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Abstract

The index set of a computable structure A is the set of all indices for
computable isomorphic copies of A. We determine, using the arithmetical
hierarchy and the difference hierarchy, the exact complexity of the index
sets of structures within the following classes of structures: finite struc-
tures, vector spaces, Archimedean ordered fields, Abelian p-groups, and
the models of the original Ehrenfeucht theory.

1 Introduction

One of the goals of computable structure theory is to study the relationship
between algebraic and algorithmic properties of structures. Our languages are
computable, and our structures have universe contained in ω, which we think
of as a computable set of constants. In measuring complexity, we identify a
structure A with its atomic diagram, D(A), via Gödel coding. In particular,
A is computable if D(A) is computable. For a computable structure A, an
index is a number a such that ϕa = χD(A), where (ϕa)a∈ω is a computable
enumeration of all unary partial computable functions. The index set for A is
the set I(A) of all indices for computable (isomorphic) copies of A. For a class
K of structures, closed under isomorphism, the index set is the set I(K) of all
indices for computable members of K. There is quite a lot of work on index sets
[14], [6], [2], [3], [5], [8], [20], [21], [7], etc. In this paper, we present evidence for
the following thesis:
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For a given computable structure A, to calculate the precise com-
plexity of I(A), we need a good description of A, and once we have
an “optimal” description, we the complexity of I(A) will match that
of the description.

Our evidence for this thesis consists of calculations for computable structures of
several familiar kinds: finite structures, Q-vector spaces, Archimedean ordered
fields, reduced Abelian p-groups of length less than ω2, and models of the original
Ehrenfeucht theory.

We should say what qualifies as a “description” of a structure, and how we
measure the complexity. The Scott Isomorphism Theorem says that for any
countable structure A there is a sentence of Lω1ω whose countable models are
exactly the isomorphic copies of A (see [11]). Such a sentence is called a Scott
sentence for A. A Scott sentence for A certainly describes A.

There is earlier work [16], [15] investigating subsets of the Polish space of
structures with universe ω for a given countable language. Concerning the
possible complexity (in the non-effective Borel hierarchy) of the set of copies of
a given structure, it is shown in [16] that if the set is ∆0

α+1, then it is d-Σ0
α.

In [15] it is shown that the set cannot be properly Σ0
2. There are examples

illustrating other possibilities.
Most of the structures we consider follow one of two patterns. Either there

is a computable Πn Scott sentence, and the index set is m-complete Π0
n, or

else there is a Scott sentence which is computable “d-Σn” (the conjunction of a
computable Σn sentence and computable Πn sentence), and the index set is m-
complete d-Σn. For example, a computable reduced Abelian p-group of length ω
has a computable Π3 Scott sentence, and the index set is m-complete Π0

3. A Q-
vector space of finite dimension at least 2 has a Scott sentence that is computable
d-Σ2, and the index set is m-complete d-Σ0

2. The “middle model” of the original
Ehrenfeucht theory illustrates a further pattern. There is a computable Σ3 Scott
sentence, and the index set is m-complete Σ0

3. Often the first Scott sentence
that comes to mind is not optimal. In some cases, in particular, for some of the
Abelian p-groups, it requires effort to show that a certain sentence of a simpler
form actually is a Scott sentence.

For some structures, we obtain more meaningful results by locating the given
computable structure A within some natural class K. We say how to describe
A within K, and also how to calculate the complexity of I(A) within K.

Definition 1.1. A sentence ϕ is a Scott sentence forA within K if the countable
models of ϕ in K are exactly the isomorphic copies of A.

The following definitions were used already in [3].

Definition 1.2. Let Γ be a complexity class (e.g., Π0
3).

1. I(A) is Γ within K if I(A) = R ∩ I(K) for some R ∈ Γ.

2. I(A) is m-complete Γ within K if I(A) is Γ within K and for any S ∈ Γ,
there is a computable function f : ω → I(K) such that

n ∈ S iff n ∈ I(A) .
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that is, there is a uniformly computable sequence (Cn)n∈ω such that

n ∈ S iff Cn
∼= A.

Example 1. Let A be the field with 3 elements, and let K be the class of finite
prime fields. There is a Scott sentence for A within K saying 1 + 1 + 1 = 0.
The index set for A is computable within K.

The example above is an exception. In most of the examples we consider,
even when we locate our structure within a class K, the optimal description is
a true Scott sentence, but the context helps us calculate the complexity of the
index set in a meaningful way.

Example 2. Let A be a linear ordering of size 3, and let K be the class of
linear orderings. There is a computable d-Σ1 Scott sentence saying that there
are at least 3 elements ordered by the relation, and not more. We will show
that the index set for A is m-complete d-c.e. within K.

