
COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND

COMPUTABLE APPROXIMATION

W. CALVERT, J. F. KNIGHT, AND J. MILLAR

Abstract. Makkai [10] produced an arithmetical structure of Scott rank

ωCK
1 . In [9], Makkai’s example is made computable. Here we show that there

are computable trees of Scott rank ωCK
1 . We introduce a notion of “rank ho-

mogeneity”. In rank homogeneous trees, orbits of tuples can be understood

relatively easily. By using these trees, we avoid the need to pass to the more
complicated “group trees” of [10] and [9]. Using the same kind of trees, we

obtain one of rank ωCK
1 that is “strongly computably approximable”. We also

develop some technology that may yield further results of this kind.

1. Introduction

The notion of Scott rank comes from the Scott Isomorphism Theorem [16].

Theorem 1.1 (Scott). Let A be a countable structure (for a countable language
L). Then there is an Lω1ω sentence σ whose countable models are just the copies
of A.

In the proof, Scott assigned ordinals to tuples inA, and toA itself. For simplicity,
we suppose that the language of A is finite, and the substructure of A generated
by a finite subset is finite. We begin as Scott did, with a family of equivalence
relations on tuples.1

Definition 1.
(1) a ≡0 b if a and b satisfy the same quantifier-free formulas,
(2) for α > 0, a ≡α b if for all β < α, for all c, there exists d, and for all d,

there exists c, such that a, c ≡β b, d.

Definition 2. The Scott rank of a tuple a is the least ordinal β such that for all
b, a ≡β b implies (A, a) ∼= (A, b). The Scott rank of the structure A, denoted by
SR(A), is the least ordinal α greater than the Scott rank of any tuple in A.

For a countable structure A, SR(A) is a countable ordinal. If A is computable
(or hyperarithmetical), then SR(A) ≤ ωCK

1 + 1 (see [12]). The following result is
well known.

Theorem 1.2 (Folklore). Let A be a computable (or hyperarithmetical) structure.
(1) SR(A) is a computable ordinal if there is some β such that the orbits of all

tuples are defined by computable Πβ formulas,

The first author was partially supported by NSF Grants DMS 0139626 and DMS 0353748.

The third author was partially supported by NSF Grant DMS 0102052.
1Our equivalence relations differ slightly from Scott’s. In Clause 2, Scott extended by single

elements c and d, where we use tuples. It is easy to check that ≡ωα is the same for both definitions.

1

2 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

(2) SR(A) = ωCK
1 if the orbits of all tuples are defined by computable infinitary

formulas, but there is no bound on the complexity, as in 1,
(3) SR(A) = ωCK

1 + 1 if there is a tuple whose orbit is not defined by any
computable infinitary formula.

Proof. Let a be a tuple in A. For each computable ordinal α, we have a computable
infinitary formula defining the ≡α-class of a. These formulas come from Scott, and
the complexity can be bounded in terms of α. If a has computable Scott rank α,
then the formula defining the ≡α-class of a defines the orbit. It is easy to show
by induction that a ≡β b implies that a and b satisfy the same Πβ formulas, in
particular, the computable Πβ formulas. From this it follows that if the orbit of a
is defined by a computable Πβ formula, then a has Scott rank at most β.

If the orbits are all defined by computable Πβ formulas, then SR(A) is at most
β + 1. If the orbits are defined by computable infinitary formulas, then all tuples
have computable Scott rank. If we cannot bound the complexity of the formulas
defining the orbits, then we cannot bound the Scott ranks of the tuples, so SR(A) =
ωCK

1 . If there is some tuple a whose orbit is not defined by any computable infinitary
formula, then none of Scott’s formulas defines the orbit, so a has Scott rank ωCK

1 ,
and then SR(A) = ωCK

1 + 1.
�

There are several definitions of Scott rank in use, some differing from Scott’s
much more dramatically than ours. While the ordinals assigned may differ, if one
definition assigns computable rank to a particular structure A, then so do the other
definitions. There are familiar examples of computable structures having various
computable ranks. In particular, there are examples of computable well orderings,
superatomic Boolean algebras, and reduced Abelian p-groups having arbitrarily
large computable Scott ranks. The reader may wish to verify that SR(ω) = 2, and
SR(ωn) = n + 1.

Harrison [8] showed that there is a computable ordering of type ωCK
1 (1 + η).

The Harrison ordering has Scott rank ωCK
1 + 1. There are related examples, also

of Scott rank ωCK
1 + 1. In particular, there is the Harrison Boolean algebra, which

is the interval algebra of the Harrison ordering, and there are the Harrison Abelian
p-groups, which have length ωCK

1 , all infinite Ulm invariants, and divisible part of
infinite dimension. (See [6] for more about these structures and the orbits witnessing
the high rank.)

Makkai [10] produced an arithmetical structure of Scott rank ωCK
1 . In [9], it is

shown that there is a computable structure of rank ωCK
1 . The examples in Makkai’s

paper and in [9] are quite complicated, involving what Makkai calls “group trees”
(Morozov [11] calls them “polygons”). In the present paper, we show that there
are computable trees of rank ωCK

1 .

1.1. Approximations. One natural notion of approximability among computable
structures would be thatA is approximable if for any computable infinitary sentence
σ true in A, there is some computable B � A such that B |= σ. In practice, the
following stronger notion seems more useful.

Definition 3. A structure A is strongly computably approximable if for every
Σ1

1 set S, there is a uniformly computable sequence (An)n∈ω such that for n ∈ S,
An

∼= A, and for n /∈ S, An has computable rank.

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 3

The Harrison ordering is strongly computably approximable, using computable
well orderings. The Harrison Boolean algebra, and the Harrison Abelian p-group
are also strongly computably approximable. For the Harrison Boolean algebra, the
approximating structures are superatomic Boolean algebras. and for the Harrison
Abelian p-group, they are reduced Abelian p-groups of computable ordinal length,
with all infinite Ulm sequence.

Goncharov and the second author [7] had asked whether all structures of non-
computable Scott rank are strongly computably approximable. The problem re-
mains open. In the present paper, we show that there is a computable tree of
rank ωCK

1 which is strongly computably approximable. This is the first example
of a structure of Scott rank ωCK

1 for which strong computable approximability is
actually known.

