THE DISTANCE FUNCTION ON A COMPUTABLE GRAPH

WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

ABSTRACT. We apply the techniques of computable model theory to the dis-
tance function of a graph. This task leads us to adapt the definitions of several
truth-table reducibilities so that they apply to functions as well as to sets, and
we prove assorted theorems about the new reducibilities and about functions
which have nonincreasing computable approximations. Finally, we show that
the spectrum of the distance function can consist of an arbitrary single btt-
degree which is approximable from above, or of all such btt-degrees at once,
or of the bT-degrees of exactly those functions approximable from above in at
most n steps.

1. INTRODUCTION

Every connected graph has a distance function, giving the length of the shortest
path between any pair of nodes in the graph. Graphs appear in a wide variety of
mathematical applications, and the computation of the distance function is usually
crucial to these applications. Examples range from web search engine algorithms,
to Erdés numbers and parlor games (“Six Degrees of Kevin Bacon”), to purely
mathematical questions.

Therefore, the question of the difficulty of computing the distance function is
of natural interest to mathematicians in many areas. This article is dedicated to
exactly that enterprise, on infinite graphs. Assuming that the graph in question
is symmetric, irreflexive, and computable — that is, that one can list out all its
nodes and decide effectively which pairs of nodes have an edge between them — we
investigate the Turing degree and other measures of the difficulty of computing the
distance function.

We began this study by considering the spectrum of the distance function — a
standard concept in computable model theory, giving the set of the Turing degrees
of distance functions on all computable graphs isomorphic to the given graph. This
notion is usually used for relations on a computable structure, rather than for
functions, but it is certainly the natural first question one should ask. As our
studies continued, however, they led us to consider finer reducibilities than ordinary
Turing reducibility, and since we were studying a function instead of a relation,
we often had to adapt these reducibilities to functions. The resulting concepts
are likely to be of interest to pure computability theorists, as well as to those

The authors wish to acknowledge useful conversations with Denis Hirschfeldt. The work of
the first author was partially supported by a Fulbright-Nehru Senior Research Scholarship, the
George Washington University Research Enhancement Fund, and NSF grant DMS-1101123. That
of the second author was partially supported by grant DMS-1001306 from the National Science
Foundation, by grant 13397 from the Templeton Foundation, and by grants numbered 62632-00
40, 63286-00 41, and 64229-00 42 from The City University of New York PSC-CUNY Research
Award Program. The third author had partial support from The George Washington University
Research Enhancement Fund and from NSF grant DMS-0904101.

1

2 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

dealing with applications, and, writing the paper in logical rather than chronological
order, we spend the first sections defining and examining these reducibilities on
functions. Only in the final sections do we address the original questions about the
distance function on a computable graph. Therefore, right here we will offer some
further intuition about the distance function, to help the reader understand why
the material in the first few sections is relevant.

For a computable connected graph G, the natural first step for approximating
the distance d(z,y) between two nodes z,y € G is to find some path between them.
By connectedness, a systematic search is guaranteed to produce such a path sooner
or later, and its length is our first approximation to the distance from x to y. The
next natural step is to search for a shorter path, and then a shorter one than that,
and so on. Of course, these path lengths are all just approximations to the actual
distance from x to y. One of the approximations will be correct, and once we find
it, its path length will never be superseded by any other approximation. That is,
our (computable) approximations will converge to the correct answer, and so the
distance function is always (’-computable, by the Limit Lemma (see [15, Lemma
I11.3.3]). However, unless d(z,y) < 2, we will never be sure that our approximation
is correct, since a shorter path could always appear.

By definition d(z,z) = 0, and d(z,y) = 1 iff and y are adjacent, so it is
computable whether either of these conditions holds. It is not in general computable
whether d(x,y) = 2, but it is XY, since we need only find a single node adjacent
to both z and y. For each n > 2, however, the condition d(z,y) = n is given by
the conjunction of a universal formula and an existential formula, hence defines a
difference of computably enumerable sets, and in general cannot be expressed in any
simpler way than that. Indeed, the distance function often fails to be computable,
and likewise the set of pairs (z,y) with d(x,y) = n often fails to be computably
enumerable when n > 2. In what follows, however, we will show that the distance
function always has computably enumerable Turing degree — which in turn will start
to suggest why Turing equivalence is not the most useful measure of complexity for
these purposes. Other questions immediately arise as well. For instance, must
there exist a computable graph H isomorphic to G such that H has computable
distance function? Or at least, must there exist a computable H = (G such that we
can approximate the distance function on H with no more than one (or n) wrong
answer(s)?

The approximation algorithm described above is not of arbitrary difficulty, in
the pantheon of computable approximations to functions. Our approximations to
d(x,y) are always at least d(z,y), and decrease until (at some unknown stage) they
equal d(z,y). Hence d(z,y) is approximable from above. This notion already ex-
ists in the literature; the most commonly seen function of this type is probably
Kolmogorov complexity, which on input n gives the shortest length of a program
outputting n. Up to the present, approximability from above has not been so com-
mon in computable model theory; the more common notion there is approximability
from below, which arises (for instance) when one tries to find the number of prede-
cessors of a given element in a computable linear order of order type w. In Section
3 we give full definitions of the class of functions approximable from above, which
can be classified in much the same way as the Ershov hierarchy, and compare it
with the class of functions approximable from below. These two classes turn out
to be more different than one would expect! First, though, in Section 2, we present

DISTANCE FUNCTION 3

the exact definitions of the reducibilities we will use on our functions, so that we
may refer to these reducibilities in Section 3.

Very little background in computable model theory is actually required in order
to read this article, since the distance function turned out to demand a somewhat
different approach than is typical in that field of study. A background in general
computability theory will be useful, however, particularly in regard to several of
the so-called truth-table reducibilities, and for this we suggest [14], to which we will
refer frequently in Section 2. We try to maintain notation from [14] as we adapt
the definitions of the truth-table reducibilities to deal with functions. We give the
requisite definitions about graphs in Section 4, where they are first needed.

2. REDUCIBILITIES ON FUNCTIONS

When discussing Turing computability relative to an oracle, mathematicians
have traditionally taken the oracle to be a subset of w. To compute relative to
a total or partial function from w™ into w, they simply substitute the graph of
the function for the function itself, then apply a coding of w”t! into w. This
metonymy works admirably as far as ordinary Turing reducibility is concerned, and
any alternative definition of Turing reducibility for functions should be equivalent
to this one. However, bounded Turing reducibility (in which the use of the oracle is
computably bounded; see Definition 2.6) among functions requires a new definition,
and so we offer here an informal version of our notion of a function oracle.

First, to motivate this notion, consider bounded Turing (bT) reducibility with
a function oracle. One would certainly assume that a total function f should be
bT-reducible to itself. However, if one wishes to compute f(z) for arbitrary x, using
the graph of f as an oracle, and if f is not computably bounded, then there is no
obvious way to compute in advance an upper bound on the codes (m,n) of pairs
for which one will have to ask the oracle about membership of that pair in the
graph. (This question is addressed more rigorously in Proposition 2.7 and Lemma
2.8 below.) So, when we move to reducibilities finer than <r, there is a clear need
for a notion of Turing machine having a function as the oracle.

For simplicity, we conceive of a Turing machine with a function oracle F' as
having three tapes: a two-way scratch tape (on which the output of the computation
finally appears, should the computation halt), a one-way question tape, and a one-
way answer tape. When the machine wishes to ask its function oracle for the
value F(z) for some specific z, it must write a sequence of exactly (z + 1) 1’s on
the question tape, and must set every cell of the answer tape to be blank. Then it
executes the oracle instruction. In this model of computation, the oracle instruction
is no longer a forking instruction. Rather, with the tapes in this state, the oracle
instruction causes exactly (1 4+ F(z)) 1’s to appear on the answer tape at the next
step, and the machine simply proceeds to the next line in its program (which most
likely will start counting the number of 1’s on the answer tape, in order to use the
information provided by the oracle). Notice that it is perfectly acceptable to say
that a set is computable from a function oracle (using the above notion), or that a
function is computable from a set oracle (using the usual notion of oracle Turing
computation). If one wishes to speak only of functions, there is no harm in replacing
a set by its characteristic function. We leave it to the compulsive reader to formulate
the precise definition of a Turing machine with function oracle, by analogy to the

4 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

standard definition for set oracles. A more immediate (and equivalent) definition
uses a different approach.

Definition 2.1. The class of partial functions on w computable with a function
oracle F', where F : w — w is total, is the smallest class of partial functions closed
under the axiom schemes I-VI from [15, § 1.2] and containing F.

Of course, this is exactly the usual definition of the partial F-recursive functions,
long known to be equivalent to the definition of functions computable by a Turing
machine with the graph of F" as its oracle. As far as Turing reducibility is concerned,
nothing has changed. Only stronger reducibilities need to be considered. We start
by converting the standard definitions (for sets) of <,, and <; to definitions for
functions.

Definition 2.2. Let ¢ and 9 be partial functions from w to w. We say that ¢
is m-reducible to v, written ¢ <,, v, if there exists a total computable function g
with ¢ = 1 o g. (For strictly partial functions, this includes the requirement that

(Va)p(x) | <= ¥(g(x))]].)

If the m-reduction g is injective, we say that ¢ is 1-reducible to v, written ¢ <1 1.

This definition already exists in the literature on computability, having been
presented as part of the theory of numberings studied by research groups in Novosi-
birsk and elsewhere. (See e.g. [7], [6] or [8, p. 477] for the notion of reducibility on
numberings.) It is appropriate here as an example of our approach in generalizing
reducibilities on sets to reducibilities on functions, for which reason we feel justified
in calling it m-reducibility. For subsets A, B C w, it is quickly seen that A <,,, B iff
xa <m XB, where these are the characteristic functions of those sets; similarly for
A <j B. The analogue of Myhill’s Theorem for functions states that if ¢ <; 1 and
¥ <1 ¢, then in fact there is a computable permutation h of w with ¢ =1 oh (and
hence ¢ = @ o (h™1)), in which case we would call ¢ and v computably isomorphic.
The proof is exactly the same as that of the original theorem of Myhill (see [15,
Thm. 1.5.4]), and it makes no difference whether ¢ and « are both total or not.

