,m)↓= m.
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– If i(m,n) ↓= 0, then k(m,n) ↓= k(n,m) ↓∈ ω with i(k(m,n),m) = 1 =
i(k(m,n), n) and for all p ∈ ω, if i(p,m) = i(p, n) = 1, then i(p, k(m,n)) = 1,
and for all q ∈ ω, if i(m, q) = i(n, q) = 1, then i(k(m,n), q) = 1 with

range(ϕj(m,q)) ∩ range(ϕj(n,q)) = range(ϕj(k(m,n),q)).

– If i(m,n) /∈ {0, 1}, then i(m,n)↓= i(n,m)↓= −1, and

(∀p ∈ ω)[i(p,m) 6= 1 or i(p, n) 6= 1],

and for all q ∈ ω, if i(m, q) and i(n, q) both lie in {0, 1}, then

range(ϕj(k(m,q),q)) ∩ range(ϕj(k(n,q),q)) = ∅.

– For all q ∈ ω, if i(m,n) = i(n, q) = 1, then i(m, q) = 1 and

ϕj(n,q) ◦ ϕj(m,n) = ϕj(m,q).

Here we explain how these abstract conditions are to be understood. First,
each natural number m represents a chart Um for the manifold M , which is to
say, a nonempty open subset of M homeomorphic to Rd via some map

αm : Um → Rd.

In fact, though, we do not give this homeomorphism, since we do not wish
to attempt to present the points in the manifold globally in an effective way.
Instead we simply understand Rd to represent the chart Um, and understand the
manifoldM to be the union of this countable collection of charts. The meat of the
definition lies in the inclusion functions, which describe the inclusion relations
among the charts. For each m and n, i(m,n) equals 1, 0, or −1, according as
either Um ⊆ Un, or ∅ ( Um ∩ Un ( Um, or Um ∩ Un = ∅, and the conditions
translate as follows.

First, if i(m,n) = 1, then j(m,n) is the index for a real-computable map
from Rd into Rd which describes the inclusion map Um ↪→ Un, in the sense that
α−1

n ◦ϕj(m,n) ◦αm is the inclusion map. Moreover, we also have an index j′(m,n)
for its inverse.

If i(m,n) = 0, then Um 6⊆ Un, but the two charts have nonempty intersection
Uk(m,n). (Notice that this implies that our collection of charts must be closed
under finite intersection, and that the intersection of two charts must be con-
nected.) The conditions ensure that Uk(m,n) contains every other chart Up which
is a subset of both Um and Un, and also that if a chart Uq contains both Um and
Un, then it must contain Uk(m,n), which must be the intersection of Um with Un

within Uq.
Finally, if i(m,n) = −1, then the conditions ensure that Um ∩ Un does not

contain any other Up, and that for any Uq intersecting both Um and Un, we have
Um ∩ Un = ∅ within Uq.

The last condition is the obvious rule for composition of inclusion maps: if
Um ⊆ Un ⊆ Uq, then

α−1
q ◦ ϕj(m,q) ◦ αm = (α−1

q ◦ ϕj(n,q) ◦ αn) ◦ (α−1
n ◦ ϕj(m,n) ◦ αm).
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An earlier version of this definition indexed the charts by finite tuples x ∈ R∞
of real numbers, with the condition that the indices must be precisely the tuples
from some fixed real-computable subset of R∞. This allowed the possibility of an
uncountable collection of charts, and also allowed those charts to be enumerated
in a far less effective way. Since most definitions of manifold require the manifold
to be covered by a countable collection of charts, we feel that Definition 2 reflects
the general topological situation more accurately. (Since the property of being
covered by countably many charts is equivalent to that of having a countable ba-
sis, manifolds having these properties are often called second-countable manifolds
in the literature.) It also gives a more precise enumeration of the charts, allowing
us greater ability to search through the charts to find the one we need, and this
permits us to prove stronger theorems about our real-computable manifolds, at
the cost of excluding those which are not second-countable or whose presenta-
tions are insufficiently effective to fit our definition. We regard the strength of
our results as a solid justification for our choice of the stronger definition.