We have given some background on Scott rank. Further background material,
on computable infinitary sentences, the Barwise-Kreisel Compactness Theorem,
Kleene’s system of ordinal notations, and Ash’s α-systems, may be found in [4].
In the remainder of Section 1, we give some definitions for describing trees, and
in particular introduce the notion of rank homogeneity. In Section 2, we construct
a computable tree with some special properties. In Section 3, we show that any
tree with all of these properties has Scott rank ωCK

1 . We also describe some back
and forth relations on tuples from possibly different trees, which will be useful
when we consider approximating families. In Section 4, we construct a tree with
the properties in Section 2, together with a family of approximating trees. In
Section 5, we give a general result with sufficient conditions for a structure to
be strongly computably approximable, and we apply this result to show that the
special tree from Section 4 is strongly computably approximable.

1.2. Describing trees. We give some definitions useful for describing trees. Our
trees are isomorphic to subtrees of ω<ω. For the language, we use a single unary
function symbol, interpreted as the predecessor. Our trees grow down. We write ∅
for the top node, and we think of ∅ as its own predecessor. For a tree T , we write
Tn for the set of elements at level n.

Definition 4. Let T be a tree. We define the tree rank (sometimes called foun-
dation rank) for elements of T , and for T itself, below. We denote the rank of the
element a, and the tree T , by rk(a), rk(T).

• If a has no successors, then rk(a) = 0.
• For an ordinal α > 0, we say that rk(a) = α if all successors of a have

ordinal rank, and α is the least ordinal greater than the ranks of the suc-
cessors.

• If a does not have ordinal rank, then we write rk(a) = ∞. We adopt the
convention that ∞ is greater than any ordinal rank.

• rk(T) is rk(∅).

Remark: It is easy to see that rk(T) = ∞ iff T has a path, and rk(a) = ∞ iff
there is a path through a.

We define some special properties of trees. We will obtain a tree of Scott rank
ωCK

1 by showing that there exist trees with these special properties and that every
tree with these properties has Scott rank ωCK

1 . The first property was defined in [9].

4 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

Definition 5. A tree T is thin if for all n, the set of ordinal ranks of elements of
Tn has order type at most ω · n.

As in [9], we use thinness in the following way.

Proposition 1.3. Suppose T is a computable (or hyperarithmetical) tree. If T is
thin, then for each n, there is a computable ordinal αn such that for all a ∈ Tn, if
rk(a) ≥ αn then rk(a) = ∞.

In the earlier constructions [10], [9], the “group tree” was obtained by starting
with a tree, putting a group structure on each level, and then using the groups to
derive a new, more homogeneous, tree structure, together with a family of unary
operations. The main idea in the present paper is the isolation of a homogeneity
condition which may be imposed directly on trees to achieve the desired effect. Here
is the definition.

Definition 6. A tree T is rank homogeneous if for all n and for all a ∈ Tn,
(1) for all ordinals β < rk(a) (where rk(a) may be an ordinal or ∞), if some

b ∈ Tn+1 has rank β, then a has infinitely many successors of rank β,
(2) if rk(a) = ∞ (so that a has a successor of rank ∞), then a has infinitely

many successors a′ with rk(a′) = ∞.

For a rank homogeneous tree T , we have the following invariants. Let Rn(T)
denote the set of ranks (possibly including ∞) of elements of Tn.

Proposition 1.4. Suppose T and T ′ are rank homogeneous trees such that for all
n, Rn(T) = Rn(T ′). Then T ∼= T ′.

Proof. Let F be the set of rank-preserving isomorphisms f between finite subtrees
of T and T ′. It is not difficult to see that F has the back-and-forth property. We
give the “forth” part of the argument—the “back” part is the same. If we extend
dom(f), adding a new successor x′, where x ∈ dom(f), then there is a corresponding
new successor y′ for y = f(x) such that rk(x′) = rk(y′).

�

The proof above lets us describe the orbits of tuples in a rank homogeneous tree
T . There is an automorphism of T taking a to b just in case the function taking a
to b extends to a rank-preserving isomorphism f from the finite subtree generated
by a onto that generated by b.

2. Construction of a special tree

In this section, our goal is to prove the following.

Theorem 2.1. There exists a computable thin rank homogeneous tree T , with a
path, but no hyperarithmetical path.

Proof. There is a Π1
1 set Γ of computable infinitary sentences describing the tree

we want. In [9], there is a Π1
1 set Γ0 describing a computable thin tree T such that

rk(T) = ∞ but T has no hyperarithmetical path. The sentences say that T is a
computable tree, rk(T) ≥ α, for all computable ordinals α, T has no hyperarith-
metical path, and T is thin.

To say that T is thin, we add extra symbols, so that we can talk about a map ρn

from a subset of Tn to an ordering Ln of type ω ·n. We want to say that ρn maps the

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 5

elements of Tn of ordinal rank to Ln such that rk(x) < rk(y) iff ρn(x) < ρn(y). We
must be careful. There is no computable infinitary formula saying rk(x) < rk(y).
We can only say things like rk(x) = α, or rk(x) > α, for various computable
ordinals α.

We put into the Π1
1 set Γ0 a computable infinitary sentence for each n and each

computable ordinal α, saying that for all x ∈ Tn, if rk(x) = α, then ρn(x) is defined,
with value in Ln, and for all y ∈ Tn, if ρn(y) is also defined, then ρn(y) ≤ ρn(x) iff
rk(y) = β for some β ≤ α. Assuming that T is a computable (or hyperarithmetical)
tree, these sentences say what we want. If x ∈ Tn, has ordinal rank, then that rank
must be a computable ordinal, and if x and y are two elements of Tn of computable
rank, then the sentences say that rk(x) < rk(y) iff ρn(x) < ρn(y). Therefore, the
order type of the set of ordinal ranks is at most ω · n.

To form the set Γ, we add to Γ0 sentences guaranteeing that the tree T is rank
homogeneous. The new sentences say, for computable ordinals β, for all x ∈ Tn

such that rk(x) > β,

(1) if there exists y ∈ Tn+1 of rank β, then x has infinitely many successors of
rank β,

(2) if x has some successor of rank ≥ β, then it has infinitely many.