Definition 2.3. A function v is m-complete for a class I' of functions if ¢ € T"
and, for every ¢ € I', we have ¢ <,, ¥. We define 1-completeness similarly, but
require that ¢ <; 9.

For example, the universal Turing function ({e,x)) = () is 1-complete par-
tial computable, i.e. 1-complete for the class of all partial computable functions.
(For each single @, in the class, the function x — (e, z) is a l-reduction.) A more
surprising result is that there does exist a function h which is 1-complete total
computable: let h({n,m)) = m, so that, for every total computable f, the function
g(n) = (n, f(n)) is a 1-reduction from f to h.

The notion of m-reducibility for sets has small irritating features, particularly the
status of the sets () and w. Intuitively, the complexity of each of these is as simple as
possible, yet they are m-incomparable to each other. (Also, no S # @) has S <,,, 0
and no S # w has S <,,, w; intuitively this is reasonable, but it is still strange to have
two m-degrees containing only a single set each.) The same problem is magnified
for m-reducibility on functions. Clearly, if ¢ <,, ¥, then rg(y) C rg(y). It follows
that every total constant function forms an m-degree all by itself. Moreover the
function ¢(x) = 2z is m-incomparable with ¥ (z) = 22+ 1, even though these seem

DISTANCE FUNCTION 5

to have very similar complexity; and assorted other pathologies can be found. To
address these issues, we offer the following adaptation of m-reducibility.

Definition 2.4. The join of two partial functions ¢ and v is the function which
splices them together:

_ o(3), if zis even;
(p@Y)(z) = { Y(EL), if o is odd.
A partial function ¢ is augmented m-reducible to another partial function 1,

written ¢ <, ¥, if ¢ <., (t @), where ¢(0)1 and ¢(z + 1) = .

The intention here is that, for any computable subset S C w such that ¢[.S and
(SNdom(y)) are both computable, one can define the m-reduction g from ¢ to t®1)
by choosing g(x) = 2 + 2p(x) for x € S, with g(x) = 0 if ¢(z) is known to diverge.
On (w — 5), g must actually serve as a (computable) m-reduction from p[(w — 5)
to 1. Under this definition, there is a single a-degree consisting of all partial
computable functions with computable domains. Thus, many pathologies regard-
ing functions with seemingly similar complexity but distinct domains are avoided.
(Some remain. A noncomputable function ¢ will generally be a-incomparable to
(1+), for instance.)

Proposition 2.5. The a-degree of the empty function X is the least a-degree. More-
over, a function ¢ belongs to this a-degree iff ¢ is partial computable and dom(y)
is computable.

Proof. For every partial function ¢, we have A <, ¢, since the constant function
0 serves as an m-reduction from A to (¢ @). For the forwards direction of the
equivalence, let g be an m-reduction from ¢ to (+ ® A). Then z € dom(yp) iff
g(x) is nonzero and even, in which case p(z) = (t & A)(g(z)) = @ — 1, which is
computable. For the converse, we define an m-reduction h from ¢ to (v & \) by:

| 2-(p(x)+1), ifzedom(p)
hiz) = { 7 0, if not. 7

O

For characteristic functions of sets A and B, we have xya <, xp iff A <,
(B® 0 & w). We will not use this concept for sets, but we suggest writing A <, B
whenever A <,,, (B®0®w). Under this definition, the computable sets (including (}
and w) form the least a-degree of sets. The definition of 1-reducibility for functions
could be adapted in the same way to produce a notion of augmented 1-reducibility
for functions, and likewise for sets, but certain questions arise about the best way
to adapt the definition, and we will not address them here.

We also consider reducibilities intermediate between m-reducibility and Turing
reducibility, again by analogy to such reducibilities on sets.

Definition 2.6. Let o and 3 be total functions. We say that « is bounded- Turing
reducible to B, or weak truth-table reducible to 3, if there exists a Turing reduction
® of a to 8 and a computable total function f such that, in computing each value
a(z), the reduction ® only asks the S-oracle for values a(y) with y < f(z). Thus,
for each x, a(z) = ®?1/(*)(z). Bowing to the two distinct terminologies that exist
for this notion on sets, we use two notations for this concept:

a <pr B and o <ye 8.

6 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

If we use D, to denote the finite set with strong index e (i.e. the index tells the
size of D, and all of its elements), then we say that a is truth-table reducible to
B, written a <i B, if there exist total computable functions f and g such that,
for every input x to a, we have a(x) = g(x, B[Dy(y)). This is different from the

related reducibilities on enumerations described by Degtev [4] — in particular, it
is important for what follows in the present paper that o and 3 can have different
ranges.

Finally, if a <{¢ § via f and g as above and there exists some k € w such that
|Df(zy| < k for every o € w, then we say that « is bounded truth-table reducible to
B with norm k, and write a <p_pst 8. For a to be bounded truth-table reducible to 8
(with no norm stated) simply means that such a k exists, and is written a <p¢y S.

It should be noted that, as with sets, the relation <j_ ¢ on function fails to be
transitive, for k > 1. In general, if o <jpee 8 and 8 <gpee v, then a <jpypee 7-

As mentioned, functions and their graphs have always been conflated for purposes
of Turing-reducibility. For these finer reducibilities, the conflations no longer apply.

Proposition 2.7. A total function h is truth-table equivalent to (the characteristic
function of) its own graph iff there exists a computable function b such that, for
every x, we have h(x) < b(x). (In this case, h is said to be computably bounded.)

Proof. Let G C w? be the graph of h, and suppose first that h(z) < b(z) for all .
Then, with a G-oracle, a Turing machine on input = can simply ask which pairs
(z,n) with n <b(z) lie in G. So we have stated in advance which oracle questions
will be asked, and by assumption there will be exactly one positive answer, which
will be the pair (z,y) with y = h(z). Thus h <. G, since we can also say in
advance exactly what answer the machine will give in response to each possible set
of oracle values. On the other hand, to determine whether (z,y) € G, an oracle
Turing machine only needs to ask an h-oracle one question: the value of h(x).
Thus xg <st h as well. This latter reduction is actually a bounded truth-table
reduction of norm 1, under Definition 2.6, and holds even without the assumption
of computable boundedness of h.

For the forwards direction, suppose h =;; xg- Then the computation of h, on
input x, asks for the value xg(m,n) only for pairs with codes (m,n) € Dy, and
outputs g(x, xa[Df()), with f and g as in Definition 2.6. Thus h(z) must be one
of the finitely many values in the set {g(z,0) : o € 2/Ps@!}. Since f and g are
computable and total, we may take b(z) to be the maximum of this set, forcing
h(z) < b(z). Thus h is computably bounded. O

In Proposition 2.7, tt-equivalence cannot be replaced by bT-equivalence. The
following proof of this fact was devised in a conversation between E. Fokina and
one of us, and completes the answer to the question asked at the beginning of this
section.

Lemma 2.8 (Fokina-Miller). There exists a total function f which is not com-
putably bounded, yet is bT-equivalent to (the characteristic function of) its own
graph G.

Proof. Let K = {{e,z) : p.(x)]} be the halting set. Define f(2z) = xx ((z,2z+1))
on the even numbers, using the characteristic function yx of K, and on the odd

DISTANCE FUNCTION 7

numbers, define

14 .22+ 1), if (27 + 1)1,
o= {1 e

Of course this f is not computable, but it is total, and for each x, the input (2x+1)
witnesses that ¢, is not an upper bound for f. Moreover, to determine f(2x) on
even numbers, we need only ask a G-oracle whether (22,0) € G. To determine
f(2z +1) on odd numbers, we again ask the oracle whether (2z,0) € G. If so, then
Xk ({z,22 + 1)) = f(2z) = 0, meaning that ¢,(2z + 1) 1, and so we know that
f2z+1) =0. If (22,0) ¢ G, then we know that xx((z,2x 4+ 1)) = f(2z) =1, so
(x,2x+1) € K, and we simply compute ¢, (2z+1) (knowing that it must converge)
and add 1 to get f(2x + 1). In all cases, therefore, we can compute f(y) by asking
a single question of the G-oracle about whether a predetermined value lies in G.
Thus f <pr G, and of course G <yt f- O

3. FUNCTIONS APPROXIMABLE FROM ABOVE

Having adapted several standard reducibilities on sets to serve for functions as
well, we now perform the same service for the Ershov hierarchy. Traditionally this
has been a hierarchy of ('-computable sets, determined by computable approxima-
tions to those sets and by the number of times the approximations “change their
mind” about the membership of a given element in the set. In our investigations
of the distance functions on computable graphs, we found that similar concepts
arose, but pertaining to functions, not to sets. Therefore, the following definitions
provide total A9-functions with their own Ershov hierarchy, and then add some
further structure.

Definition 3.1. Let f(z) = lim, g(z, s) be a total function from w to w, with the
binary function g total and computable.

e If there is a total computable function A such that

(Vo) {s = g(x,s) # gz, s + 1)} < (),

then f is w-approximable.

e If the constant function h(x) = n can serve as the h in the previous item,
then f is n-approzimable.

e More generally, if a is a computable ordinal and there is a total computable
nonincreasing function h : w? — « such that

(Va¥s) [g(e,s) # g(, s+ 1) = hz,s) # h(z,s + 1),

then f is a-approximable.

e If, for all and s, we have g(z,s 4+ 1) < g(z,s), then f is approzimable
from above. Such functions are also sometimes called limitwise decreasing,
semi-computable from above or right c.e. functions

o If, for all and s, we have g(z,s + 1) > g(x,s), then f is approzimable
from below. In the literature, such functions have also been called limitwise
monotonic, limitwise increasing, and subcomputable.

e When we combine these definitions, we assume that a single function g
satisfies all of them. For instance, f is 3-approzimable from above if f is
the limit of a computable function g such that, for all z, [{s : g(z,s) #
gz, s+ 1)} <3 and (Vs) g(z,s + 1) < g(z,s).

8 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

e Following [3], we define f to be graph-a-c.e. if « is a computable ordinal
and the graph of f is an a-c.e. set in the Ershov hierarchy.

In [3], the term a-c.e. function was used for the functions we are calling a-
approximable. We prefer our terminology, since the phrase “c.e. function” has been
used elsewhere for functions approximable from below. (For such a function, the
set {(z,y) : y < f(x)} is c.e. This also explains the use of the term subcomputable
for such functions.)