Here we mention some related work. The proof of the Scott Isomorphism
Theorem leads to an assignment of ordinals to countable structures. By a result
of Nadel [17], for any hyperarithmetical structure, there is a computable infini-
tary Scott sentence iff the Scott rank is computable. There are several different
definitions of Scott rank in use. Since we are more interested in Scott sentences,
we shall not give any of them.

Work on index sets for particular computable structures is related to work
on isomorphism problems for classes of computable structures [2], [3], [8]. The
isomorphism problem for a class K is the set E(K) consisting of pairs (a, b) of
indices for computable members of K that are isomorphic. It is often the case
that for the classes K for which the complexity of the isomorphism problem is
known, there is a single computable A ∈ K such that the index set for A has
the same complexity as E(K). Results on index sets are useful in other contexts
as well. In [4], they are used in connection with ∆0

2 categoricity of computable
structures.

We consider finite structures in Section 2, vector spaces in Section 3, Archime-
dean ordered fields in Section 3, Abelian p-groups in Section 4, and models of
the original Ehrenfeucht theory in Section 5.

2 Finite Structures

Finite structures are the easiest to describe. It is perhaps surprising that there
should be any variation in complexity of index sets for different finite structures,
and, indeed, there is almost none. In the following theorem, we break with
convention by allowing a structure to be empty.

Theorem 2.1. Let L be a finite relational language. Let K be the class of finite
L-structures, and let A ∈ K.
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1. If A is empty, then I(A) is m-complete Π0
1 within K.

2. If A has size n ≥ 1, then I(A) is m-complete d-c.e. within K.

Proof. For 1, first note that A has a finitary Π1 Scott sentence saying that there
is no element. From this, it is clear that I(A) is Π0

1 within K. For completeness,
let B be an L-structure with just one element. For an arbitrary Π0

1 set S, we
can produce a uniformly computable sequence (An)n∈ω such that

An
∼=

{
A if n ∈ S ,
B if n /∈ S .

For 2, we have a finitary existential sentence ϕ stating that there is a sub-
structure isomorphic to A, and another finitary existential sentence ψ stating
that there are at least n + 1 elements. Then ϕ & ¬ψ is a Scott sentence for
A. It follows that I(A) is d-c.e. within K. For completeness, let S = S1 − S2,
where S1 and S2 are c.e. We have the usual finite approximations S1,s, S2,s.

Let A− be a proper substructure of A, and let A+ be a finite proper super-
structure of A. We will build a uniformly computable sequence (An)n∈ω such
that

An
∼=

 A− if n /∈ S1 ,
A if n ∈ S1 − S2 ,
A+ if n /∈ S1 ∩ S2 .

To accomplish this, let D0 = D(A−). At stage s, if n /∈ S1,s, we let Ds be the
atomic diagram of A−. If n ∈ S1,s − S2,s, we let Ds be the atomic diagram of
A. If n ∈ S1,s ∩ S2,s, we let Ds be the atomic diagram of A+. There is some s0
such that for all s ≥ s0, n ∈ S1 iff n ∈ S1,s, and n ∈ S2 iff n ∈ S2,s. Let An be
the structure with diagram Ds for s ≥ s0. It is clear that An

∼= A iff n ∈ S.

In the introduction, we mentioned finite prime fields. Let p be a prime num-
ber. By the results above, Fp has a Scott sentence of form ϕ & ¬ψ, where ϕ
and ψ are finitary Σ1. It follows that I(Fp) has a Scott sentence which is the
conjunction of a finitary existential sentence and a finitary universal sentence.
Then the index set is d-c.e. within the class of finite structures for the appropri-
ate language. However, within the class of finite prime fields, Fp has a finitary
quantifier-free Scott sentence saying p · 1 = 0. Then I(Fp) is computable within
that class.

3 Vector Spaces

The finite dimensional vector spaces over a fixed field are completely determined
by a finite set (a basis), so we might expect these to behave much like finite
structures. However, we have added complexity because of the fact that for
1 ≤ m < n, if Vn is a space of dimension n, and Vm is an m-dimensional
subspace, if Vn |= ϕ(c, a), where ϕ is finitary quantifier-free, and c is in Vm,
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then there exists a′ such that Vm |= ϕ(c, a′). We work with vector spaces over
Q, for concreteness, but any other infinite computable field would give exactly
the same results.

Proposition 3.1. Let K be the class of vector spaces over Q, and let A be a
member of K.