It may not be immediately clear that these sentences are sufficient to guaran-
tee rank homogeneity. Suppose T satisfies the sentences in Γ, and x ∈ Tn. If
rk(x) = ∞, then x has a successor of rank ∞. We must show that there are infin-
itely many. Clause 2 guarantees that for all computable ordinals β, x has infinitely
many successors of rank ≥ β. If there is a bound on the computable ordinal ranks of
these successors, then x must have infinitely many successors of rank ∞. In a thin
tree, there is such a bound. (If there were no such bound, we could still show that
x has infinitely many successors of rank ∞, using the fact that T is computable.)

To prove Theorem 2.1, it is enough to produce a model of Γ, for which we
use Barwise-Kreisel Compactness. We must show that every ∆1

1 subset of Γ has a
model. For this, we show that for each computable ordinal α, there is a computable
thin, rank homogeneous tree Tα of computable rank at least ωα.

The following two lemmas are proved in [9]. The first lemma gives a tree of rank
ωα, with a computable function labeling the nodes with their ranks. The labels
involve ordinal notations on a fixed path P through O. To indicate that a node has
tree rank ωβ + n, we use the label (b, n), where b is the unique notation for β in P .

Lemma 2.2. For each computable ordinal α, there is a computable tree of rank
ωα, with a computable rank function taking values as above.

The next lemma says that we can replace the tree from Lemma 2.2 by a thin
tree, so that there is still a computable rank function.

Lemma 2.3. For each computable ordinal α, there is a computable thin tree T of
computable rank at least ωα, such that T has a computable rank function.

The next lemma says that we can modify the tree from Lemma 2.3 to make it
rank homogeneous, without changing the ranks represented at each level.

Lemma 2.4. Suppose T is a computable tree of computable rank, with a com-
putable rank function. There is a computable rank homogeneous tree T ′, also with
a computable rank function, such that for all n, Rn(T) = Rn(T ′).

6 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

Proof. At level 0 of T ′, we put ∅, with the same label as in T . Given x ∈ T ′
n and

y ∈ Tn+1 such that rk(y) < rk(x), we give x infinitely many successors of the same
rank as y. Note that for any possible labels (b, n), (b′, n′) in P×ω, we can effectively
determine whether (b, n) < (b′, n′).

�

The three lemmas above clearly give the following.

Lemma 2.5. For each computable ordinal α, there is a computable thin, rank
homogeneous tree Tα of computable rank at least ωα.

We saw above that this lemma is enough to complete the proof of Theorem 2.1.
�

3. Orbits and back-and-forth relations

In this section, our first goal is to show that if T is a computable thin rank
homogeneous tree, with a path, but with no hyperarithmetical path, then T has
Scott rank ωCK

1 . By Theorem 1.2, to show that a computable structure has Scott
rank ωCK

1 , it is enough to show that all tuples have computable Scott rank, but
there is no computable bound on the Scott ranks of the tuples—or equivalently,
that the orbits of all tuples are defined by computable infinitary formulas, but
there is no computable bound on the complexities of these formulas. A second
goal of the section is to prepare for the results on computable approximation by
considering tuples in a pair of rank homogeneous trees, and defining a family of
“back-and-forth” relations which can be calculated in terms of tree ranks.

The lemma below, generalizing Proposition 1.4, describes the orbits in a rank
homogeneous tree T in terms of tree ranks. The proof is identical to that for
Proposition 1.4.

Lemma 3.1. Let T be a rank homogeneous tree. Then a and b are in the same
orbit if the function taking a to b extends to an isomorphism f between the subtrees
generated by a and b such that for all x ∈ dom(f), rk(x) = rk(f(x)).

Using Lemma 3.1, together with Proposition 1.3, we get the following.

Lemma 3.2. Let T be a computable thin rank homogeneous tree. Then the orbits
of tuples in T are all definable by computable infinitary formulas.

Proof. To define the orbit of a tuple a, we describe the subtree generated by a, and
give the tree ranks for all elements of this subtree. We must think how to express
rk(x) = ∞ using computable infinitary formulas. By thinness, for each n there is
a computable ordinal αn bounding the ordinal tree ranks of elements at level n.
Thus for x at level n, we can say rk(x) = ∞ just by saying rk(x) ≥ αn. We do not
have a computable infinitary formula saying for arbitrary x (at unspecified level)
that rk(x) = ∞.

�

We have shown that if T is a computable thin rank homogeneous tree, then all
tuples have computable Scott rank, so SR(T) ≤ ωCK

1 . We must show that if, in
addition, T has a path, but no hyperarithmetical path, then SR(T) ≥ ωCK

1 ; i.e.,
there is no computable bound on the Scott ranks of tuples. Note that for every
computable ordinal α, there exist elements x ∈ T such that rk(x) > α. Since T
has no hyperarithmetical path, this must happen below any x with rk(x) = ∞.

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 7

We define a family of relations ∼α on tuples in T (of the same length).

Definition 7. Let T be a rank homogeneous tree. For an ordinal α, we say that
(T, a) ∼α (T, b) if the function taking a to b extends to an isomorphism f between
the substructures generated by a and b such that if f(x) = y, then either rk(x) =
rk(y) or else rk(x), rk(y) ≥ ωα.

We will later extend this definition to tuples taken from different rank homoge-
neous trees. The next lemma says that the relations ∼α (as defined above) have
the “back-and-forth” property.

Lemma 3.3. Suppose T is a rank homogeneous tree.
(1) If (T, a) ∼0 (T, b), then a and b satisfy the same quantifier-free formulas.
(2) If (T, a) ∼α (T, b), then for all β < α and all c, there exists d such that

(T, a, c) ∼β (T, b, d).

Proof. For 1, suppose (T, a) ∼0 (T, b). According to the definition, the function
taking a to b extends to an isomorphism between the subtrees generated by the
tuples. This implies that a and b satisfy the same quantifier-free formulas.