A characteristic function y 4 is approximable from below iff A is c.e., and ap-
proximable from above iff A is co-c.e. The definitions of approximability from
below and from above may seem dual, but in fact there are significant distinctions
between them. For an example, contrast the following easy lemma with the well-
known fact that there exist functions which are approximable from below, but not
w-approximable.

Lemma 3.2. Every function approzimable from above is w-approximable from
above.

Proof. Let f = limg g with g(x, s+1) < g(z, s) for all x and s. Then the computable
function h(z) = g(z,0) bounds the number of changes g can make. O

On the other hand, the hierarchy of n-approximability from above does not
collapse. (See also Corollary 3.10 below, which uses this lemma to show non-
collapse at the w level, as well.)

Lemma 3.3. For every n, there is a function f which is (n+1)-approximable from
above but not n-approximable.

Proof. We define a computable function g(z,s) and set f(z) = lim, g(z,s). To
begin, g(z,0) = n+ 1 for every x. At stage s+ 1, for each x, compute the sequence

pr,s('xa 0)7 @J;,s(xa 1)7 R @x,s(x7t)

for the greatest ¢ < s such that all these computations converge. If ¢, (z,t) =
g(z,s) > 0, set g(z,s + 1) = g(x,s) — 1; otherwise set g(z,s + 1) = g(x,s). Thus
f(z) =limg g(x, s) is (n + 1)-approximable from above, but if f(z) = lim; @.(x, s),
then p.(z,s) must have assumed each of the values (n 4+ 1),n,...,1,0, and so ¢,
is not an n-approximation to f. O

The appropriate duality pairs functions approximable from above with a subclass
of the functions approximable from below, as follows.

Definition 3.4. Suppose that g is computable and total, with g(x,s+1) < g(z, s)
for all z and s, so that f(x) = lim, g(x, s) is total and approximable from above.
The dual of g is the function

Wz, s) = g(x,0) — g(z,).

Thus j(z) = lim, h(x, s) is total, approximable from below (by k), and bounded
above by g(z,0). Moreover, g is an a-approximation for f iff s is an a-approximation
for 7.

Conversely, let j be any function which is approximable from below via h(z, s)
and computably bounded: that is, j is such that there exists a computable total
function b with j(x) < b(x) for all z. Then the function g(z,s) = b(z) — h(z, s) is
the dual of h and b.

DISTANCE FUNCTION 9

It is natural to call j the dual of f, but in fact j depends on the choice of
the approximation g: two different approximations g and g will often yield two
different duals, though these two duals always differ by a computable function,
namely (g(z,0) — g(z,0)). The dual of a function approximable from below also
depends on the choice of computable bound. Nevertheless, it will be clear from
our results below that the class of computably bounded functions approximable
from below is the natural dual for the class of functions approximable from above.
The computable upper bound in the former class is the obvious counterpart of the
built-in computable lower bound of 0 for the latter class.

Functions approximable from below have seen wide usage in computable model
theory, for example in [1, 2, 10, 11, 12, 13]. Our interest in functions approximable
from above arose from our investigations into the distance function on a com-
putable graph. To our knowledge, this is the first significant use of such functions
in computable model theory, although, as we will mention, they arise implicitly
in the study of effectively algebraic structures and in certain other contexts. The
best-known example of a function approximable from above does not come from
computable model theory at all: it is the function of Kolmogorov complexity (for
any fixed universal machine), mapping each finite binary string (coded as a natural
number) to the shortest program which the fixed machine can use to output that
string.

It was a theorem of Khoussainov, Nies, and Shore in [13] that there exists a
AY set which is not the range of any function approximable from below. The
following theorem contrasts with that result, giving a very concrete distinction
between approximability from above and from below.

Theorem 3.5. The range of every approximable function is the range of some func-
tion which is 2-approzimable from above. Indeed, the ranges of the 2-approximable-
from-above functions are precisely the ¥9 sets.

Proof. We prove the stronger statement. Being in the range of a 2-approximable-
from-above function is clearly a ¥9 condition. For the converse, let S € XY have
computable 1-reduction p to the $9-complete set Fin, so that

(Vz)[r € S = [Wy)| < oq].

We will assume that at each stage s, there is exactly one x such that W (,) s41 #
Wp(z),s, and also that for every z, W,y # (); both of these conditions are readily
arranged. Fix the least g € S. At stage 0 we define nothing. At stage s + 1, for

each x < s, define

zo, if g(z, 8) = xo
g(z,5+1) = zo, U Wys)st1 7 Wyias).s
g(z,s), otherwise.

Then, for the unique y such that W) s41 # Wy(y),s, let

_ L _ | ply), ifply) >z
5.0) =g(si1) = = glos+ 1) = { PO R
This defines g effectively on all of w X w, and for every x, g(x, s) is either xq for all s,
or p(y) for all s (where y was chosen at stage x + 1), or else p(y) for s =0,1,...,n
and then xq for all s > n. This last holds iff p(y) > x¢ and W), received a new
element at some stage n+1 > x+1. So clearly g has a limit f(z) = lim, g(z, s) and

10 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

approximates that limit from above, with at most one change. Moreover, if y € .5,
then p(y) € Fin, and so when (the nonempty set) W), receives its last element,
say at stage x 4+ 1, then x will have g(z, s) = p(y) for all s > x, making S C rg(f).
Conversely, if x ¢ S, then p(y) ¢ Fin, so every z which ever had g(z, s) = p(y) will

eventually get changed and will have f(z) = zo; thus rg(f) C S. O

Corollary 3.6. There is a function 2-approximable from above, the range of which
is mot the range of any function approximable from below.

Proof. This is immediate from Theorem 3.5 in conjunction with a result in [13]
giving the existence of a AJ set which is not the range of any function approximable
from below. (]

Corollary 3.7. There exists a function that is 2-approzimable from above whose
range is ¥9-complete.]

Theorem 3.8. FEvery w-approximable function f is bT-reducible to some function
approximable from above. (This approximation from above is known as the count-
down function for f.)

Proof. Let f(z) be an w-approximable function, approximated by g¢(z,s), with
computable function h(x) bounding the number of mind changes of f(z,s). Set
c(z,0) = h(x). Let c(z,s+1) = ¢(x, s) unless g(x, s) # g(x,s+ 1), and in that case
set ¢(xz, s+1) = ¢(x, s)—1. Then lim, ¢(x, s) is approximable from above and f(x) is
computable from this limit, since f(z) = f(x,t) for each t with c(z,t) = lim, ¢(z, s).

Our reasons for referring to this ¢ as the countdown function for f (or, strictly
speaking, for g and h, since ¢ does depend on the approximation and the computable
bound) are clear. It is important to distinguish the countdown function ¢(z, s),
which is computable, from its limit limg ¢(z, s), which in general is not computable
(and was just shown to Turing-compute f). Indeed, we have f <ur lime, since the
only value of the limit required to compute f(z) is lim, ¢(z, s). O

On the other hand, this is not in general a truth-table reduction. For that, one
would need to predict in advance what the value of f(z) will be for every possible
value of lim; ¢(x, s) between 0 and ¢(z,0). Without knowing lim ¢(x, s) in advance,
one cannot be sure for how many values of s we may need to compute g(z, s) to
determine these answers.

The limit of ¢ is not in general Turing-reducible to f. However, if g is either an ap-
proximation from above or an w-approximation from below, then f =7 lim; c(-, s),
and indeed f =pr limgc(+, s), since the computation of limg ¢(x, s) only requires
us to ask the oracle for the value f(x). (Once an approximation from above or
from below abandons a value, it cannot later return to that value, and so, once
flx) = g(z,t), we know that c(z,t) = lim,c(z,s).) However, even for approx-
imations from above and w-approximations from below, we have in general that
lime £yt f, since we cannot determine the final value of the countdown without
actually knowing the value f(z).

Theorem 3.9. There is a function f that is 1-complete within the class of all
functions approximable from above.

Proof. We construct f by constructing a computable function g approximating f
from above. At stage 0, g is undefined on all inputs.

DISTANCE FUNCTION 11

At stage s + 1, find the least pair k = (e, x) (if any) such that ¢ s(z,0)] and
ny is undefined. Let ny be the least element such that g(ng,0) was undefined as of
stage s, and set

g(nkao) = g(nk7 1) == g(nkas + 1) = SOE,S('/EaO)'
Then (whether or not such a k existed), for each j = (e, x) such that g(n;,0)
was defined by stage s, we consider the sequence @, s(z,0),..., e s(z,t), for the

greatest t < s such that all these computations converge. If this finite sequence is
nonincreasing, we set g(n;,s + 1) = @.(x,t). Otherwise (that is, if @.(z,¢ +1) >
@e(x,t') for some t' < t), we set g(nj,s + 1) = g(n,, s).

This completes the construction of g. Clearly, every n is chosen at some stage to
be ny for some k, and subsequently g(ng, s) is defined for each s, so g is total and
computable. Moreover, by construction, g(ng,s + 1) < g(ng,s) for every k and s.
So the function f(n) = lim, g(n, s) is approximable from above.

Now let h be any function which is approximable from above, say by h(x) =
limg . (x, s). Then, for every x, p.(x,0) converges at some finite stage, and so some
ny with k& = (e, z) is eventually chosen. The function d. mapping x to this n . 4
(for this fixed e) is computable (since we can simply wait until n ;) is defined)
and total, and also 1-1, since n; # ny for j # k. Now since ¢, approximates h from
above, the sequence

(pe(l‘,O), <pe(CE, 1)7 @e(‘ra 2)3 B @e(mvt)a e

is infinite and nonincreasing. So the sequence

g(nk70)7g(nk’ 1)7g(nk72)’ R 7g(nk’3)’ AR

is exactly the same sequence, by construction, except that numbers which occur
finitely often in one sequence might occur a different finite number of times in the
other sequence. This shows that

F(de()) = f(ni) =i gy, 5) = lim pe(2,8) = h(z),

so fod, = h, proving h <y f via d.. Indeed, therefore, the 1-reduction may be
found uniformly in the index of a computable approximation to h from above. [

Theorem 3.9 gives an easy proof of a result which we could have shown by the
method from Lemma 3.3.

Corollary 3.10. There exists a function which is w-approximable from above, but
(for every n € w) is not n-approzimable.