1. If dim(A) = 0, then I(A) is m-complete Π0
1 within K.

2. If dim(A) = 1, then I(A) is m-complete Π0
2 within K.

3. If dim(A) > 1, then I(A) is m-complete d-Σ0
2 within K.

Proof. For 1, first we note that A has a a finitary Π1 Scott sentence, within K,
saying (∀x)x = 0. It follows that I(A) is Π0

1 within K. Toward completeness,
let S be a Π0

1 set. We build a uniformly computable sequence of structures
(An)n∈ω such that

dim(An) =
{

0 if n ∈ S ,
1 if n /∈ S .

Let V0 be a space of dimension 0, and let V1 be a computable extension
having dimension 1. We have a computable sequence (Ss)s∈ω of approximations
for S such that n ∈ S iff for all s, n ∈ Ss, and if n /∈ Ss, then for all t > s,
n /∈ St. If n ∈ Ss, we let Ds = D(V0). If n /∈ Ss, then we let Ds consist of the
first s sentences of D(V1). This completes the proof for 1.

Next, we turn to 2. First, we show that A has a computable Π2 Scott
sentence. We have a computable Π2 sentence characterizing the class K. We
take the conjunction of this with the sentence saying

(∃x) x 6= 0 & (∀x) (∀y)
∨
λ∈Λ

∨
λ(x, y) = 0 ,

where Λ is the set of all non-trivial linear combinations q1x + q2y, for qi ∈ Q.
Now, I(A) is Π0

2. We do not need to locate A within K, since the set of indices
for members of K is Π0

2.
For completeness, let S be a Π0

2 set. We build a uniformly computable
sequence (An)n∈ω such that

dim(An) =
{

1 if n ∈ S ,
2 if n /∈ S .

We have computable approximations Ss for S such that n ∈ S iff for infinitely
many s, n ∈ Ss.

Let V+ be a two dimensional computable vector space and let V be a 1-
dimensional subspace. Let B be an infinite computable set of constants, for
the universe of all An. At each stage s, we have a finite partial 1 − 1 function
ps from B to a target structure V (if n ∈ Ss) or V+ (if n /∈ Ss), and we have
enumerated a finite set Ds (a part of the atomic diagram of An) such that ps
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maps the constants mentioned in Ds into the target structure so as to make all
of the sentences true. We arrange that if n ∈ S, then ∪n∈Ss

ps maps B onto V.
If n /∈ S, then there is some s0 such that for all s ≥ s0, n /∈ Ss. In this case,
∪s≥s0ps for s ≥ s0 maps B onto V+. For all s (whether or not n ∈ Ss), Ds

decides the first s atomic sentences involving constants in dom(ps).
We start with p0 = ∅, and D0 = ∅. Without loss of generality, we may

suppose that n ∈ S0. We consider p0 to be mapping into V. If there is no
change in our guess about whether n ∈ S at stage s+ 1, then ps+1 ⊇ ps, where
the first s+ 1 constants from B are in the domain, and the first s+ 1 elements
of the target structure are in the range. We must say what happens when we
change our guess at whether n ∈ S.

There are two cases. First, suppose n ∈ Ss+1 and n /∈ Ss. In this case, we
take the greatest stage t ≤ s such that n ∈ St. We let ps+1 ⊇ pt such that ps+1

makes the sentences of Ds true in V, extending so that the first s+ 1 constants
from B are in the domain, and the first s + 1 elements of V are in the range.
Now, say n /∈ Ss+1 and n ∈ Ss. In this case, we do not look back at any earlier
stage. We let ps+1 ⊇ ps, extending so that the first s+ 1 constants from B are
in the domain, and the first s + 1 elements of V+ are in the range. In either
case, we let Ds+1 ⊇ Ds so that for the first s+ 1 atomic sentences β involving
constants in the domain of ps+1, Ds+1 includes ±β, whichever is made true by
ps+1. This completes the proof for 2.

Finally, we turn to 3. Suppose A has dimension k, where k > 1. Then A
has a d-Σ2 Scott sentence. We take the conjunction of the axioms for Q-vector
spaces, and we add a sentence saying that there are at least k independent
elements, and that there are not at least k + 1. Then I(A) is d-Σ0

2. Toward
completeness, let S = S1 − S2, where S1 and S2 are both Σ0

2. Let V+ be a
computable vector space of dimension k + 1, and let

V− ⊆ V ⊆ V+,

where V− has dimension k − 1, and V has dimension k. We will produce a
uniformly computable sequence of structures (An)n∈ω such that

dim(An) =

 k − 1 if n /∈ S1 ,
k if n ∈ S1 − S2 ,
k + 1 if n ∈ S1 ∩ S2 .

The construction is similar to that for 2. We have computable approxima-
tions S1,s and S2,s for S1 and S2, such that

n ∈ Si iff for all but finitely many s, n ∈ Si,s .