Our definition of manifold is also strict in requiring that the intersection
of any two charts must be another chart (or else empty), and hence must be
connected. For manifolds in general this is not usually required, but on the
other hand, it is possible to take a manifold in which the intersection of two
charts need not be connected and to produce a new, finer cover of it by charts
whose pairwise intersections are always connected. We leave open the question
of how effectively such a transformation of the cover can be accomplished. Our
definition does facilitate the decidability of homotopy for certain specific classes
of computable paths, a question which we conjecture is not decidable in the more
general context. This conjecture would imply that a general cover cannot always
be effectively converted into a cover with pairwise intersections all connected.

Our definition of manifold is quite abstract, in the sense that it essentially
ignores the intended underlying topological space M entirely, giving a set of
conditions on the charts (each of which is a copy of Rd), rather than the cor-
responding conditions on the space M itself. We refer the reader to [24, p. 30,
Example 8] for a noneffective precursor to this definition. That example also
provides a condition on the charts which is equivalent to connectedness of M :

Definition 3 The real-computable manifoldM is connected if there is no proper
nonempty subset S of ω such that

– whenever i(m,n) = 0 with m,n ∈ S, we also have k(m,n) ∈ S; and
– whenever i(m,n) = 0 with m,n /∈ S, we also have k(m,n) /∈ S; and
– whenever i(m,n) = 1 with m ∈ S, we also have n ∈ S; and
– whenever i(m,n) = 1 with m /∈ S, we also have n /∈ S.

If M is not connected, then we define its connected components to be the max-
imal subsets of ω satisfying all four of the above properties. (Intuitively, the
connected components of M are the unions of the charts corresponding to these
maximal subsets.)

Another reasonable variation on our definition would require the enumeration
of the charts to terminate; that is, that the sequence of Um be only finitely long.
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This would, no doubt, bring the study closer to the intuition of the classical
problems, in which one wants the manifold not only to be given, but to have
been given, in a perfective aspect. Even here there are still undecidable problems
to be considered: our Theorem 7 suggests this, as did earlier and well-known work
of Markov [16]. However, much of this study is likely to be not of computability,
but of complexity. This is, no doubt, an interesting study (it has been pursued
in the more limited context of affine and projective varieties; see [20, 6, 5, 4]), but
not the one we choose to pursue here.

Classically, a path in a manifold M is a continuous map of the closed unit
interval into M . A path is said to be a loop if and only if its endpoints coincide.
Two paths p1 and p2 are said to be homotopic if there is a continuous map
h : I × I → M such that h(t, 0) = p1(t) and h(t, 1) = p2(t). The class of
loops in M up to homotopy equivalence forms a group under concatenation,
called the fundamental group, or π1(M). A loop in the identity class is said
to be nullhomotopic. A manifold M such that π1(M) is trivial is said to be
simply connected. Since we hope for a broad audience for the present paper, we
offer the torus T 2 = S1 × S1 as an example. There are many loops which are
nullhomotopic on T 2, for instance the very small ones which do not wrap around
either the hole in the middle or the tube running through T 2. The fundamental
group is Abelian, and is freely generated by a loop that runs once around the
hole and a loop that runs once around the tube. More detailed background on
these issues can be found in [13].

With our abstract definition, we are forced into a more involved definition of
path.

Definition 4 A path in a real-computable manifold M , with inclusion functions
i, j, and k, consists of a pair of functions g : [0, 1] → ω and h : [0, 1] → Rd such
that there exists a finite sequence 0 = t0 < t1 < · · · < tn = 1 of real numbers
such that, for all m < n:

– g� [tm, tm+1) is constant, with g(1) = g(tn−1); and
– h� [tm, tm+1) is continuous (and right-continuous at tm), and h is also left-

continuous at 1; and
– i(g(tm), g(tm+1)) ∈ {0, 1}; and

lim
x→t−m+1

ϕj(k(g(tm),g(tm+1)),g(tm+1))(ϕ
−1
j(k(g(tm),g(tm+1)),g(tm))(h(x))) = h(tm+1).