Proof. If the 1-complete function f from Theorem 3.9 were n-approximable, say
via g(x, s), then since every function approximable from above has a 1-reduction
h to f, we would have that every such function is n-approximable (via g(h(z), s)).
This contradicts Lemma 3.3. O

Theorem 3.9 stands in contrast to the following results.

Theorem 3.11. No function is m-complete for the class of functions approzimable
from below.

Proof. Let f be any function with a computable approximation g(x,s) of f from
below. We build a computable approximation h from below to a function j which
cannot be m-reducible to f. Define h({e,z),0) = 0 for every e and z.

12 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

At stage s+1, if e s((e, z)) T, set h({e,x),s+1) = 0. Otherwise, set h({e,x), s+
1) =14 g(we({e,x)), s+ 1). By hypothesis on g, this h is clearly nondecreasing in
s, and since limg g(ve({e, x), s)) = f((e,z)) must exist, we see that

](<e,x>) = lignh(<e,x>7 S) =1+ 1i§19(<ﬂe(<€a I>)7 S) =1+ f(goe((e,x))).
However, this shows that either j # f o ¢, or else ¢, is not total, so j £,, f. O

Theorem 3.12. For every function f approxzimable from above, there exists a
function g which is 2-approzimable from below and has g L f.

Proof. Given a function f that is approximable from above, we construct an w-
approximable function, g, that f fails to m-compute. To achieve this, we assume
that f(z) = lim, @y (z,s), and consider possible witnesses for an m-reduction, di-
agonalizing against them. We must meet the following requirement for each e € w:

R.: @ istotal = Jx f(pe(z)) # g(x).

Set g(x,0) = 0 for each z € w. If p(e) = ye at stage s, set g(e,t) = f(ye,s)+1
for all t > s. For t > s, and any y, we have f(y,t) < f(y,s), so once R, receives
attention, it is forever satisfied. Furthermore, f(e,0) serves as a computable upper
bound for g(e, s) so g is computably bounded, and the number of mind changes is
at most 2.

O

The following result suggests the insufficiency of Turing reducibility, and even of
bounded Turing reducibility, to classify functions approximable from above.

Proposition 3.13. FEvery function approximable from above is bounded-Turing
equivalent to (the characteristic function of) a computably enumerable set, and
every c.e. set is bT-equivalent to a function approximable from above.

Proof. Let f = lim, g(z,s) be an approximation of f from above. Define the c.e.
set
Vi ={(z,n): 37"s [g(z,s + 1) # g(, s)]}.

That is, (z,n) € Vy if and only if the approximation to f changes its mind more
than n times. Clearly Vy <p f, and the computation deciding whether (z,n) € V
requires us only to ask the oracle for the value of f(x). Conversely, to compute f(z)
from a Vy-oracle, we first compute g(x,0), and then ask the oracle which of the
values (z,0), ..., (z, g(z,0) — 1) lies in V}; the collective answer tells us exactly how
many times the approximation will change its mind, and with this information we
simply compute g(x, s) until we have seen that many mind changes. Both of these
are bounded Turing reductions. (Neither, however, is a truth-table reduction. In
fact, the characteristic function of V is tt-equivalent to the limit of the countdown
function for f, which is not in general tt-equivalent to f.)

For the second statement, note that every c.e. set is bT-equivalent (indeed tt-
equivalence with norm 1) to the characteristic function of its complement. (I

Corollary 3.14. There is a 2-approximable function that is not Turing equivalent
to any function approximable from above.

Proof. Let S be a d.c.e. set which is not of c.e. degree. (See, e.g., [5] for such a con-
struction). Then the characteristic function xg is 2-approximable, and Proposition
3.13 completes the result. ([

DISTANCE FUNCTION 13

4. THE DISTANCE FUNCTION IN COMPUTABLE GRAPHS

With the results of the preceding sections completed, we may now address the
intended topic of this paper: the distance function on a computable graph. Com-
putable graphs are defined by the standard computable-model-theoretic definition.

Definition 4.1. A structure M in a finite signature is computable if it has an initial
segment of w as its domain and all functions and relations on M are computable
when viewed as functions and relations (of appropriate arities) on that domain.

Therefore, a symmetric irreflexive graph G is computable if its domain is either
w or a finite initial segment thereof, and if there is an algorithm which decides, for
arbitrary x,y € G, whether G contains an edge between = and y or not (i.e. if the
algorithm computes the entries of the adjacency matrix).

The distance function d on a graph G maps each pair (z,y) € G? to the length
of the shortest path from z to y. Assuming G is connected, such a path must exist.
By definition d(z,z) = 0, and this is quickly seen to be a metric on G. Moreover,
if G is a computable graph, then the distance function on G is approximable from
above, since for any = and y, we can simply search for the shortest path from z to y.
Formally, letting G4 be the induced subgraph of G on the vertices {0, ..., s}, we find
the least ¢ for which G; contains z, y, and a path between them, and let g(z,y,0)
be the length of the shortest such path in G;. Then we define g(z,y,s + 1) to be
the minimum of g(z,y,s) and the length of the shortest path (if any) between x
and y in G4. This sequence is decreasing in s, with limit d(x,y). In the language of
computable model theory, we say that for every connected computable graph G, the
distance function is intrinsically approzimable from above, since it is approximable
from above in every computable graph isomorphic to G. (See Definition 5.1 below.)

We will now describe a graph construction that enables us to encode arbitrary
functions approximable from above into the distance function on a computable
graph. The definition is best understood by looking at the subsequent diagram.

Definition 4.2. Let 0 € w<“ be any strictly decreasing nonempty finite string. A
spoke of type ¢ in a graph consists of the following.

e A center node u, which will be part of every spoke; and

e two more nodes a (adjacent to u) and b (not adjacent to u, nor to a), which
belong to this particular spoke; and

e for each n < |o|, a path from a to b consisting of (1 + o(n)) more nodes
(hence of length 2 + o(n)); and

e two more paths from a to b, of length 2 + ¢(0), in addition to the one
already built for n = 0 in the preceding instruction.

These paths do not intersect each other, except at a and b, and if x and y are nodes
from two distinct paths, then x and y are not adjacent to each other, nor to w.

For any function I' mapping each m € w to a finite decreasing nonempty string
om € w<¥, the standard graph of type I consists of a center node u and, for each
m, a spoke of type o,,,. (If T is not injective, then there are just as many spokes of
type o as there are elements in I'"1(c).)

Here is a picture of three spokes of such a graph, with o = (2), ¢/ = (2,1), and
o = (2,1,0).

14 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

b/ b//

If f is approximated from above by a computable g, and g(n,0) = 2, for instance,
then we build a spoke between a,, and b, of type (2) (the type between a and b in
the diagram above). If, for some s > 0, we find g(n,s) = 1, then we add a path
of length 3 to that spoke between a,, and b,, changing it to type (2,1), so that it
looks like the spoke between o’ and b above. If it turns out that g(n,t) = 0 for
some t, then we add one more path, as in the spoke between a” and b”, leaving
a spoke of type (2,1,0). In all cases, the distance from the node a, to the node
by, of this spoke turns out to be limg g(n, s), which is to say f(n). So an arbitrary
function approximable from above can be coded into a distance function in this
way. However, the distance function for the entire graph needs to do more than
just to determine the length of each single spoke, and complications will arise when
we apply our strong reducibilities on functions.

If T' is computable, then of course we have a computable presentation of the
standard graph of type I'. However, we will usually be interested in the situation
where I' = limg 'y and T’y is computable uniformly in s, with each I's(m) being an
initial segment of I'sy;(m), such that I'(m) = UsI's(m). Since every string I's(m)
is strictly decreasing, I'(m) will be another finite decreasing string. Assuming
that the functions I's are computable uniformly in s, it is clear how to build a
computable presentation of the standard graph of type I', as the union of nested
uniform presentations of the standard graphs of type T';.

As already noted, the distance function of a computable connected graph is
always approximable from above. Not every function approximable from above can
be a distance function, however: for one thing, the range of the distance function d
of a connected graph G is always an initial segment of w, whereas plenty of functions
approximable from above do not have such ranges. Indeed, for each z € G, the
set {d(z,y) : y € G} must be an initial segment of w. Moreover, symmetry and a
triangle inequality must hold of every distance function. Nevertheless, we do have
the following proposition, as well as the stronger version given in the subsequent
theorem, which is the result we prove.

DISTANCE FUNCTION 15

Proposition 4.3. Every function which is approzimable from above is bt t-equivalent,
with norm 2, to the distance function for some computable graph.

Theorem 4.4. For every function f which is approximable from above, there is a
computable graph G such that the Turing degree spectrum of its distance function d
is {deg(f)}. Indeed, for every computable H isomorphic to G, the distance function
dy on H satisfies

dg =1d <opet [<ioeee dp.

Proof. Write f = limg g(z, s), where ¢ is computable and nonincreasing in s. For
each z, let Ts(x, s) = (g(=, s0),9(x, $1),...,9(x, sk)), where sg = 0 and the subse-
quent s; are defined so that:

9(x,s0) = g(x,51=1) > g(z,51) = g(x,50—1) > g(w,82) = -+ > g(x, sx) = g(,5).

That is, the s; are the stages < s at which g(x, s) decreases. The uniformly com-
putable family T’y then has limit I’ Turing-equivalent to f, since I'(z) is a decreasing
string whose final value is f(z). Therefore, there is a computable presentation G
of the standard graph of type I'. Our computable graph G is simply G with (for
each n) an additional (n + 2) nodes which, along with a,, form a loop of length
(n + 3) containing a,,. This allows us to determine, for arbitrary nodes a adjacent
to the top center node uy in an arbitrary computable graph H isomorphic to G,
the value n for which a = a,. (The set {a, : n € w} is defined by adjacency to
the single node ugy. Then, for each a,, the three paths of equal length between
an and b, allow us to identify b,, so that we will not confuse the loop of length
n + 3 containing a,, with any loop which contains both a,, and b,. Having picked
out b,,, we then find the unique loop which contains a,, but neither b,, nor ug, and
the length of this loop determines the index n for us.) Thus, with these new loops
added, the entire graph G is relatively computably categorical, having a 39 Scott
family defined using the loops. So every computable copy H of G is computably
isomorphic to G.