Let B be an infinite computable set of constants, for the universe of all An. At
each stage s, we have a finite partial 1− 1 function ps from B to V− if n /∈ S1,s,
to V if n ∈ S1,s − S2,s, and to V+ if n ∈ S1,s ∩ S2,s. We have Ds, a finite part
of D(An) such that ps makes Ds true in the target structure.
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We arrange that if n /∈ S1, then the union of the ps for n /∈ S1,s maps B
onto V−. If n ∈ S1−S2, then after some stage s0, n ∈ S1,s holds, while n ∈ S2,s

infinitely often. In this case, the union of ps for s ≥ s0 such that n ∈ S2,s maps
B onto V. If n ∈ S1 ∩ S2, then for some stage s1, for s ≥ s1, n ∈ S1,s ∩ S2,s,
and the union of ps for s ≥ s1 maps B onto V+.

We may suppose that n /∈ S1,0, so the target structure at stage 0 is V−. At
stage s + 1, if there is no change in the target structure, then we extend ps.
We must say what to do when we change our mind about the target structure.
First, suppose the change is because of S1. If n ∈ S1,s and n /∈ S1,s+1, then the
target structure changes from V or V+ back to V−. We take the greatest stage
t < s such that n /∈ S1,t. We let ps+1 ⊇ pt such that ps+1 makes Ds true in V−,
extending so that the first s + 1 constants from B are in the domain, and the
first s + 1 elements of V are in the range. If n /∈ S1,s and n ∈ S1,s+1 − S2,s+1,
then the target structure changes from V− to V. We let ps+1 ⊇ ps, extending
so that the first s + 1 constants from B are in the domain and the first s + 1
elements of V are in the range.

Now, suppose the change is because of S2. We suppose that n ∈ S1,s and
n ∈ S1,s+1. If n ∈ S2,s and n /∈ S2,s+1, then the target structure changes from
V+ back to V. We take the greatest stage t ≤ s such that the target structure
is V, and we have had n ∈ S1,s′ for all t < s′ < s. If there is no such t, then
we take the greatest t < s such that n /∈ S1,t. We let ps+1 ⊇ pt such that ps+1

makes Ds true in V, extending to include the first s + 1 elements of B in the
domain and the first s + 1 elements of V in the range. We let Ds+1 ⊇ Ds so
that for for the first s+ 1 atomic sentences β involving constants in the domain
of ps+1, Ds+1 includes ±β, whichever is made true by ps+1. This completes the
proof of 3.

The final case, that of an infinite dimensional space, is already known [2].
We include it here for completeness.

Proposition 3.2. Let K be the class of computable vector spaces over Q, and
let A be a member of K of infinite dimension. Then I(A) is m-complete Π0

3

within K.

Proof. We have a computable Π3 Scott sentence for A, obtained by taking the
conjunction of the axioms for Q-vector spaces and the conjunction over all k ∈ ω
of computable Σ2 sentences saying that the dimension is at least k. Therefore,
I(A) is Π0

3. For completeness, let Cof denote the set of indices for co-finite c.e.
sets. It is well known that the complement of Cof is Π0

3 complete (see [18]).
We build a uniformly computable sequence of vector spaces (An)n∈ω such that
An has infinite dimension iff n /∈ Cof .

Let V be an infinite dimensional vector space with basis {vi : i ≥ −1}. Let
B be an infinite computable set of constants, for the universe of all An. For
each set S ⊆ ω, let VS be the linear span of {v−1} ∪ {vi : i ∈ S}. Our goal is to
make An

∼= VS , where S = ω −Wn. At stage s, we have a finite approximation
of S, as follows. Let S0 = ∅. If Wn+1,s+1 includes some x ∈ Ss, we let Ss+1
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be the result of removing from Ss all y ≥ x. If Wn+1,s+1 contains no elements
of Ss, we let Ss+1 be the result of adding to Ss the first element of ω not in
Wn+1,s+1. Note for each k, there exists s such that for all t ≥ s, S ∩ k = St ∩ k.
Moreover, for each s, there is some t ≥ s such that St ⊆ ω −Wn. For such t,
for all t′ ≥ t, S′t ⊇ St.

For the construction, at stage s we have a finite partial 1 − 1 function ps

from B into VSs . We include the first s elements of B in the domain and the
first s elements of ω that are in VSs

in the range. We also have Ds deciding
the first s atomic sentences with constants in dom(ps), such that ps makes the
sentences true in VSs

. We start with p0 = ∅, D0 = ∅, and we think of p0 as
mapping into VS0 .

At stage s + 1, we define ps+1 as follows. First, suppose Ss+1 is the result
of adding an element to Ss. Then ps+1 ⊇ ps including the first s + 1 elements
of B in the domain, and the first s + 1 elements of ω that are in Vs+1 in the
range. Now, suppose Ss+1 is the result of removing one or more elements from
Ss, so that Ss+1 = St for some greatest t < s. We take ps+1 ⊇ pt such that
ps+1 makes Ds true in Vs+1 = Vt. We let Ds+1 extend Ds so as to decide the
first s + 1 atomic sentences involving constants in dom(ps+1). This completes
the construction.