If g and h are both real-computable functions, then we call f a computable path.
If g(0) = g(1) and h(0) = h(1), then the path is a loop.

The intuition here is that the tm are values at which the path switches from one
chart to another. Of course, they are not uniquely defined, but by compactness
of [0, 1], we need only finitely many such points to express the entire path. We do
not require any such sequence of points to be computable. Of course, any finite
sequence of real numbers is immediately real-computable, but for an infinite
collection of paths pc, indexed by c in some real-computable set C, we will
call the collection computable if there is a single real-computable p satisfying
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p(c, x) = pc(x), and strongly computable if an appropriate n and t1 < · · · < tn−1

for each pc can be computed uniformly in c.
Weyl himself accepted the difficulty of carrying out homotopy theory on man-

ifolds defined in this way as a drawback of this definition. He noted that Weil’s
criticism [23] of the introduction of homology via the Eilenberg-Steenrod axioms
applied also to this definition of a manifold. In essence, Sections 2 and 3 of the
present paper argue the two sides of this criticism. Weil claims that ”triangula-
tion is a quite trivial matter,” and gives the structure of the fundamental group.
This may be contrasted with a more abstract presentation, like the definition
above, in which the computation of the fundamental group — in the views of
both Weil and Weyl — is presumably more difficult.

A much more typical approach, especially in algebraic topology, is to replace
a manifold with some combinatorial structure — a triangulation, a simplicial
complex, a CW complex, or something similar. This is certainly the approach
taken in much of the literature on applying classical computation to decision
problems in topology [3, 16, 19, 10, 21, 11, 14]. Indeed, this approach was neces-
sary there: while the combinatorial structures could be countable (and even
discrete), at least for a reasonably well-behaved manifold, the manifolds them-
selves were uncountable, and thus inaccessible to direct computation by Turing
machines.

Thus, the classical results on computation of properties of manifolds somehow
implicitly assume Weil’s claim that “triangulation is a quite trivial matter.” The
problem of how one gets the combinatorial representation of the space is, at least,
put outside the question of computing invariants. One understanding of Section
2 is that triangulation — at least, when starting with a manifold in the way
we have defined it — is quite difficult. On the other hand, one understanding
of Section 3 is that once one can do that, the computation of the fundamental
group is indeed possible.

Our notation mirrors that of Turing computability, in that we index real-
computable functions (effectively) as ϕe, where e is allowed to range over R∞.
Of course, the programs of such functions are finite, but they are allowed to use
finitely many real parameters within those programs, yielding 2ω-many such pro-
grams. This precludes procedures which simultaneously run all real-computable
functions on an input (let alone on all possible inputs), but diagonalization argu-
ments are often still possible. We have a real-computability version of Kleene’s
Recursion Theorem.

Theorem 5 (Recursion Theorem) For each real-computable function f with
domain R∞, there exists an x ∈ R∞ such that ϕx = ϕf(x).

Both this theorem and its proof are very similar to Kleene’s original theorem for
Turing computability; see for example [22, II.3.1]. Indeed, the proof there also
adapts to show, in our context, that the tuple x can be real-computed uniformly
from an index e such that f = ϕe.
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2 The Undecidability of Nullhomotopy and Simple
Connectedness

Although this section is dedicated to proofs of undecidability, it will be useful for
us to begin with a positive result about paths through computable manifolds.

Lemma 1. Every loop f in a computable manifold M is homotopic to a com-
putable loop f there. Indeed, such an f can be computed by a real-computable
function whose only real parameters are the base point of f and the parameters
of the inclusion functions defining M .