It follows that the distance function dy on the arbitrary computable copy H
is l-equivalent to the distance function d on G. Indeed, if h : G — H is a com-
putable isomorphism, write hy : G> — H? by ha(z,y) = (h(z),h(y)). Then hy is
computable and dg o hy = d; likewise dgy = d o (h™1)s.

But f allows us to decide the shortest path from a, to b,, for every n, since
(2 + f(n)) is the length of that path. It follows that the distance function d on
all of G is computable in f. (This is made explicit in Lemma 4.6, which goes
through for this graph with the extra loops, as well as for standard presentations.)
Conversely, the distance function d allows us to compute (2+ f(n)) for every n, just
by finding d(a,,b,). So this distance function is Turing-equivalent to f, and by
the 1-equivalence above, the spectrum of the distance function is simply {deg(f)}.
More specifically, we have f <jpt d (since f(n) = 2+ d(ay,b,)) and d <ot f,
using the proof of Lemma 4.6. O

Corollary 4.5. There exists a computable graph G such that, for every n and for
every computable graph H = G, the distance function on H is not n-approximable
from above. (So the distance function on this G intrinsically fails to be n-AFA.)

Proof. By Corollary 3.10, there is a function f which is w-approximable from above,
but not n-approximable for any n. Apply Theorem 4.4 to this f, and note that if f

16 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

were 1-reducible to a function n-approximable from above, then f itself would be
n-approximable from above. ([

To complete the proof of Theorem 4.4, we need the following lemma.

Lemma 4.6. Let G be a computable copy of the standard graph of some type T,
and let u be the center of G. Then there is are computable functions p, and pp
which map every node x € G — {u} to the unique node p,(x) adjacent to u such
that x and p,(x) are on the same spoke of G, and to the other end point py(x) of
that spoke. Moreover, if we define

S = {{a,pp(a)) € G* : a is adjacent to u},
then the distance function d for G satisfies
d <o.pst (dS) <1.pte d.

Proof. Given any x € G with x # u, we search for a path in G which goes from x
to u without containing u (except as its end point). The node on this path which
is adjacent to u must be the desired p, (), simply because of the structure of G.

We then compute py(z) by finding three paths of equal length from p,(z) to a
common end point, such that none of these paths contains u or intersects another
of the three paths (except at their end points). The common end point must then
be py(x). (This is the reason why a spoke of type o has two extra paths of length
c(0). Without those paths, there could exist computable copies of G in which this
function p, would not be computable.)

To compare d with d[\S, consider any =,y € G — {u}. If and y lie on the same
spoke (that is, if p,(x) = pa(y)), then we can check whether z and y lie on the
same path from a = p,(x) to b = pp(z). This gives three cases.

(1) If z and y lie on the same path between the same a and b, assume without
loss of generality that on this path, x lies closer to a, say with m nodes
between them, and y lies closer to b, with n nodes between them. Then
d(x,y) is either the distance between them along this path, or else (m +
d(a,b) +n), whichever is smaller. So we need only ask the (d].S)-oracle for
the value d(a,b), and then compare these two possibilities.

(2) If z and y lie on different paths within the spoke between the same a and b,
write d'(a,z) and d'(x,b) for the distances between those nodes along the
path through z, and d'(a,y) and d'(y,b) likewise along the path through
y. (It is possible that d(a,x) < d'(a,), if there is a much shorter separate
path from a to b. However, d’(a,x) is computable.) Then d(z,y) is the

least of the lengths of the following paths from x to y:
[d'(z,a) + d'(a,y)] (via a path through a);
[d'(z,b) + d'(b,y)] (via a path through b);
[d'(z,a) + d(a,b) + d'(b,y)] (via a path through a, then b);
[d'(z,b) + d(b,a) + d'(a,y)] (via a path through b, then a).

We can compute all of these by asking the (d[.S)-oracle for d(a,b), and
having done so, we need only take the minimum of these four values.

(3) If z and y lie on distinct spokes, find the end points a, = p,(z), ay = p.(v),
by = pe(x), and b, = py(y) of those spokes. As in Case (2), we use d'(x, a)

DISTANCE FUNCTION 17

to denote the distance from x to a, along the path from a, to a, through
x, which we can compute; similarly for d'(y, ay), etc.
First we compute d(z,), which is the minimum of

d'(z,a,) + 1, (via a path through a,), and
d'(z,by) + d(bs,a;) + 1, (via a path through b,,, then a,)

This uses the oracle for d]S. Likewise we compute d(y,w). Then it is clear
from the structure of G that d(z,y) = d(x,u) +d(u,y). Notice that here in
Case (3) we needed to ask two questions of the (d[S)-oracle: the values of
d(ag,b;) and d(ay, by).
Finally, Case (3) showed how to compute d(z,u). So we have computed d(z,y) for
all possible pairs (z,y) € G2, proving d <t (d]S), and the only questions we asked
of the oracle for d]\S were the values d(p,(x), pp(z)) and d(pa(y), ps(y)). Moreover,
a close reading of the proof shows that we could give in advance a formula for
d(z,y) based on these two values, such that the formula always converges to an
answer. (The formulas are slightly different in Cases (1), (2), and (3), but we could
distinguish these three cases and choose the correct one for the pair (x,y) before
consulting the oracle at all.) Thus we have a btt-reduction of norm 2 from the
function d to the function d[S. (It would be of norm 1 if not for Case (3), which
required two questions to be asked of the oracle.)

The 1-reduction (d]S) <; d is obvious: one reduces using the identity function.
To obey the technicalities of the definition, one should define d[S to be equal to d
on S, and equal to 0 everywhere else, since under a careful reading, no non-total
function can 1-reduce to a total function. Fortunately, S is a computable set, so the
1-reduction can map each pair (z,y) ¢ S? to a distinct pair (z,2) with 2 ¢ S. O
This allows us to prove a corollary about the distance function on each computable
copy of G.

Corollary 4.7. There exists a computable connected graph G, whose distance func-
tion is (of course) intrinsically approzimable from above, and such that for every
Junction f approxzimable from above, there exists a computable graph G ¢ isomorphic
to G whose distance function dy satisfies dy <o.per f and f <i_ps: df.

Proof. Let T" be a computable function which enumerates all strictly decreasing
sequences in w<%. Moreover, arrange I' so that every sequence in the range of T is
equal to I'(n) for infinitely many n. Let G, be a computable presentation of the
standard graph of type I', and d,, its distance function.

Now let f : w — w be any total function which is approximable from above.
Write f = limg g(z, s), where g is computable and nonincreasing in s. For each
x, let Ag(22) = (g(z, s0),9(x, $1),...,9(x, sk)), where sg = 0 and s;41 is the least
t < s (if any) such that g(z,t) < g(z,s;). When there is no such ¢, we set k = 1,
ending the sequence. Thus

9(x,s0) = g(w,51—1) > g(z,51) = g(w,82 = 1) > g(x,82) = -+ > g(, 51) = g(, 5),

and the s; are the stages < s at which g(z, s) decreases. Meanwhile, let A (2241) =
I'(x) for every x and s. The uniformly computable family A; then has limit A with
f <iwee A, since A(2z) is a decreasing string whose final value is f(x), while
A(2z+1) =T'(z) is computable. Therefore, there is a computable presentation G
of the standard graph of type A. We claim that Gy = G,,, and that the distance

18 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

function dy of Gy has dy <oper F <iwee [(hence dy <oupee f) and f <qpee dy.
This follows from Lemma 4.6, since dj(ass,be;) = f(x) and dy(asgt1,bozy1) is
computable in x. The isomorphism between G and G, is clear, since the range of
A and the range of I" each contains every strictly decreasing string in w<% infinitely
many times: every such string equals both I'(n) and A(2n + 1) for infinitely many
n. This determines the isomorphism types of the standard graphs G and G, of
these types, and they are the same. ([

5. n-APPROXIMABLE DISTANCE FUNCTIONS

We now turn to graphs in which the distance function is n-approximable from
above, for some fixed n. Our goal here is to repeat Corollary 4.7 for the property
of nm-approximability from above, rather than for arbitrary approximability from
above. Of course, a function which is n-approximable from above must be approx-
imable from above, and therefore is included in statements such as Theorem 4.4.
However, we would like to make the n-approximability intrinsic to the graph, in
the following sense (which is standard in computable model theory).

Definition 5.1. The distance function on a computable graph G is intrinsically
n-approximable from above if, for every computable graph H isomorphic to G, the
distance function on H is n-approximable from above. G is relatively intrinsically
n-approximable from above if for every graph H = G with domain w, the Turing
degree of the edge relation on H computes an n-approximation from above to the
distance function on H.

One could give the same definition with w in place of n, but we have already
remarked that the distance function of every computable graph is approximable
from above (which is to say, w-approximable from above), so this would be trivial.
In a graph satisfying Definition 5.1, there is some structural reason for which the
distance function is always n-approximable from above, no matter how one presents
the graph. (Relative intrinsic n-approximability from above says that this holds
even when we consider noncomputable presentations.) The construction given in
Corollary 4.7 does not have this property: even if we have n-approximations to
d(ag,b;) and d(ay, by) from above, we do not get an n-approximation to d(bg, by):
this distance will equal the sum d(bg, az) + 2+ d(ay, by), and since either summand
could decrease as many as n times, d(bg,b,) could decrease as many as 2n times.
(This has to do with d being 2-btt reducible to the original function, rather than
1-btt reducible.) So we must revise the format of our graphs. The next definition
does so in several ways, mainly by adding a second center node and elongating the
paths between the center nodes and the a- and b-nodes of each spoke. Both of these
changes will turn out to be essential, and will result in useful theorems, but as we
shall see, the best result one would hope for remains unproven.

Definition 5.2. Let 0 € w<“ be any strictly decreasing nonempty finite string.
An elongated spoke of type o in a graph consists of the following.

e A chain of (3 + ¢(0)) nodes (hence of length 2 4+ ¢(0)), beginning with the
top center node u and ending with a node called a; and

e another chain of (3 4+ ¢(0)) nodes, beginning with the bottom center node
v (usually visualized sitting below u) and ending with a node called b; and

e for each n < |o|, a path from a to b consisting of (14+0(n)) nodes in addition
to a and b (hence of length 2 4+ o(n)); and

DISTANCE FUNCTION 19

e two more paths from a to b, of length 2 + ¢(0), in addition to the one
already built for n = 0 in the preceding instruction.
These paths do not intersect each other, except at a and b, and if x and y are nodes
from two distinct paths, then x and y are not adjacent to each other, nor to u, nor
to v. The center nodes v and v will belong to every spoke in the graph, but all
other nodes belong only to this spoke, and will not be adjacent to any node in any
other spoke.