There is an infinite sequence of stages t such that for all s > t, ps ⊇ pt. Let f
be the union of the functions pt for these t. We can see that f is a 1−1 mapping
of B onto VS . Moreover, if An

∼=f VS , then ∪sDs is the atomic diagram of An.

We have completely characterized the m-degrees of index sets of computable
vector spaces over Q, within the class of all such vector spaces.

4 Archimedean Ordered Fields

Archimedean ordered fields are isomorphic to subfields of the reals. They are
determined by the Dedekind cuts that are filled.

Theorem 4.1. Let K be the class of Archimedean ordered fields. If A is either
Q, or Q(a) for a real algebraic number a, then I(A) is m-complete Π0

2 within K.

Proof. For Q, we have a computable Π2 Scott sentence describing an ordered
field in which each x is equal to a ratio of integers. For Q(a), where p(x) is
the minimal polynomial with root a, we have a computable Π2 Scott sentence
describing an ordered field such that (∃x) p(x) = 0 and for all x and y, if
p(y) = 0, then y is equal to some rational function of x. It follows that the
index set is Π0

2. For m-completeness, let S be a Π0
2 set. We produce a uniformly

computable sequence (An)n∈ω such that if n ∈ S, then An
∼= A, and if n /∈ S,

then An
∼= A(e), where e ∈ R.

We need a lemma, and for later use, it is convenient to have the following
definition.
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Definition 4.2. Let C be a substructure of B. We write

C ≤1 B

if for all finitary quantifier-free formulas ϕ, if B |= ϕ(c, b), where c is in C, then
there exists b

′
such that C |= ϕ(c, b

′
).

In other words, if C ≤1 B, then the satisfaction of finitary existential formulas
by tuples in C is the same in B and C.

Lemma 4.3. If A is either Q or Q(a), where a is real algebraic, then A ≤1 A(e).

Proof. Let ϕ be finitary quantifier-free. Suppose

A(e) |= ϕ(c, e, a) ,

where c is in A. In the case where A = Q(a), we may suppose that a ∈ c.
Then a is in the field generated by c and e. There is an open interval I (in
R) containing e such that for all e′ ∈ I, we have R |= ϕ(c, e′, a′), where a′ is
obtained from c, e′ in the same way that a is obtained from c, e. Taking e′ to
be rational, we have a′ in A such that A |= ϕ(c, e′, a′).

Let M+ be a computable copy of A(e), and let M be the substructure
isomorphic to A. What is important is that M+ is computable, and M is a c.e.
substructure with M≤1 M+. Let B be an infinite computable set of constants,
for the universe of all An. We have a computable approximation (Ss)s∈ω for S
such that

n ∈ S iff n ∈ Ss for infinitely many s .

At each stage, we determine a finite partial 1− 1 functions fs to the target
structure, M if n ∈ Ss, and M+ otherwise. The domain of fs includes the first
s constants from B, and the range includes the first s elements of the target
structure. Also, at stage s, we enumerate a finite part of Ds of the diagram of
An, such that fs makes Ds true in the target structure. For the first s atomic
sentences ϕ, involving only the first s constants, we put ±ϕ in Ds. We arrange
that if n ∈ S, then f = ∪n∈Ss

fs is an isomorphism from An onto M1, and if
n /∈ S, and s0 is least such that for all s ≥ s0, n /∈ Ss, then f = ∪s≥s0fs is an
isomorphism from An onto M+.

At stage 0, we let f0 = ∅, and D0 = ∅. At stage s + 1, if n ∈ Ss+1 and
n ∈ Ss, or if n /∈ Ss+1 and n /∈ Ss, then we let fs+1 ⊇ fs, adding to the domain
and range. We extend Ds to Ds+1 so that fs+1 makes the sentences true in the
target structure. Suppose n ∈ Ss+1 and n /∈ Ss. Let t < s be greatest such that
n ∈ St or t = 0. We may suppose that fs extends ft. It follows from Lemma 4.3
that there is an extension of ft which makes Ds true in M. We let fs+1 be such
an extension that also includes the required elements in the domain and range.
We extend Ds to Ds+1 so that fs+1 makes the sentences true. Finally, suppose
n ∈ Ss and n /∈ Ss+1. We let fs+1 ⊇ fs, changing to the larger target structure.
We add the required elements to the domain and range. We extend Ds to Ds+1

so that fs+1 makes the sentences true in the target structure.
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Theorem 4.4. Let K be the class of Archimedean ordered fields, and let A
be Q(e1, . . . , ek), where the ei are algebraically independent reals, k ≥ 1. Then
I(A) is m-complete d-Σ0

2 within K.