For 2, take f witnessing that (T, a) ∼0 (T, b). We must extend f to a function g
on the subtree generated by a, c. For x ∈ dom(f), let τx be the finite set of elements
below x that are in the subtree generated by a, c, and not in that generated by
a. We shall define g to map τx to a set τy of new elements below y, preserving
tree structure, and and preserving ranks to the following extent: for x′ ∈ τx and
y′ = g(x′), if rk(x′) < ωα, then rk(y′) = rk(x′), and if rk(x′) ≥ ωα, then rk(y′) ≥
ωβ.

We will first outline the required properties of τy, and will then show that they
can be satisfied. We know the desired tree structure for τy, and the target ranks
less than ωα which we plan to match exactly. There may be some elements of τy

whose ranks are not determined in this way. This implies that rk(x) and rk(y) must
both be at least ωα. We calculate lower bounds for ranks of the remaining nodes,
working our way up. Suppose for a node y′, we have assigned to all successors of y′

in τy either a precise ordinal rank or a lower bound. We assign y′ a lower bound. If
there is at least one successor assigned a lower bound, then we take the maximum
γ and assign y′ the bound γ + 1. In case y′ has no successors, or the successors all
have precise ranks < ωβ, then we assign γ the lower bound ωβ.

So far, we have said what τy should look like. We will now show that the
elements actually exist in the subtree below y. Having started at the bottom of τy

in calculating the target ranks or lower bounds, we now start at the top and work
our way down. We let g(x) = y. Having found an appropriate y′ = g(x′), with a
target rank γ, we consider a successor x′′ of x′, and look for a new (not already
used) successor y′′ of y′ to serve as g(x′′). If y′′ is supposed to have rank exactly
γ′ < γ, it is because x′′ has rank γ′, and y′ has infinitely many successors of this
rank, so we can take a new one for g(x′′). If we have decided only that y′′ should
have rank at least γ′, where γ′ < γ, then we must show that y′ has a successor
of some appropriate rank. If γ = δ + 1, then δ ≥ γ′, and y′ has infinitely many
successors of rank δ. On the other hand, if γ is a limit, then it is the supremum of
the ranks of the successors of y′. So, there is some δ ≥ γ′ such that y′ has infinitely
many successors of rank δ. We let g(x′′) be a new one of these.

�

8 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

The next lemma connects the relations ∼α, defined in terms of tree rank, to the
relations ≡α used in our definition of Scott rank.

Lemma 3.4. Suppose T is a rank homogeneous tree. If (T, a) ∼α (T, b), then
(T, a) ≡α (T, b).

Proof. We proceed by induction on α. For α = 0, this follows from the definition,
or from Part 1 of Lemma 3.3. Let α > 0, and assume that the statement holds for
β < α. Let (T, a) ∼α (T, b). By Part 2 of Lemma 3.3, for each c, there exists d
and for each d, there exists c, such that (T, a, c) ∼β (T, b, d), and by the induction
hypothesis, this implies (T, a, c) ≡β (T, b, d). Then by definition, (T, a) ∼α (T, b).

�

Here is the main theorem of the section.

Theorem 3.5. Suppose T is a computable thin rank homogeneous tree with a path
but no hyperarithmetical path. Then SR(T) = ωCK

1 .

Proof. By Lemma 3.2, every orbit is definable by a computable infinitary formula,
so SR(T) ≤ ωCK

1 . Let α be a computable ordinal. There is some element b ∈ T
at level n with rk(b) ≥ ωα. Let a be an element at level n such that rk(a) = ∞.
By definition, (T, a) ∼α (T, b). Then by Lemma 3.4, (T, a) ≡α (T, b). Therefore,
SR(a) > α. It follows that SR(T) ≥ ωCK

1 .
�

In fact, we can give the following more complete description of the Scott ranks
of computable rank homogeneous trees.

Theorem 3.6. Let T be a computable rank homogeneous tree.
(1) If there is a computable bound on the ordinal tree ranks (T may or may not

have paths), then SR(T) is computable.
(2) If for each n, there is a computable bound on the ordinal tree ranks in Tn,

but no computable bound over-all, then SR(T) = ωCK
1 .

(3) If for some n, there is no computable bound on the ordinal tree ranks in Tn,
then SR(T) = ωCK

1 + 1.

Proof. For 1, if there is a computable bound on the ordinal tree ranks, then we can
define the orbits of all tuples using computable infinitary formulas of bounded
complexity. For 2, if for each n, there is a computable bound on the ordinal
tree ranks in Tn, then we have computable infinitary formulas defining the orbits.
Therefore, SR(T) ≤ ωCK

1 . If there is no bound on the tree ranks over-all, then
rk(∅) = ∞, and T has a path. For each computable ordinal ωα, there is an element
x of rank ≥ α. Say x ∈ Tn, and let y ∈ Tn, where rk(y) = ∞. Then (T, x) ∼α (T, y),
so SR(x) > α. Therefore, SR(T) ≥ ωCK

1 . For 3, if there is no computable bound
on the ordinal tree ranks in Tn, then there is some x ∈ Tn such that rk(x) = ∞.
For each computable ordinal α, there exists y ∈ Tn such that rk(y) ≥ ωα. Then
(T, x) ∼α (T, y), so SR(x) > α. Therefore, SR(x) = ωCK

1 , and SR(T) = ωCK
1 + 1.

�

We turn to pairs of rank homogeneous trees. Below, we extend the relations ∼α

to pairs of tuples (of the same length) from different trees.

Definition 8. Let T and T ′ be rank homogeneous trees.

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 9

(1) T ∼α T ′ if for all n, Rn(T) and Rn(T ′) contain the same ordinals less than
ωα, and Rn(T) has elements greater than or equal to ωα iff Rn(T ′) does.

(2) for a in T and b in T ′, (T, a) ∼α (T ′, b) if T ∼α T ′ and the function taking
a to b extends to an isomorphism f between the subtrees generated by the
tuples, such that f preserves tree rank up to ωα; i.e., for any x ∈ T , we
have rk(x) = rk(f(x)), or else rk(x) and rk(f(x)) are both at least ωα.

The next lemma generalizes Lemma 3.3, saying that the relations ∼α, for tuples
from possibly different trees, have the “back-and-forth” property.