For any function I' mapping each m € w to a finite decreasing nonempty string
om € w<¥, the elongated standard graph of type I' consists of center nodes u and
v and, for each m, a spoke of type o,,,. (If I is not injective, then there are just as
many spokes of type o as there are elements in I'"!(7).)

Here is a picture of three spokes of such a graph, with og = (4), o1 = (3,1), and
o9 = (2,1,0). Notice that the elongation paths emerging from v and from v have
different lengths, determined by the length of the longest path from a, to b,.

U
a ag a2
by bo i:
by
v

If T' is computable, then of course we have a computable presentation of the
elongated standard graph of type I". As before, though, we will usually be interested
in the situation where I' = lim, I'y and I's is computable uniformly in s.

Lemma 5.3. Let G be a computable copy of the elongated standard graph of some
type T, with distance function d, and let w and v be the centers of G. Then there
are computable functions p,, py with domain G — {u,v} which output the unique
nodes pq(x) and py(x) of valence > 2 such that x, p.(x), and pp(x) are all on the
same spoke of G with d(ps(x),u) < d(pp(x),u). We can also compute whether x
lies between p,(x) and py(x), or above p,(x), or below py(x).

20 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

Moreover, the distance function d satisfies d <o 4z (d[S) and (d]S) <1 d, where
S is the following set:

S = {(pa(z), pp(x)) € G* : x ¢ {u,v}}.

Proof. Given any z € G with = ¢ {u, v}, we search for a path in G which goes from
u through x to v without containing any node more than once. Then we enumerate
G until two nodes on this path (distinct from u and v) are each adjacent to at least
three other nodes. By the structure of G, these two nodes are the desired p,(x) and
py(x), with p,(z) being the one closer to u along the path we found, and from this
path we can also determine whether z lies above p,(z), below py(x), or between
the two of them.

To compare d with d|S, let z,y € G — {u,v}. Find the end points a, = p,(z),
ay = pa(y), by = pp(x), and b, = pyp(y) of the spokes containing z and y. We
consider first the case where x lies between a, and b, and y lies between a, and by;
the subsequent cases will then be easier. These x and y lie on the same spoke in
G iff a, = ay, and if so, we can then check whether x and y lie on the same path
between p, () and py(x). We use d'(z, a,) to denote the distance from « to a, along
the path from a, to a, through z, which we can compute; similarly for d'(y,b,),
etc. It is important to note that d'(x,a,) may fail to equal d(z,a;), since there
could be a separate path from a, to b, so short that d(ay, b,)+d'(by, x) < d'(ay,).
Finally, we can readily find the elongation path lengths of these spokes: the length
I, of the direct path from a, to u (and of the path from b, to v), and the similar
length [, for y.

From the structure of GG, we see that the shortest path from = to y must be one
of the following thirteen paths. (This requires a combinatorial argument, based on
the valences of the nodes — which determine the number of options a path has at
each point, given that the path should not go through the same node twice. Certain
other paths are combinatorially possible but are not on this list; they are discussed
below as P137 ey PQ().)

Path Route Length
Py ztoagtoutoay,toy d'(z,a;)
P, ztoaztoutoaytoby,toy d()
P, ztoaztoutovtob,toy d()

P; ztoaztobytovtob,toy d()+ d(ag, by) + 1+ 1, +d(by,y)

Py ztoby,tovtobytoy d'(x,by) + 1y + 1y + d'(by, y)

P; ztobytovtobytoay,toy d(x,by)+1lp+1,+d(by,ay)+d(ay,y)

P; ztobytovtoutoay,toy d(x,by)+ 1y +dv,u)+1,+d(ay,y)

d'(x,by)

(z, az)

(z,bz)

(z,az)

(@,)

+lp + 1y + d'(ay,y)
+l+ ly + d(aya by) + d/(bya y)
+ 1 + d(u,v) + 1, + d'(by,y)

P; ztob, toay toutoa, toy x,by) + d(bg, az) + 1o + 1, + d' (ay,y)
Ps ztoaz=aytoy d'(z,a.) + d'(ay,y)

Py ztoby,=bytoy d'(x,by) +d'(by,y)

Py ztoa;=ay,tob,toy d'(x,az) + d(ay,by) + d'(by,y)

Py ztoby,=bytoa,toy d'(x,by) + d(by, ay) + d'(ay,y)

P ztoy d'(z,y)

Here paths Ps through P are separated because they apply only if a; = a, (that
is, if and y lie on the same spoke). Pj5 only applies if x and y lie on the same path
through that spoke. Paths P, through P; may be seen as vertical reflections of paths
Py through P;. Every one of these thirteen paths can, under certain circumstances,
be the shortest path from x to y. There are eight other paths which one can define

DISTANCE FUNCTION 21

from x to y without repeating any nodes (given that one always takes the shortest
route between a, and b, or between a, and b,, or between u and v, whenever the
path route says to go from one of these nodes to the other). Here are four of them;
the other four are their vertical reflections.

Path Route

Pi3 xtoa; towutowvtob, toay, toy

Py xtoag to b, tovtoby, toay, toy

Pis xtoa;tob,tovtoutoaytoy

P xtoay; to b, tovtowutoaytobytoy

None of these eight paths can be the shortest path from z to y. For example, P;3
could be shortened by going from u directly to a,, thereby reducing a subpath of
length d(u, v)+1,+d(by, ay) to a subpath of length I,,. P14 and P35 also take longer
routes than necessary from a, to a,, and P takes a longer route than necessary
from v to by; similarly for the four vertical reflections. So, by brute force, we have
seen that the shortest path must be one of Py,..., Pis.

Now, given that d’ is computable and that d(u,v) is a finite piece of information,
we see that the length of each P; with ¢ < 13 is computable from an oracle for dJ.S,
uniformly in z and y, and in particular from just two questions to that oracle: the
values d(az, b;) and d(ay, by). So this oracle also allows us to compute d(z,y), by
taking the minimum of those thirteen lengths. For these x and y, therefore, we
have a btt-reduction of norm 2.

If = lies between a, and a,, as above, but y = u, then a similar but easier
argument applies: the shortest path from u to x has length either (I, + d'(a., x)),
or (I + d(ag,by) + d'(by,x)), or possibly (d(u,v) + I, + d'(bz, z)). When y lies on
an elongation path of length [, beginning at u, we compute d(ay,z) and d(u,x) as
above, and use them to determine d(y,z). The reader should be able to produce
a similar argument when y = v, and when y lies on an elongation path beginning
at v. Finally, in case neither nor y lies between a, and a, (resp. b, and b,), the
argument is similar, using the two nodes at the end of the elongation path containing
2 and the similar two nodes for y, and using these to take the minimum of the four
possible ways of going from x to y. So we have computed d(z,y) for all possible
pairs (z,y) € G2. Moreover, the only values we ever required from the (d]S)-oracle
were d(agz,bs;) and d(ay,by,), and we were able to compute in advance the value of
d(z,y) for each possible answer the oracle might give. Thus d <o (d[S). The
reverse reduction, (d]S) <; d, is proven just as in Lemma 4.6. (]

We now repeat Corollary 4.7 for just the functions n-approximable from above.
This is where it becomes clear why we used two centers and elongated spokes in
our graphs in Definition 5.2. If the graph had only one center u, then the distance
d(bz,u) would be n-approximable from above, but the distance d(bs,b,) would in
general only be (2n)-approximable from above: it would decrease whenever either
d(u,b;) and d(u,b,) decreased, since it would equal the sum of these two values.
It may not be immediately clear why having a second center solves this problem:
for example, the distance d(a,,b,) now depends on both d(a.,v) and d(by, u), each
of which could decrease as many as n times. However, d(as,b,) is now equal to
the minimum of these two values (up to a computable difference), not to their
sum. With the minimum, we will eventually avoid this difficulty by turning to the
countdown function for an arbitrary function which is n-approximable from above.
First, though, we prove the basic result.

22 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

Theorem 5.4. For everyn < w, there exists a computable connected graph G whose
distance function dg is intrinsically 2n-approximable from above and such that, for
every function f which is n-approximable from above, there is some computable
graph H = G whose distance function dg has dg <o.pee [<1-ptt dg-

Proof. Forn = 0, just take G to be any computable graph with an intrinsically com-
putable distance function. Since all total computable functions are btt-equivalent
with norm 1, this suffices. (For example, the complete graph on the domain w could
serve as G.)

For n > 0, define a computable function I' : w — w=" so that the range is T’
contains exactly those tuples of length < n which are strictly decreasing; moreover,
ensure that every such tuple has infinite preimage in w under I'. Let G be a
computable presentation of the elongated standard graph of type I'. We claim that
this G instantiates the theorem.

To see that the distance function dg on an arbitrary computable graph H 22 G is
(2n)-approximable from above, notice that just as in Lemma 5.3, we can compute
the functions p, and p, for H. Since every o € rg(T") has |o| < n+1, the paths from
Do () 1o pe(y) within the spoke of any x € H have at most (n+ 1) distinct lengths,
so that dg(pa(z),pa(y)) can be approximated from above with at most n mind
changes. Then we apply Lemma 5.3 to see that the values dy(p,(z),pp(z)) and
dr(pa(y), pu(y)) determine dy(z,y), by taking minimums of the thirteen paths as
described there. So we simply approximate dg(p.(x), pp(x)) and dg(pa(y), ps(v))
from above, and whenever either approximation is reduced, we reduce our approx-
imation of dg(z,y) accordingly. This gives an approximation of dg(x,y) from
above with at most 2n changes: the < n stages at which the approximation to
dy (pa(x), pp(z)) changed, and the < n stages at which dg (pa(y), pp(y)) changed.

Next, given an arbitrary function f which is n-approximated from above by g,
we build a graph H by starting with G and adjoining, for each = € w, a spoke of

type

<n

Oy = <g(1’750),g($,51)7 s 7g(x35k)>7
where sop = 0 and each s;11 = min{s : g(z, s) < g(x, s;)}. It is clear how one can do
this effectively, starting with a spoke of type (g(x, so)) and extending it to a larger
spoke each time a new value of g(x, s) appears. Of course, we have k < n, and so
0, = I'(m) for infinitely many m. Therefore, the new spokes we add do not change
the isomorphism type, but leave H = G.