Proof. We have a computable Σ0
2 sentence ϕ stating that there are elements

eA1 , . . . , e
A
k filling the cuts of e1, . . . , ek, and we have another computable Σ0

2

sentence ψ saying that there are elements x1, . . . , xk filling these cuts, and an-
other element not equal to any rational function of them. Then ϕ & ¬ψ is a
Scott sentence for A. It follows that I(A) is d-Σ0

2.
Toward completeness, let S = S1 − S2, where Si is Σ0

2. Let ek+1 be a
computable real number algebraically independent of e1, . . . , ek. Let M+ be a
computable copy of Q(e1, . . . , ek, ek+1), let M be the subfield isomorphic to A,
and let M− be the subfield generated by the elements corresponding to ei for
i < k. (If k = 1, then A− = Q.) We have the following lemma.

Lemma 4.5. M− ≤1 M≤1 M+

What is important is that M+ is a computable structure, and M− and
M are c.e. substructures such that M− ≤1 M ≤1 M+. We will produce a
uniformly computable sequence (An)n∈ω such that if n /∈ S1, then An

∼= M−,
if n ∈ S1 − S2, then An

∼= M, and if n ∈ S1 ∩ S2, then An
∼= M+. Let B

be an infinite computable set of constants, for the universe of all An. We have
computable approximations (Si,s)s∈ω for Si such that

n ∈ Si iff (∃s0)(∀s ≥ s0)[n ∈ Si,s] .

At each stage s, we will have a finite partial 1− 1 function fs from B to the
appropriate target structure—M− if n /∈ S1,s, M if n ∈ S1,s − S2,s, and M+ if
n ∈ S1,s ∩ S2,s. The domain of fs will include the first s constants from B, and
the range will include the first s elements of the target structure. We will also
have a finite set Ds of atomic sentences and negations of atomic sentences such
that fs makes Ds true in the target structure. For the first s atomic sentences
ϕ involving only the first s constants, Ds will include ±ϕ. We let An be the
structure with atomic diagram ∪sDs.

We will arrange that if n /∈ S1, then the union of fs for n /∈ S1,s will be an
isomorphism from An onto M−. If n ∈ S1 − S2, and s0 is first such that for
all s ≥ s0, n ∈ S1,s, then the union of fs, for s ≥ s0 such that n /∈ S2,s, will
be an isomorphism from An onto M. If n ∈ S1 ∩ S2, and s1 is first such that
for all s ≥ s1, n ∈ S1,s and n ∈ S2,s, then the union of fs for s ≥ s1 will be an
isomorphism from An onto M+.

We start with f0 = ∅ and D0 = ∅. Suppose we have fs and Ds. If the target
structure at stage s+ 1 is the same as at stage s, then we extend fs and Ds in
the obvious way. Suppose n /∈ S1,s+1, where n ∈ S1,s. Let t < s be greatest
such that n /∈ S1,t or t = 0. Say ft maps d to c in M−. We let fs+1 ⊇ ft, where
fs+1 makes the sentences of Ds true in M−. Now, suppose n ∈ S1,s+1−S2,s+1,
where n ∈ S1,s ∩ S2,s. Take t < s greatest such that n ∈ S1,t − S2,t and for all
t < t′ < s, n ∈ S1,t′ . Then we let fs+1 ⊇ ft, where fs+1 makes the sentences of
Ds true in M.
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Suppose that n ∈ S1,s+1 − S2,s+1, where n /∈ S1,s. Then we take fs+1 ⊇ fs,
where fs+1 makes Ds true in the target structure M. Similarly, if we have
n ∈ S1,s+1 ∩ S2,s+1, where either n /∈ S1,s or n ∈ S1,s − S2,s, we let fs+1 ⊇ fs,
where fs+1 makes Ds true in the target structure M+. We extend fs to include
the required elements in the domain and range, and we let Ds+1 ⊇ Ds so that
fs+1 makes Ds+1 true.

Next, we consider Archimedean ordered fields with infinite transcendence
degree. As for vector spaces, the complexity goes up by one quantifier. However,
the proof is different. For an infinite dimensional vector space, we had proper
substructures isomorphic to the whole, while for an Archimedean ordered field,
this does not happen. (See [2] for a similar proof.)

Theorem 4.6. Let K be the class of Archimedean ordered fields, and let A ∈ K
be the least field generated by a family of infinitely many algebraically indepen-
dent reals. Then I(A) is m-complete Π0

3 within K.