Proof. Let f = 〈g, h〉 be the original loop, with 0 = t0 < t1 < · · · < tn = 1
as described in Definition 4. We first give the intuition for the proof, without
which the details would be baffling. Each segment h� [tm, tm+1] of the loop f lies
within a single chart Ug(tm), which is simply connected, being homeomorphic
to Rd. Within Ug(0) ∩ Ug(t1) we pick an arbitrary point whose coordinates in
Ug(0) are all rational, and we define our computable loop f to begin with a line
segment (in the Ug(0) coordinates) from h(0) to this point, given linearly in the
variable t ∈ [0, t1]. Continuing from this point, we add a new line segment (in
the Ug(t1) coordinates) from there to a rational point in Ug(t1) ∩ Ug(t2), and so
on, with the last line segment going from a point in Ug(tn−2) ∩ Ug(tn−1) back to
the base point in Ug(1) = Ug(0). By simple connectedness of each Ug(tm) and each
Uk(g(tm),g(tm+1)) = Ug(tm) ∩Ug(tm+1), this path f is homotopic to the original f .

Notice that n and the points t1, . . . , tn−1 are not given to us in any uniform
way. However, since each Ug(tm) ∩ Ug(tm+1) is open, its preimage under f is also
open, and so we may assume that the points tm have all been chosen (nonuni-
formly) to be rational. Now define g = g, which is clearly real-computable since
g is piecewise constant. The key to the proof is our program for computing h,
the second component of the computable loop f .

Using the density of Qd in Rd, we start by selecting a point x1 in Qd ∩
range(ϕj(k(g(t0),g(t1)),g(t0))), and defining h� [t0, t1) to be the linear function from
x0 = h(0) to x1. Next, define h(t1) to equal

ϕj(k(g(t0),g(t1)),g(t1))(ϕ
−1
j(k(g(t0),g(t1)),g(t0))

(x1)).

Since x1 = limt→t−1
h(t), this allows f to satisfy the continuity requirement

in the definition of path. Moreover, h(t1) can be computed with no new real
parameters: we use i, j, k, the base point x0, and the rational point x1.

We then continue inductively, picking an arbitrary point xm+1 ∈ Qd ∩
range(ϕj(k(g(tm),g(tm+1)),g(tm))), and defining h� [tm, tm+1) to be the linear func-
tion from h(tm) to this point, then defining h(tm+1) to equal

ϕj(k(g(tm),g(tm+1)),g(tm+1))(ϕ
−1
j(k(g(tm),g(tm+1)),g(tm))(xm)).

When we reach the case m + 1 = n, of course, tm+1 = 1, so we no longer pick
a rational point, but simply define xn = h(tn) = h(0), and let h� [tn−1, tn] be
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the linear function from h(tn−1) to h(tn). Thus we really do define a loop in
M . Moreover, each line segment in the computable path f is homotopic to the
corresponding segment f� [tm, tm+1], since each Ug(tm) is simply connected. This
proves Lemma 1.

Theorem 6 Let M be any real-computable manifold which is connected but not
simply connected. Then nullhomotopy of real-computable loops in M is not real-
decidable: there is no real-computable function ψ such that for every index c of
a computable loop f = ϕc in M , ψ(c) halts with output 1 if f is nullhomotopic
in M , but halts with output 0 if f is not nullhomotopic in M .

Of course, the converse is trivial: ifM is simply connected, then nullhomotopy
is decidable. Also, the hypothesis of connectedness of M is only to simplify
the proof; for arbitrary M , any connected component M ′can be presented as a
real-computable manifold, and if M ′ is not simply connected, then the theorem
applies to M ′, hence gives the same result for M .

Proof. By assumption there is a loop in M , say with base point 〈n,p〉, which is
not nullhomotopic. By Lemma 1, it is homotopic to a computable loop f = 〈g, h〉
with the same base point. Using Theorem 5, the Recursion Theorem for real
computability, for any real-computable ψ, we define a computable function ϕe

which “knows its own index e” and can feed that index to ψ:

ϕe(t) =

f((t− 1)2s+1 + 2), if t ∈ [ 2
s−1
2s , 2s+1−1

2s+1 )
& ψ(e)↓= 1 in exactly s steps

〈n,p〉, if not.