One new problem arises: it is no longer immediate that d(am,bm) = 2+ f(m).
To see the problem, notice that, whereas in the standard presentation of a graph
(with only one center), it was clear that the shortest path from a,, to b,, was one of
the paths between them within that spoke. Now, however, there is a path from a,,
to u, then through another spoke to v, then up to b,,, and the length of this path is
lm + d(u,v) + I, The elongation paths were given their length (call it I,,, for the
m-~th spoke) precisely to ensure that this alternative is not the shortest path from
am t0 by, and since [,,, was chosen to be the length of the longest path from a,, to
b,, within the spoke, it is clear that this has been accomplished. So f(m) + 2 really
does equal d(am,, by,). It follows that f <t di as required, thanks to Lemma 5.3,
which now gives the reducibilities dg <optt [<1-ptt di, exactly as desired. O

To strengthen Theorem 5.4, we would like to make G have a distance function
which is intrinsically n-approximable from above. The proof given above does not
accomplish this. In particular, for the opposite end points a; and by of two distinct

DISTANCE FUNCTION 23

spokes in H, with j # k, the formula for dg(a;,bx) involves a minimum of eight
different values, some of which depend on dg(aj,b;) and others on dg(ax,bs).
Each of these two distances could decrease as many as n times as our computable
approximations to f(j) and f(k) decrease, and so the minimum could decrease
as many as 2n times. This is the same problem we would have had using the
simpler (single-center, non-elongated) graphs of Definition 4.2, except that there
the problem involved a sum, not a minimum. One is led to wonder what purpose
Definition 5.2 served. The proof of the following theorem gives the answer.

Theorem 5.5. For every n < w, there exists a computable connected graph G
whose distance function dg is intrinsically n-approzimable from above and such
that, for every function f with a computable n-approximation g from above, there
is some computable graph H = G whose distance function dg has

dy <2.pe lignc <ivtt du,
where ¢ is the countdown function for g with bound n.

So we have achieved intrinsic n-approximability from above for the distance
function, while still allowing the distance function — under a coarser reducibility —
to realize all functions n-approximable from above. Since f =yr lim, ¢, the theorem
shows that f =,; dy, where H is the graph built for f, but the btt-reducibility
and the specific norms have been lost. Before proving the theorem, we summarize
this as a corollary.

Corollary 5.6. For every n, there exists a computable connected graph G such that
the bT-degree spectrum of the distance function on G contains exactly the bT-degrees
n-approximable from above (that is, those bT-degrees which contain a function n-
approximable from above). ([

Proof of Theorem 5.5. Assume n > 0, since otherwise the description in the proof
of Theorem 5.4 suffices. Let I be a computable function with

) =(n), I'(1) =(n,n—1),..., T'(n) = (n,n—1,...,0)

and with T'(m +n + 1) = T'(m) for all m € w, so that each of these strings appears
infinitely often in the range of I'. Our graph G is a computable presentation of the
standard graph of type I'.

Our first goal is to show that for every computable graph H isomorphic to
G, the distance function d(z,y) of G is always n-approximable from above. For
x,y € G, the proof of Lemma 5.3 gives dy(z,y) as the minimum of finitely many
values, and that each of those values being a sum of computable values along with
di (pa(x), pp(x)) or dg(pa(y), pp(y)). Crucially, though, none of those values (whose
minimum we take) involves either dg(pq(x), ps(x)) or dp(pa(y), ps(y)) more than
once. Therefore, whenever dg(p,(x),py(z)) decreases by 1, certain of the values
decrease by 1 and the rest stay unchanged; likewise, whenever dg(p.(y),ps(y))
decreases by 1, certain other values decrease by 1 and the rest stay unchanged.
Moreover, the structure of G shows that our approximations to dg(pe(z), ps(x))
and dg(pa(y), pp(y)) never decrease by more than 1 at any stage. (More exactly,
the approximation begins at n, so it can decrease at most n times. If at stage s
we thought dg(p.(x),pp(z)) = 7, and at stage s + 1 we find a path of length 4
between p,(z) and p,(z), we can think of this as three separate decreases by 1.
In fact, the structure of G is such that in this case there will indeed be paths of

24 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

length 5 and of length 6 between p,(z) and py(x), even though the path of length
4 appeared first.) This allows us to apply the following lemma, whose proof is a
straightforward induction on n.

Lemma 5.7. If g(x, s) satisfies g(x,s) — 1 < g(x,s + 1) < g(x,s) for all x and s,
and h(x,s) does the same, and if g(x,0) = h(z,0) = n and C and D are arbitrary
constants, then

[{s: min(g(z,s+ 1) + C,h(z,s + 1) + D) < min(g(z, s) + C, h(x, s) + D)}| < n.

(By induction, the same then holds for a minimum of arbitrarily many functions
with these properties.) O

So d(z,y), being a minimum of exactly this type, is also n-approximable from
above. Our use of countdown functions enabled us to use the family I" whose
member strings never decrease by more than 1

Next, consider any function f which has an n-approximation g from above. Let
¢ be the countdown function for this g and for the constant bound n on changes
to g. This was defined in Theorem 3.8: ¢(x,0) = n, and ¢(x,s + 1) = ¢(x,s) — 1
iff g(z,s + 1) < g(x,s), with ¢(z,s + 1) = ¢(x, s) otherwise. So ¢ keeps track of
the number of changes g is still permitted to make as it approximates f(z), and
clearly c satisfies the property mentioned above of never decreasing by more than
1. Recall that f =7 lim, ¢, although stronger equivalences, such as tt-equivalence,
may fail to hold.

Our construction of the graph H for this f mirrors that of Theorem 5.4, only
using the countdown function c¢ in place of the computable approximation g to f
itself. We simply start with the computable graph G' (whose distance function is also
computable) and, for each n, add a new elongated spoke of type (n,n —1,...,k),
where k = limg ¢(n,s). Since there were already infinitely many spokes of this
type in G, the addition of one (or even infinitely many) more does not change the
isomorphism type; thus H = G. Moreover, it is clear that we can add this spoke in
a computable fashion: it starts as a spoke of type (n), then has a path added and
becomes a spoke of type (n,n — 1) when and if we find an s with ¢(n,s) =n — 1,
and so on. By Lemma 5.3, we have dy <opte limg ¢ <ipiy dp.. Unfortunately,
f cannot be substituted for lim, ¢ in these reductions, because in general we only
have f =pr limg ¢, and so we conclude, as claimed by the corollary, that f =1 dy
for this graph H. |

The same strategy could have been used in the proof of Corollary 4.7, of course.
There, however, it was not necessary: the distance function on any computable
graph is always w-approximable from above. Moreover, if z and y in that graph
G, (or a copy of it) lie on distinct spokes, then an upper bound on the number
of changes in the natural approximation to d(x,y) can be given just by adding the
(computable) upper bounds on the number of changes in the approximations to
d(ag,b;) and to d(ay,by). So it seemed superfluous to convert the approximable-
from-above function f given there to a function which never decreases by more than
1, and indeed, not converting it allowed us to retain stronger reducibilities between
f and d.

The next natural question, which remains open, is the existence of a com-
putable connected graph whose distance function is intrinsically n-approximable
from above, but which, for every f n-approximable from above, has a computable
copy H with distance function dg <opee f <i-vtt dy-

DISTANCE FUNCTION 25

Of course, stronger reducibilities between f and dy would be most welcome as
well. Persistently throughout these results, we have had to allow norm 2 for the
btt-reduction from the distance function to the function being encoded, even when
the reverse reduction could be shown to have btt-norm 1. This seems to be a
condition intrinsic to the notion of the distance function. When f <i_pwt dp, and
m is fixed, there is a single pair (z,y) of nodes in H which determines f(m). There
must be some separate pair (z',y’) determining some other value f(m') (unless f is
computable), and then, in H, one can usually find nodes w and z such that d(w, 2)
depends on both d(z,y) and d(2',y’), either via a sum (if the shortest path from
w to z goes through z, then y, then 2/, then y’), or via a minimum (if there is one
path from w to z which goes through = and y, and a separate path going through
2’ and y’). In both these cases, d(w, z) requires two pieces of information from f,
leading to a btt-reduction of norm 2 at best. We would be significantly interested
in any way of developing this analysis into a proof of the following.

Conjecture 5.8. If G is a computable connected graph whose distance function is
intrinsically n-approrimable from above, with n > 0, then there exists some function
f which is n-approximable from above and such that, for every computable graph
H = G with distance function dy, we have dg Z1-ptt f-

It would follow that the 1-btt-degree spectrum of the distance function cannot
contain exactly those degrees which are n-approximable from above.

6. DIRECTED GRAPHS

One can repeat the questions from this paper in the context of computable
directed graphs, rather than the symmetric graphs we have used. In a directed
graph, each edge between vertices = and y has a specific orientation: it points
either from z to y, or from y to x. (It is allowed for there to exist two edges
between x and y, one pointing in each direction.) Of course, the orientations of the
edges must be computable. In this context, one speaks of a directed path from x to
y as a finite sequence of nodes z = xg, x1,...,%, = y such that for all i < n, there
is an edge from z; to z; 1. The directed graph G is connected if, for every x,y € G,
there is a directed path from x to y, and in this case the directed distance from x to
y is always defined: it is the length of the shortest directed path from x to y. Again,
this function is intrinsically approximable from above, and it appears to us that
the constructions in this paper work equally well for directed graphs (modulo a few
considerations, such as adding directed paths from b to u in the standard case, and
from v to u in the elongated case, so as to make the graph connected). However,
with directed graphs we can accomplish more than has already been proven here
for symmetric graphs. In particular, it is much easier to realize the goal we set for
ourselves in Section 5.

Theorem 6.1. There exists a computable directed graph G whose distance func-
tion is intrinsically n-approximable from above, yet such that every f which is
n-approximable from above is 1-btt-equivalent to the distance function on some
computable directed graph isomorphic to G.

Proof. Fix n. The directed graph G will be a version of the standard (undirected)
graph on a collection of spokes. As usual, we let I" enumerate all strictly decreasing
sequences o € w="*1 of length at most n+ 1, and we assume that this enumeration

repeats every such o infinitely often.