Lemma 3.7. Suppose T and T ′ are rank homogeneous trees.
(1) If (T, a) ∼0 (T ′, b), then a and b satisfy the same quantifier-free formulas

in their respective trees.
(2) If (T, a) ∼α (T ′, b), then for all β < α and all c, there exists d such that

(T, a, c) ∼β (T, b, d).

Proof. The proof is exactly as for Lemma 3.3. The condition that Rn(T) and
Rn(T ′) have the same ordinals < ωα guarantees the existence of the necessary
elements.

�

The relations ∼α are defined for tuples a, b of the same length. Below, we extend
the definition to pairs of tuples in which the second may have greater length.

Definition 9. Suppose T and T ′ are rank homogeneous trees, and let a and b be
tuples in T , T ′, respectively, where length(a) ≤ length(b). If c is the restriction of
b to the elements corresponding to a, then (T, a) �α (T ′, b) if (T, a) ∼α (T ′, c).

We have referred to the “back-and-forth” property for a family of relations on a
pair of structures. Now, we give the definition (not just for trees).

Definition 10. Let A and B be structures for the same language. For simplicity,
suppose the language is finite, and that finitely generated substructures are finite.
Let (≤β)β<α be a family of binary relations on tuples. We say that the relations
have the back-and-forth property if

(1) (A, a) ≤0 (A′, b) implies that all quantifier-free formulas true of a in A are
true of b in A′,

(2) for β > 0, if (A, a) ≤β (A′, b), then for all γ < β and all d, there exists c

such that (A′, b, d) ≤γ (A, a, c).

The following is clear from the definitions together with Lemma 3.7.

Proposition 3.8. Let T and T ′ be rank homogeneous trees such that T ∼α T ′.
Then the relations �β defined above, for β < α, have the back-and-forth property.

There are other families of relations with the back-and-forth property. In par-
ticular, there are the “standard” back and forth relations (see [4]). What makes
the particular relations that we have defined above useful is the fact that they are
uniformly c.e. Let P be a path through O. Let T and T ′ be computable rank
homogeneous trees, each with a computable rank function which assigns to each
node of rank ωβ + n the label (b, n), where b is the notation for β in P .

For a fixed α, with notation a ∈ P , given a node with label (b, n), we can
apply an effective procedure to see if the node has tree rank at least ωα—we check

10 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

whether a = b, and if not, we watch simultaneously for a to appear among the <O-
predecessors of b, and for b to appear among the <O-predecessors of a. It is easy
to tell whether two nodes, both of tree rank less than ωα, have the same rank—the
labels must match.

Proposition 3.9. Let T and T ′ be computable rank homogeneous trees, with com-
putable rank functions. If T ∼α T ′, then the relations (T, a) �β (T ′, b), for β < α,
are c.e. Moreover, we can effectively find a c.e. index for �β, given the notation
b ∈ P for β and computable indices for T and T ′, with their computable rank
functions.

4. A special tree and family of approximations

In this section, we will produce a tree Th,∗ of Scott rank ωCK
1 , along with a family

of trees that will be used in Section 5 to show that Th,∗ is strongly computably
approximable. We begin with a Harrison ordering H. We may suppose that there is
no hyperarithmetical decreasing sequence in H (see [8], [15], or [4]). Kleene showed
that the class of computable indices for well orderings is m-reducible to O. We use
ideas from Kleene’s proof, as described in [14], [4]. First, we suppose that in H, we
can effectively determine which elements are successors and which are limits, and
there is an effective procedure which, when applied to a successor element a, yields
the predecessor, and when applied to a limit element a, yields a computable index
for an increasing sequence (an)n∈ω with limit a. (If the original H did not have
this feature, we would replace it by H × ω, with the lexicographic ordering.) We
write pred(a) for the set {b : H |= b < a}.

Still following Kleene, we will get a partial computable function f that maps the
well ordered initial segment of H onto a path P in O, such that for a computable
ordinal α, the set pred(a) has order type α if and only if f(a) is a notation for
α. If a is the first element of H, we let f(a) = 1. If a is the successor of b in H,
then f(a) = 2f(b). If a is a limit element, and (an)n∈ω is our effectively determined
increasing sequence with limit a, then we can effectively find an index e for the
corresponding sequence (f(an))n∈ω. We let f(a) = 3 · 5e.

The function f will be defined on more than the well ordered initial segment
of H. However, if pred(a) is not well ordered, then f(a) will not be an element
of O. Given an element a of the well ordered initial segment of H, we can find
the corresponding element f(a) in P . Conversely, given an element of P , we can
effectively find the corresponding element of H. We may therefore identify a with
f(a) and think of P as an initial segment of H.

Next, starting with H, we form H∗ = H × ω, with the lexicographic ordering.
Again, the order type is ωCK

1 (1 + η), we can effectively determine successor and
limit elements, and we can effectively find witnesses as above. If pred(b) has order
type β in H, and n ∈ ω, then in H∗, the set of predecessors of (b, n) has order
type ωβ + n. Now, (b, n) is exactly the kind of value we want for our computable
rank function, to represent rank ωβ + n. In what follows, we shall describe some
computable trees, with computable rank functions taking values in H∗.

Lemma 4.1. Given a ∈ H, we can pass effectively to a computable tree T a, with
a computable function labeling the nodes by elements of H∗, such that ∅ has label
(a, 0), and if x has label (b, k), then

(1) if pred(b) has type β, then rk(x) = ωβ + k, and

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 11

(2) if pred(b) is not well ordered, then rk(x) = ∞.

Proof. We give ∅ label (a, 0), as required. If x ∈ T a has label (b, k+1), then we give
x just one successor, with label (b, k). If x ∈ T a has label (b, 0), where b = c + 1,
then for each n, we give x one successor with label (c, n). Finally, if x ∈ T a has label
(b, 0), where b is a limit element of H, and (bn)n∈ω is the effectively determined
increasing sequence with limit b, then for each n, x has one successor with label
(bn, 0). This completes the description of T a and its labels.

�

In any tree, for any node x with ordinal tree rank γ, all ordinals γ′ < γ occur
as tree ranks of nodes y below x. (The proof of this is an easy induction on γ.)
Therefore, we have the following.