The “if not” case automatically includes t = 1, so this ϕe is a computable
loop, and is the constant loop 〈n,p〉 (hence nullhomotopic) unless ψ(e)↓= 1. If
convergence to 1 happens in exactly s steps, then ϕe is homotopic to f , since
on the interval [ 2

s−1
2s , 2s+1−1

2s+1 ] it copies the entire loop f , while staying constant
everywhere else. Because f is not nullhomotopic, neither is this ϕe. Thus ψ
does not correctly decide nullhomotopy of ϕe. Indeed, the use of the Recursion
Theorem is effective, so we may compute, uniformly in an index for ψ, the index
e of the counterexample ϕe produced above.

It was important, in the foregoing proof, that the index e for the path ϕe did not
need to include the finite sequence 0 = t0 < t1 < · · · < tn = 1 whose existence
is required by Definition 4. To give such a sequence, we would have been forced
to choose n at some finite stage, thereby closing off the path and giving up our
strategy of waiting out ψ until it made up its mind about the value of ψ(e). In
the proof, this sequence still exists, but it is not computable from e.

Theorem 7 Simple connectedness of real-computable manifolds is not decidable
by any real-computable function. Specifically, there is no real-computable ψ such
that for every real-computable M given by inclusion functions i = ϕc, j = ϕd,
j′ = ϕd′ , and k = ϕe, ψ(c,d,d′, e) converges to 1 if M is simply connected, and
converges to 0 if M is not simply connected.
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Proof. Again the Recursion Theorem is key. Fixing any real-computable ψ, we
define our parameters c, etc., so that they start out by giving a basic non-
simply-connected manifold, with U0 ∩ U1 = U3, U0 ∩ U2 = U4, U1 ∩ U2 = U5,
and all other intersections empty. In particular, U0 ∩ U1 ∩ U2 = U3 ∩ U2 = ∅, so
∪m≤5Um is not simply connected. Then the program given by our parameters
bides its time while running ψ on input 〈c,d,d′, e〉. If there is a stage s at
which this computation halts and outputs 0, then our program adds a new chart
Us containing all of ∪m≤5Um, thus making M simply connected. If there is no
such s, then we never add any more new charts. So ψ does not decide simple
connectedness of this M .

We remark that a stronger statement is possible: simple connectedness is not
decidable by any function of the form lims θ(c,d,d′, e, s) with θ real-computable.
(By analogy to Turing computability, we might say that no real-∆0

2 function
decides simple connectedness.) One sees this by noting that in addition to the
diagonalization strategy described above, we can extend a simply connected
finite union of charts to a larger union which is not simply connected. So it is
possible for M to flip back and forth every time θ changes its guess about the
simple connectedness of M , forcing lims θ to diverge.

3 Determining the Fundamental Group

A reasonable objection to the results of the previous section is that they some-
how involve either a path no one would choose in computing a fundamental
group or a manifold whose fundamental group no one would care to know. The
present section will show that we can (non-uniformly) identify a system of loops,
complete up to homotopy, which are free of the pathologies identified in the pre-
vious section, and that from such a system we can compute a presentation of
the fundamental group.

Theorem 8 Let M be an R-computable manifold. Then there exists an R-
computable function SM , defined on the naturals, such that the set {SM (n) :
n ∈ ω} consists of a set of indices for loops, and contains exactly one represen-
tative from each homotopy equivalence type.

Proof. Fix a nice base point in M , such as the origin 0 in the chart U0. The
fundamental group π1(M) is countable, and using Lemma 1, we may (nonuni-
formly) choose a set of representatives for the homotopy-equivalence classes, all
with this base point 〈0,0〉, such that each can be real-computed uniformly from
a single code number in ω (coding two finite sequences of rational numbers,
namely 〈tm〉m≤n and 〈xm〉m≤n in the proof of Lemma 1, along with the n itself)
using only the parameters of the inclusion functions for M . (The base point is
now all rational.) Consequently, there exists a single additional real parameter,
encoding all these natural numbers, using which a Blum-Shub-Smale machine
can accept any input n ∈ ω and output the n-th of these representatives of the
homotopy classes. That is, this machine computes precisely a function SM as
described in Theorem 8.
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In [3], Brown proved that it was possible, from a presentation of a manifold as
a finite simplicial complex, to compute a presentation for each of the homotopy
groups of the manifold, including π1. The following is a similar result (although
the proof is quite different), showing that from the data SM — analogous to
a triangulation — we can pass to a presentation of π1. As was observed in
the earlier discussion from Weil and Weyl, here we have (at least superficially) a
good deal less information than is given by presenting the manifold as a simplicial
complex.