Proof. We shall describe a computable Π3 Scott sentence for A. For each a ∈ A,
let ca(x) be the conjunction of formulas saying q < x < q′, where q, q′ are
rationals, and A |= q < a < q′. The Scott sentence describes an Archimedean
ordered field such that ∧

a∈A

∧
(∃x) ca(x) & (∀x)

∨
a∈A

∨
ca(x) .

For completeness, we need the following lemma.

Lemma 4.7. There is a sequence (Mk)k∈ω of subfields of A, uniformly c.e.,
such that for all k, Mk+1 properly extends Mk, and ∪kMk = A.

Proof. Let (an)n∈ω be a computable list of all elements of A. We can arrange
that M0 is the prime field A, and Mk+1 is field generated by Mk and ank

,
where nk is first such that ank

/∈Mk.

We need the following property.

Lemma 4.8. For all k, Mk ≤1 Mk+1. Hence, if k < m, then Mk ≤1 Mm.

Proof. Suppose Mk+1 |= ϕ(c, b), where ϕ is quantifier-free, and c is in Mk.
Let nk be least such that ank

/∈ Mk. We may suppose that c includes am,
for all m < nk, and b has the form ank

, d. Say ψ(c, ank
, d) says how d are

expressed as rational functions of c, ank
. There is an interval I around ank

,
with rational endpoints, such that for all x ∈ I, and all u satisfying ψ(c, x, u),
ϕ(c, x, u) holds in R. Taking x rational, we have u satisfying ψ(c, x, u) in Mk,
so Mk |= ϕ(c, x, u).
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Recall that Cof = {n : ω −Wn is finite}. This set is m-complete Σ0
3, so the

complement is m-complete Π0
3. We have a ∆0

2 function ν(n, r), non-decreasing
in r, for each n, such that if n ∈ Cof , then limr ν(n, r) has value equal to the
cardinality of ω − Wn, and if n /∈ Cof , then limr ν(n, r) = ∞. We have a
computable approximation to ν, and we define a computable function g(n, s),
such that g(n, 0) is our stage 0 guess at ν(n, 0). Supposing that g(n, s) is our
stage s guess at ν(n, r), if our stage s+1 guess at ν agrees with the stage s guess
at ν(n, j) for all j ≤ r, then g(n, s + 1) is the stage s + 1 guess at ν(n, r + 1).
If there is a disagreement, say j is least such that our stage s and stage s + 1
guesses at ν(n, j) disagree. Let g(n, s+ 1) be the stage s+ 1 guess at ν(n, j). If
n /∈ Cof , then for all k, there exists s0 such that

(∀s ≥ s0) [g(n, s) ≥ k] .

If n ∈ Cof , and k is the cardinality of ω −Wn, then there are infinitely many
s such that g(n, s) = k, and k is the least such number. In other words,
lim infs g(n, s) is the cardinality of ω −Wn.

We will build a uniformly computable sequence (An)n∈ω of Archimedean
ordered fields such that if n /∈ Cof , that is, ω −Wn is infinite, then An

∼= A.
If n ∈ Cof , that is, ω −Wn has size k for some k ∈ ω, then An

∼= Mk. Let B
be an infinite computable set of constants, for the universe of all An. At stage
s, we have a finite partial 1− 1 function fs from B to the target structure Mk,
where k = g(n, s). The domain of fs will include the first s constants from B,
and the range will include the first s elements of the target structure. We also
have Ds, a finite set of atomic sentences and negations of atomic sentences such
that fs makes Ds true in the target structure. For the first s atomic sentences
ϕ using only the first s constants, Ds will include ±ϕ.

We let An be the structure with

D(An) = ∪sDs .

Let T be the set of s such that for all t ≥ s, g(n, t) ≥ g(n, s). We shall arrange
that f = ∪s∈T fs is an isomorphism from An onto the desired structure. With
this goal, we maintain the following condition.

Condition Maintained: Suppose t < s, where g(n, t) ≤ g(n, s), and for all
t < t′ < s, we have g(n, t′) ≥ g(n, t). Then fs ⊇ ft.

Let f0 = ∅, and let D0 = ∅. Given fs and Ds, we must determine fs+1

and Ds+1. The target structure is Mk, where k = g(n, s + 1). First, suppose
g(n, s+ 1) ≥ g(n, s). Then we let fs+1 ⊇ fs. We extend to include the required
elements in the domain and range. We let Ds+1 ⊇ Ds, where fs+1 makes the
sentences true in the target structure. Now, suppose g(n, s + 1) < g(n, s). Let
t < s be greatest such that g(n, t) = g(n, s+ 1) and there is no t < t′ < s such
that g(n, t′) < g(n, t), or if there is no t < s such that g(n, t) = g(n, s + 1),
take the greatest t < s such that g(n, t) ≤ g(n, s+ 1). We may assume that fs
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extends ft. We let fs+1 extend ft such that fs+1 makes Ds true in the target
structure.