Lemma 4.2. If pred(a) is well ordered, then for any b < a and n ∈ ω, (b, n) occurs
as a label in T a.

Now, we take h ∈ H such that pred(h) is not well-ordered, but the property
above still holds.

Lemma 4.3. There is some h ∈ H such that pred(h) is not well-ordered, and for
all x ∈ Th, if x has label r = (b, n), then all r′ < r occur as labels on nodes y below
x.

Proof. Let I consist of those a ∈ H such that for all x ∈ T a, if x has label r = (b, n),
then all predecessors of r (in the lexicographic ordering on H∗) occur as labels on
nodes of T a below x. Now, I is a hyperarithmetical subset of H that includes all of
the well ordered initial segment. Since there is no hyperarithmetical well ordering
of type ωCK

1 , I must contain some h such that pred(h) is not well ordered.
�

We fix h as in Lemma 4.3, and consider Th. In Th, the top node ∅ has label (h, 0),
indicating that the rank is not a computable ordinal. In fact, rk(∅) = ∞, so Th

has a path. There is no hyperarithmetical path, since H has no hyperarithmetical
decreasing sequence.

We proceed as in Section 2, transforming Th first to a thin tree Th,1, with
a computable rank function, and then to a rank homogeneous tree T ∗, where
Rn(T ∗) = Rn(Th,1) for all n.

Lemma 4.4. There is a computable thin tree Th,1, with a computable rank function
such that ∅ has label (h, 0), and Th,1 shares with Th the feature that if x has label
r, then each r′ < r occurs as the label on some node below x.

Proof. The proof is the same as for Lemma 2.3, which was given in [9]. We keep
the top node and level 1 as in Th. At each level n > 1, we “expand” at most one
node, corresponding to an element x of Th,1 that has a limit label, always choosing
the first x. The result is a computable embedding f of Th in Th,1 that preserves
labels. Suppose x is a successor of z. If x has successor label (b, n+1), then f(x) is
a successor of f(z), with the same label. If x has a limit label (b, 0), then f(x) may
not be a successor of f(z) (because the expansion is delayed). We can determine
the level by looking at the number of x′ < x waiting to be expanded. It follows that
we can effectively determine the appropriate labels on the chain leading from f(z)

12 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

down to f(x). Note that if x has label (b, n), where pred(b) is not well ordered, then
x has at least one successor with label (b′, n′), where pred(b′) is not well ordered.

�

Lemma 4.5. Let Th,1 be as in Lemma 4.4. There is a computable rank homoge-
neous tree T ∗, with a computable rank function, such that Rn(T ∗) = Rn(Th,1) for
all n. (Such a T ∗ is necessarily thin.)

Proof. The proof is the same as for Lemma 2.4. We give the top node ∅ the same
label as in Th,1. For all x at level n in T ∗, if x has been given label (b, m), then
for all (b′,m′) < (b, m) such that some element at level n + 1 in Th,1 has label
(b′, n′), we give x infinitely many successors with label (b′,m′). According to this
scheme, if x has label (b, m), where pred(b) is not well ordered, then for at least
one (b′,m′) < (b, m), where pred(b′) is not well ordered, x has infinitely many
successors with label (b′,m′).

�

We are ready to define a new family of trees T a,∗, for a < h, such that if a is in
the well-ordered initial segment P , where pred(a) has type α, then T a,∗ will have
computable rank at least ωα, and T a,∗ will be a good approximation for T ∗.

Lemma 4.6. Given a ∈ P such that pred(a) has order α, we can apply a uniform
effective procedure to obtain a computable tree T a,1, of computable rank ω(α + 1),
with a computable rank function, such that for each n, the labels r < (a, 0) on nodes
at level n of T ∗ (or Th,1) match those on nodes at level n in T a,1. Furthermore, if
T ∗ has nodes of rank at least ωα at level n, then T a,1 will have them, as well.

Proof. We first remove from Th,1 all nodes with labels r > (a, 0). Now, there are
“orphans” at various levels—that is, nodes x with no predecessor. Suppose x is
such a node at level n > 0. If x has label (a, 0), then we add a chain of length n
connecting x to the top node, and we put the obvious labels, all greater than (a, 0),
on the nodes in the chain.

Suppose that x is an orphan at level n > 0 with label strictly less than (a, 0).
Since the predecessor z of x in Th,1 had a label greater than or equal to (a, 0),
there exists y below z, at some level M ≥ n, such that y has label (a, 0). We may
suppose that y has been given a chain of ancestors leading to the top node, as in
the previous paragraph. Say y′ is the one at level n−1. We attach x as a successor
of this y′. The result of all this is a computable tree T a,1 of rank ω(α + 1), with
a computable rank function, such that for all n, and all γ < ωα, Rn(T a,1) and
Rn(T ∗) include the same ordinals γ < ωα.

�

The tree T 1,a may not be thin. Next, we replace T a,1 by a tree that is rank
homogeneous.

Lemma 4.7. Given a ∈ P , we can effectively find a computable tree T a,∗, with
computable rank function, such that T a,∗ is rank homogeneous, and for all n,
Rn(T a,∗) = Rn(T a,1).

Proof. The proof is the same as for Lemmas 2.4 and 4.5.
�

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 13

We have designed the approximations T a,∗ such that if pred(a) has type α, then
T ∗ ∼α T a,∗. We shall also need the fact that (T b,∗)b<a, with the back-and-forth
relations from Section 3, is “α-friendly”. We give the definition below. (For more
information, see [4].)

Definition 11. Let (Ai)i∈I be a family of structures, and let (≤γ)γ<α be a family
of binary relations on the pairs (i, a), where i is in I and a is a tuple from Ai.
(We are letting (i, a) represent (Ai, a).) We identify the ordinals < α with their
unique notations on the fixed path P through O. We say that the family (Ai)i∈I is
α-friendly, under the relations ≤γ , for γ < α, if

(1) the relations ≤γ are reflexive and transitive, and for any i, j ∈ I, the re-
strictions to pairs (i, a), (j, b) for a given i and j have the back-and-forth
property,

(2) the structures Ai are computable, uniformly in i, and
(3) the relations ≤γ are c.e., uniformly in the notation for γ.