Proposition 1 For every real-computable manifold M , with SM as in Theorem
8, there exists a real-computable function cM : ω × ω → ω which, on any input
〈u, v〉, outputs the unique w such that SM (u) ∗ SM (v) ' SM (w).

Proof. Since we can search through all w ∈ ω by dovetailing, it suffices to give a
BSS machine which halts on input 〈u, v, w〉 iff SM (u)∗SM (v) ' SM (w). Here we
present such a machine. Notice that if F is a homotopy between two loops, then
F itself has compact image in a manifold M , and therefore is contained within
the union of finitely many charts in M . Due to space limitations, we will content
ourselves here with pointing out the key to the inductive argument, which is as
follows.

Let α and β be paths in M from point a to point b. Assume that a ∈ Um∩Up

and b ∈ Un∩Up, and that β lies entirely within Up, while α has an initial segment
contained in Um and the remainder contained in Un. We claim that α ' β within
the submanifold (Um ∪ Un ∪ Up) iff Um ∩ Un ∩ Up 6= ∅. The forward direction is
essentially topology, of course, and we omit the details here. For the converse,
suppose there exists a point c ∈ Um ∩ Un ∩ Up, and let γ be a path from a to x
lying within Um ∩Up, and δ a path from x to b within Un ∩Up. (This is possible
because Um ∩ Up = Uk(m,p) is homeomorphic to Rd, hence path-connected. Our
presentation of M with all pairwise intersections of charts simply connected
constitutes a very strong presentation!) Also, fix t such that α(t) ∈ Um ∩ Un,
and let θ be a path from x to α(t) lying within Um ∩ Un. Then

α ' (α� [0, t]) ∗ θ−1 ∗ θ ∗ (α� [t, 1]) ' γ ∗ δ

since γ and (α� [0, t]∗θ−1) both lie within Um, hence are homotopic, and likewise
δ and (θ ∗ α� [t, 1]). On the other hand, (γ ∗ δ) is contained within Up, hence is
homotopic to β. This proves α ' β.

The subsequent inductive argument essentially involves proving that every
homotopy can be viewed as a finite string of such operations, deforming the
original path α into an α′ which goes through the same sequence of charts, up
to a change by one (either one old chart replaced by two new ones, or two old
ones replaced by one new one, in the sequence of charts intersected by α′). The
crucial point about our presentations of loops from Lemma 1, therefore, as used
in Theorem 8, is that for each loop, we know a sequence of charts containing that
loop (including the order in which the loop intersects those charts). Of course,
this sequence is not at all unique, but we need only know one such sequence for
each of our representatives SM (u), and all that information was encoded into
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a single real parameter used in computing SM . Moreover, that parameter also
provides the same information about the concatenation (SM (u) ∗SM (v)) of any
two of those representatives.

Of course, for arbitrary m and n, the inclusion function i for M tells us
whether Um ∩ Un = ∅: just check whether i(m,n) = −1. Therefore, we may
search through increasingly large finite sets of charts, and increasingly long finite
perturbations of a given concatenation (SM (u)∗SM (v) through those charts, and
if indeed (SM (u) ∗ SM (v)) ' SM (w), then eventually we will find a sequence of
charts and paths through those charts to prove it. On the other hand, since SM

maps ω (or an initial segment, when π1(M) is finite) bijectively onto π1(M),
there is exactly one SM (w) for which we will ever find such a proof, and when
we have found it, we know that (SM (u) ∗ SM (v)) ' SM (w).

Corollary 1 Let M be an R-computable manifold. There is a uniform procedure
to pass from an index for SM to indices for a real-computable presentation of
the group π1(M) and for computing its word problem.
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