26 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

A directed spoke of type o looks somewhat like an ordinary spoke of type o. The
two main differences are that we use u itself as the top node of the directed spoke,
rather than having a top node a adjacent to u, and that we include a directed path,
of length (3 + 0(0)), from the bottom node b back to u. The latter modification
is necessary in order for this directed graph to be connected. The reason for the
former will be explained after the proof.

In between u and b, the directed spoke contains three directed paths from u to
b of length (2 + ¢(0)), and, for each ¢ with 0 < ¢ < |o|, another directed path from
u to b of length (2 + o(7)). Thus the final value of o is the length of the shortest
directed path from w to b in this spoke (and there will be no directed paths from
u to b through other spokes). With this, we have described the directed spoke
entirely. The directed graph G contains one directed spoke of type o = I'(m), with
bottom node b,,, for each m € w.

Now u is the only node anywhere in G with more than one edge coming out of
it. So, for any computable H = (G, the same holds for some node ug. Therefore,
there is little difficulty in choosing the shortest directed path from an arbitrary
node x € H to another one y: the only choice in finding the path arises when/if
one reaches uy. Starting at x, one follows the unique directed edge emerging from
x, then the one emerging from that node, etc., until one reaches either y or ugy. If
one has reached y, then the length of the path so far is clearly the directed distance
from x to y in H. Otherwise, one then determines on which spoke of H y lies
(which is computable), and fixes the bottom node b,, of that spoke. If y lies on a
directed path from ug to b,,, the one follows that path until reaching y, and this
is the shortest directed path from z to y. If y = b, or y lies on the directed path
from b, to ug, then one follows the shortest path from ugy to b,,, and then on to
y. Here arises the only ambiguity: choosing the shortest directed path from ugy to
bm. The directed distance from z to y is the length of this path, plus the lengths
of the (already determined) paths from = to ug and from b,, to y. Therefore, the
distance function dgy on H is 1-btt-reducible to the function f(m) = d(ug,by,)—2.
Conversely, this function f has f <; dgy. But in any computable copy H of G, this
f is n-approximable from above, since one simply finds the three paths of length
(24 0(0)) from ug to by, (where o = I'(m)), thereby identifying b,,, and then waits
for shorter directed paths to appear — which will happen at most n times, since
lo| <n—+1.

Thus d is intrinsically n-approximable from above. The converse is exactly
the same construction we have executed previously. Given any f which is n-
approximable from above, say via some computable g(m, s), we start with a com-
putable copy of G and extend it as follows to a directed graph H. For each m, add
to G a directed spoke of type oy, where 0,,,(0) = g(m,0) and o,,(i + 1) is defined
iff there is an s with g(m,s) < 0,,(i), in which case o, (i + 1) = g(m, s) for the
least such s. Since ¢ is an n-approximation, we have |0,,| < n + 1, and the last
value of o is f(m), so dg(u,by) = f(m). For bottom nodes b of directed spokes in
the original graph G within H, dp,(u, b) is computable, since in G we know the type
o of each such directed spoke. Hence, by the same argument as in the preceding
paragraph, dg is 1-btt-equivalent to the function f, as desired. O

‘We note here that the conflation of © with the top nodes a of the directed spokes
was necessary. Had the a’s been part of these directed spokes, then the computation
of the distance from the ay on spoke k to the b,, on spoke m would have required

DISTANCE FUNCTION 27

knowing both d(ag, bx) and d(am, by), hence would have required a btt-reduction
of norm 2. However, the trick of eliminating the nodes a does not allow us to
prove Theorem 6.1 for symmetric graphs, since with no orientation on the edges,
the computation of the distance from one bottom node to another still requires
questions about the distance from top to bottom on two different spokes.

7. RELATED TOPICS

For graphs with infinitely many connected components, the distance function is
(w + 1)-approximable from above, assuming we allow oo as the distance between
any two nodes in distinct components. One approximates the distance function
d(z,y) at stage 0 by g(z,y,0) = w (or 0o), which will continue to be the value as
long as x and y are not known to be in the same connected component. Meanwhile,
we search systematically for a path from x to y within increasing finite subgraphs
of G, and if we find one, say of length [, at some stage s, then we set g(z,y,s) =1,
and then continue exactly as in the connected case, searching for shorter paths. It
is clear that this distance function d is therefore (w + 1)-approximable from above,
in the obvious definition, provided that one allows oo as an output of the function.
(If 0o is not allowed, then no notion of (w + 1)-approximability from above makes
sense and distinguishes the concept from w-approximability from above.)

In a different context, recent work by Steiner in [16] has considered the number of
realizations of various algebraic types within a computable structure, and has asked
in which cases one can put a computable upper bound on the number of realizations
of each algebraic type. Over the theory ACF, for example, an algebraic type is
generated by the formula p(X) = 0, where p is a polynomial irreducible over the
ground field, and the degree of the polynomial is an upper bound for the number of
realizations of this type in an arbitrary field (not necessarily algebraically closed).
Since the minimal polynomial of the element over the prime subfield can be found
effectively, one can compute such an upper bound, whereas for other computable al-
gebraic structures considered by Steiner, no such upper bound exists. The function
counting the number of realizations of each algebraic type in a computable alge-
braic structure is approximable from below, and when a computable upper bound
exists, this function becomes the dual of a function approximable from above, ex-
actly as described in Definition 3.4. Therefore, the theorems proven in Section 3
apply to such functions. On the other hand, when there is no computable upper
bound, the standard results about functions approximable from below apply, and
we saw in Section 3 that these results differ in several ways from the results when
a computable bound does exist.

To close, we ask what connection, if any, there might be between distance func-
tions on computable graphs and Kolmogorov complexity. Is it possible that Kol-
mogorov complexity can be presented as the distance function on some computable
graph? (This is a different matter than using Kolmogorov complexity to construct
structures with prescribed model-theoretic properties, as in [9].) It might be use-
ful to fix one node e € G — call it the Erdés node — and to consider d(e,z), a
unary function on G, in place of the full distance function; in this case one could
directly build a computable graph G and a computable function f : w — G such
that d(e, f(n)) is exactly the Kolmogorov complexity of n. Having done so, one
could then ask about other computable copies of G: does the distance function on
those copies correspond to Kolmogorov complexity under some different universal

28 WESLEY CALVERT, RUSSELL MILLER, AND JENNIFER CHUBB REIMANN

(prefix-free?) machine? Right now, this question is not well-formed, and there is no
obvious reason to expect to find any connections at all between these topics, except
for their common use of functions approximable from above, and their common
triangle inequalities. (If one knows the Kolmogorov complexity of binary strings o
and 7, one gets an upper bound on the Kolmogorov complexity of the concatenation
o"r.) However, any connection that might arise would be a potentially fascinating
link between algorithmic complexity and computable model theory.

REFERENCES

[1] W. Calvert, D. Cenzer, V. Harizanov, & A. Morozov; Effective categoricity of equivalence
structures, Annals of Pure and Applied Logic 141 (2006), 61-78.

[2] W. Calvert, D. Cenzer, V. Harizanov, & A. Morozov; AY-categoricity of Abelian p-groups,
Annals of Pure and Applied Logic 159 (2009), 187-197.

[3] D. Cenzer, G. LaForte, & J. Remmel; Equivalence structures and isomorphisms in the differ-
ence hierarchy, Journal of Symbolic Logic 74 (2009) 2, 535-556.

[4] A. N. Degtev; On p-reducibility of numerations, Annals of Pure and Applied Logic 63 (1993)
57-60.

[5] R. L. Epstein, R. Haas, & R. L. Kramer; Hierarchies of Sets and Degrees Below 0’, in Logic
Year 1979-80, The University of Connecticut, USA, Lecture Notes in Mathematics 859,
(Springer, 1981), 32-48.

[6] Yu.L. Ershov; Teopus Hymepanuii, (Moscow: Nauka, 1977).

[7] Yu.L. Ershov; Theorie der Numerierungen, Zeits. Math. Logik Grund. Math. 23 (1977), 289—
371.

[8] Yu.L. Ershov; Theory of numberings, in Handbook of Computability Theory, ed. E.R. Griffor
(Amsterdam: Elsevier, 1999), 473-503.

[9] B. Khoussainov, P. Semukhin, & F. Stephan; Applications of Kolmogorov complexity to
computable model theory, Journal of Symbolic Logic 72 (2007), 1041-1054.

[10] D. Hirschfeldt, R. Miller, & S. Podzorov; Order-computable sets, The Notre Dame Journal
of Formal Logic 48 (2007) 3, 317-347.

[11] N. G. Khisamiev; Constructive Abelian p-groups, Siberian Advances in Mathematics 2
(1992), 68-113.

[12] N. G. Khisamiev; Constructive Abelian groups, in Handbook of Recursive Mathematics,
(North Holland, 1998), 1177-1231.

[13] B. Khoussainov, A. Nies, & R.A. Shore; Computable models of theories with few models,
Notre Dame Journal of Formal Logic 38 (1997), 165-178.

[14] P. Odifreddi; Classical Recursion Theory: The Theory of Functions and Sets of Natural
Numbers, vols. 1 & 2, published as vols. 125 & 143 of Studies in Logic and the Foundations
of Mathematics (North Holland, 1992 & 1999).

[15] R.I. Soare; Recursively Enumerable Sets and Degrees (New York: Springer-Verlag, 1987).

[16] R.M. Steiner; Effective Algebraicity, submitted for publication.

DEPARTMENT OF MATHEMATICS, MAIL CODE 4408, 1245 LINCOLN DRIVE, SOUTHERN ILLINOIS
UNIVERSITY, CARBONDALE, ILLINOIS 62901, U.S.A.
E-mail address: wcalvert@siu.edu

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE — CUNY, 65-30 KISSENA BLvD., FLUSHING,
NY 11367, U.S.A.; AND PH.D. PROGRAMS IN MATHEMATICS AND COMPUTER SCIENCE, CUNY
GRADUATE CENTER, 365 FIFTH AVENUE, NEW YORK, NY 10016, U.S.A.

E-mail address: Russell.Miller@qc.cuny.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SAN FRANCISCO, 2130 FULTON STREET, SAN
FRANCISCO, CALIFORNIA 94117, U.S.A.
E-mail address: jcchubb@usfca.edu