Recall the relations �γ from Section 3. We defined these relations for tuples
from a pair of trees. By Proposition 3.9, if the trees T and T ′ are computable, with
computable rank functions, then the relations are c.e., uniformly in indices for T
and T ′ and their rank functions. Now, for a given a ∈ P such that a is a notation
for α, we consider tuples from the family of trees T b,∗, for b < a. For each γ < α,
we form a single relation �γ such that (b, a) �γ (b′, a′) if (Tb, a) �γ (Tb′ , a

′). We
have the following.

Lemma 4.8. Let a be the notation for α in P . Then the family (T b,∗)b<a is
α-friendly under the relations �γ , for γ < α.

5. Strong computable approximability

Let Th,∗ be the computable tree of Scott rank ωCK
1 constructed in the previous

section. Recall that P is a path through O. Whenever it is helpful, we identify
the ordinals with their notations in P . We write |a| for the ordinal with notation
a. Let (T a,∗)a∈P be the family of approximating trees constructed in the previous
section. Recall that these all have computable Scott rank. Our goal in this section
is to show that Th,∗ is strongly computably approximable, using the trees T a,∗, for
a ∈ P . We shall apply the following technical result on approximations.

Theorem 5.1. Let A be a computable structure. Let (Aa)a∈P be a family of further
computable structures for the same language, indexed by elements of a fixed path P
through O. Let ≤β, for computable ordinals β, be a family of binary relations on
tuples from the structures Aa. Suppose that

• the computable Σ|a| sentences true in A are all true in Aa,
• (Ab)b<a is |a|-friendly under the back-and-forth relations ≤β, for β < |a|.

Then for any Σ1
1 set S, there is a uniformly computable sequence (Cn)n∈ω such

that if n ∈ S, then Cn
∼= A, and if n /∈ S, then Cn

∼= Ab, for some b ∈ P .

Before proving Theorem 5.1, let us see how it applies to the tree T ∗ and the
approximations T a,∗, for a ∈ P . Suppose |a| = α. We have the following:

(1) T ∗ ∼α T a,∗, and
(2) (T b,∗)b<a is an α-friendly family under the back-and-forth relations �γ , for

γ < α.

14 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

It follows from 1 that the computable Σα sentences true in T ∗ are true in T a,∗.
Then 2 puts us in a position to apply Theorem 5.1. The conclusion says that T ∗ is
strongly computably approximable, using the trees T a,∗, for a ∈ P .

5.1. Proof of Theorem 5.1. In this section, we describe the proof of Theorem 5.1.
We use ∆0

β to denote the particular complete ∆0
β oracle associated with the notation

b ∈ P for β. We may suppose that there is a uniform effective procedure which,
when applied with the oracle ∆0

β , yields the notation b.

Let S be a Σ1
1 set. We write n /∈ Sα if ∆0

α can determine that n /∈ S, and we
write n ∈ Sα otherwise. We suppose that if α is first such that n /∈ Sα, then for all
γ > α, the oracle for ∆0

γ can determine that n /∈ S.

To prove Theorem 5.1, we use Barwise-Kreisel Compactness. There is a Π1
1 set

Γ of computable infinitary sentences, describing a uniformly computable sequence
of structures (Cn)n∈ω such that if n ∈ Sα, then An satisfies all of the computable
Σα sentences true of A, and if α is first such that n /∈ Sα, then Cn satisfies all of
the computable infinitary sentences true of Aa, where |a| = α.

We must show that every ∆1
1 subset of Γ is satisfiable. For this, we need the

following.

Lemma 5.2. For each computable ordinal α ≥ 1, there is a uniformly computable
sequence (Cn)n∈ω such that if β ≤ α is first such that n /∈ Sβ, then Cn

∼= Aβ, and
otherwise Cn

∼= Aα.

Ash developed some quite general machinery for transfinitely nested priority
constructions. He defined the notion of an “α-system”, with a set of four condi-
tions taking care of the combinatorics. To use Ash’s machinery, it is sufficient to
define an appropriate α-system (satisfying the four conditions), together with a ∆0

α

“instruction function”, giving the high-level information needed. The success of
the construction is guaranteed by a “Metatheorem”. For a discussion of α-systems,
with a number of examples, see [4].

If we could, we would produce (Cn)n∈ω by applying Ash’s Metatheorem, in a
uniform way, using a single α-system S = (L,U, ˆ̀, Q,E, (≤γ)γ<α), and a family of
instruction functions (pn)n∈ω which are uniformly ∆0

α. For each n, the instruction
function pn has just one piece of information to give; namely the least β, if any,
such that n /∈ Sβ . We can define most of the ingredients of an α-system in a natural
way. However, there is no good candidate for the “anchor label” ˆ̀, and we cannot
verify Ash’s fourth condition.

Although we do not have an α-system, we can leave ˆ̀ indefinite and get what
we want anyway. As in earlier papers such as [2], [3], having carried out a nested
priority construction to which we cannot apply Ash’s original Metatheorem, we
record the abstract properties that make the construction work, so that when we
see these same properties again, we can use what we have just done.

5.2. Indefinite α-systems. In what follows, whenever it is convenient, we identify
computable ordinals with their notations on a fixed path through O. We define the
following variant of an α-system.

COMPUTABLE TREES OF SCOTT RANK ωCK
1 , AND COMPUTABLE APPROXIMATION 15

Definition 12. An indefinite α-system is a structure of the form

S = (L,Q, E, (≤γ)γ<α) ,

where L is a c.e. set, and Q is a c.e. tree of finite sequences β`β`1`2 . . ., starting
with an ordinal β ≤ α, and with later terms in L (we may suppose that there is a
unique `β which can follow a given β), E is a c.e. enumeration relation assigning
to each ` ∈ L a finite set E(`), and the ≤γ are binary relations on L, uniformly
c.e. We suppose that if β > γ, and β`, γ`′ are both in Q, then ` ≤γ `′. In addition,
we have the following conditions:

(1) If ` ≤0 `′, then E(`) ⊆ E(`′).
(2) The relations ≤γ are transitive and reflexive.
(3) If β < γ, then ` ≤γ `′ implies ` ≤β `′.
(4) Every “picture” has a “completion”, where these notions are defined below.

A picture is a pair (σ; τ), where σ is a sequence in Q of length at least 2, and τ is
either empty or of the form γ0`

1γ1`
2 . . . γk−1`

k. We suppose that
γ0 > γ1 . . . > γk−1, and `1 ≤γ1 . . . ≤γk−1 `k. If σ starts with β, then β > γ0,
and if σ ends with `0 ∈ L, then `0 ≤γ0 `1. A completion of the picture (σ; τ) is
some ` such that σ` ∈ Q, `i ≤γi `, for all i < k, and `k ≤0 `.

Next, we define a variant of an instruction function. For an indefinite α-system,
there is just one piece of information, an ordinal β ≤ α. The idea behind the
definition below is that for each γ, 1 ≤ γ ≤ α, ∆0

γ knows that the value is β if
β ≤ γ, and guesses that the value is α, otherwise.

Definition 13. Let Q be the tree in an indefinite α-system.

(1) An indefinite ∆0
α instruction function, with value β ≤ α, is a function q

on ordinals 1 ≤ γ ≤ α, where q(γ) is ∆0
γ , uniformly in γ, and

q(γ) =
{

β if γ ≥ β
α otherwise

}
(2) A run of (Q, q) is a path through Q starting with the true value β = q(α).

Here is our variant of Ash’s Metatheorem.

Theorem 5.3 (Metatheorem). Let S = (L,Q, E, (≤γ)γ<α) be an indefinite α-
system, and let q be an indefinite ∆0

α instruction function for Q, with value β.
Then there is a ∆0

β run π = β`0u1`1u2`2 . . . of (Q, q) such that E(π) = ∪kE(`k) is
c.e. Moreover, from indices for q and S, we can find a c.e. index for E(π).

The proof is almost exactly the same as for Ash’s original Metatheorem and the
variants in [4], [1], [2]. We assume that the reader can look at the proof, say in
[4], and make the minor changes that are needed. If β is the value of the indefinite
instruction function, then everything proceeds as though we were dealing with a
β-system, with a trivial ∆0

β instruction function. At levels above β, the steps are
the same as at level β. At levels below β, we have the usual steps of approximation.
At levels γ ≥ β and above, the first label is `β , and all of the pictures are trivial,
reflecting the fact that there is no approximation. At levels γ < β, the first label is
`α, and all of the ordinals that occur in the pictures are ≥ γ.

16 W. CALVERT, J. F. KNIGHT, AND J. MILLAR

5.3. Return to Lemma 5.2. We apply the metatheorem above to prove Lemma 5.2.
Let C be an infinite computable set of constants, for the universe of Cn. Let L be
the set of pairs (β, f), where β ≤ α, and f is a finite partial 1− 1 function from C
to Aγ . Let Q be the set of finite sequences of the form β`0`1`2 . . ., where β ≤ α, `i

has the form (β, fi) (for the same β), the first i elements of C are in dom(fi) and
the first i elements of Bβ are in ran(fi). Let E be the usual enumeration relation
on L; that is, for ` = (β, f), where n is the cardinality of f , we let E(`) consist of
the atomic sentences and negations of atomic sentences with constants in dom(f)
with Gödel number is at most n and such that f makes the sentence true in Bβ .
Let ≤γ be the given back-and-forth relations.

We have described the ingredients of our indefinite α-system. The first three
conditions are clearly satisfied. To verify Condition 4, consider a picture (σ; τ),
where σ begins with β and ends in `0 = (β, f). If τ = ∅, then there is clearly
a next ` such that σ` ∈ Q—we just extend the function f from `0. Suppose
τ = γ0`

1γ1`
2 . . . γk−1`

k. Then `0 ≤γ0 `1. To complete the picture, we first form
extensions (`i)′ of `i such that (`i)′ ≤γi `i−1, starting with i = k and working back
to i = 0. Then we extend the function in (`0)′ to get the desired completion `.

References

[1] Ash, C. J., and J. F. Knight, “Pairs of recursive structures”, Annals of Pure and Appl. Logic,

vol. 46(1990), pp. 211–234.
[2] Ash, C. J., and J. F. Knight, “Ramified systems”, Annals of Pure and Appl. Logic,

vol. 70(1994), pp. 205–221.

[3] Ash, C. J., and J. F. Knight, “Mixed systems”, J. Symb. Logic, vol. 59(1994), pp. 1383–1399.
[4] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy,

Elsevier, 2000.
[5] Barwise, J., “Infinitary logic and admissible sets”, J. Symb. Logic, vol. 34(1969), pp. 226–252.

[6] Goncharov, S. S., V. S. Harizanov, J. F. Knight, and R. Shore, “Π1
1 relations and paths

through O”, J. Symb. Logic, vol. 69(2004), pp. 585–611.
[7] Goncharov, S. S., and J. F. Knight, “Computable structure and non-structure theorems”,

Algebra and Logic, vol. 41(2002) (English), pp. 351–373.

[8] Harrison, J., “Recursive pseudo well-orderings”,Trans. of the Amer. Math. Soc., vol.
131(1968), pp. 526–543

[9] Knight, J. F., and J. M. Young, “Computable structures of rank ωCK
1 ”, submitted to J. of

Math. Logic.
[10] Makkai, M., “An example concerning Scott heights”, J. Symb. Logic, vol. 46(1981),

pp. 301–318.

[11] Morozov, A. S., “Groups of computable automorphisms”, in Handbook of Recursive Mathe-
matics, ed. by Yu. L. Ershov, et. al., 1998, Elsevier, pp. 311–345.

[12] Nadel, M., “Scott sentences and admissible sets”, Annals of Mathematical Logic, vol. 7 (1974),
pp. 267–294.

[13] Nadel, M., “Lω1ω and admissible fragments”, in Model-Theoretic Logics, vol. 45(1980), pp.
612–622.

[14] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill,
New York, 1967.

[15] Sacks, G. E., Higher Recursion Theory, Springer-Verlag, 1990.
[16] Scott, D., “Logic with denumerably long formulas and finite strings of quantifiers”, in The

Theory of Models, ed. by J. Addison, L. Henkin, and A. Tarski, North-Holland, 1965, pp. 329–
341.