What is important in the proof above is that A is computable, the sub-
structures Mk are computably ennumerable, uniformly in k, and they form a
≤1-elementary chain with union A. For an arbitrary computable Archimedean
ordered field of infinite transcendence degree, we would have trouble getting the
≤1-elementary chain. The difficulties disappear when we consider real closed
fields.

Theorem 4.9. Let K be the class of computable Archimedean real closed ordered
fields, and let A be a member of K.

1. If the transcendence degree of A is 0, then I(A) is m-complete Π0
2 within K.

2. If the transcendence degree of A is finite but greater than 0, then I(A) is
m-complete d-Σ0

2 within K.

3. If the transcendence degree of A is infinite then I(A) is m-complete Π0
3

within K.

Proof. For 1, we have a computable Π2 Scott sentence describing the real closed
ordered fields in which every element is a root of some non-trivial polynomial
with integer coefficients. It follows that I(A) is Π0

2. For completeness, the proof
is as for Q or Q(a), where a is real algebraic. Let S be a Π0

2 set. We can
produce a uniformly computable sequence (An)n∈ω such that if n ∈ S, then
An

∼= A, and otherwise, An
∼= A(e). Let M+ be a computable copy of A(e),

and let M be the substructure isomorphic to A. Note that M is c.e., and it is
an elementary substructure of M+.

For 2, let A be the real closure of a set of e1, . . . , ek, where the ei are alge-
braically independent computable reals. We have a Scott sentence describing a
real closed Archimedean ordered field, with elements filling the cuts of the cho-
sen ei and not having k + 1 algebraically independent elements. This sentence
can be put in the form ϕ & ¬ψ, where ϕ and ψ are computable Σ2. It follows
that I(A) is d-Σ0

2.
For completeness, the proof is the same as for Q(e0, . . . , ek−1). Let ek be a

further computable real, independent of e0, . . . , ek−1. Let M+ be a computable
real closed ordered field, with elements filling the cuts of ei for i ≤ k. Let M
be the subfield isomorphic to A, and let M− be the real closure of the elements
corresponding to ei, for i < k − 1. Then M− and M are c.e. substructures of
M+, and

M− ≤1 M≤1 M+ .

(In fact, we have elementary substructures here.) We can produce a uni-
formly computable sequence (An)n∈ω such that if n /∈ S1, then An

∼= M−, if
n ∈ S1 − S2, then An

∼= M , and if n ∈ S1 ∩ S2, then An
∼= M+.
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For 3, we have a computable Π3 Scott sentence describing an Archimedean
real closed ordered field in which the cuts filled are exactly those of the ele-
ments of A. For completeness, the proof is as for Q(e1, e2, . . .), where e1, e2, . . .
are algebraically independent reals. We have A computable. Let (ai)i∈ω be
a computable list of all elements of A, and let Mk be the real closure of
{ai : i < k} in A. Then the structures Mk are c.e. uniformly in k, and they
form an elementary chain with union A. Therefore, we can produce a uniformly
computable sequence (An)n∈ω such that if n /∈ Cof , then An

∼= A, and if
n ∈ Cof , and k is the cardinality of ω −Wn, then An

∼= Mk.

5 Abelian p-Groups

5.1 Preliminaries on Abelian p-Groups

Fix a prime p. An Abelian group G is a p-group if for each x ∈ G, the order of
x is pn for some n. We will consider only countable Abelian p-groups. These
groups are of particular interest because of their classification up to isomorphism
by Ulm. For a classical discussion of this theorem and a more detailed discussion
of this class of groups, consult Kaplansky’s book [10]. Generally, notation here
will be similar to Kaplansky’s.

Let G be a countable Abelian p-group. We define a sequence of subgroups
Gα, letting G0 = G, Gα+1 = pGα, and for limit α, Gα = ∩β<αGβ . There is
a countable ordinal α such that Gα = Gα+1. The least such α is the length of
G, denoted by λ(G). The group is reduced if Gλ(G) = {0}. An element x 6= 0
has height β if x ∈ Gβ − Gβ+1. Let P (G) be the set of element of G of order
p. Let Pα = Gα ∩ P (G). For each β < λ, Pβ/Pβ+1 is a vector space over Zp of
dimension ≤ ℵ0, with dimension denoted by uβ(G). The Ulm sequence for G is
the sequence (uβ(G))β<λ(G).

For any computable ordinal α, it is somewhat straightforward to write a
computable infinitary sentence stating that G is a reduced Abelian p-group of
length at most α and describing its Ulm invariants. In particular, Barker [1]
verified the following.

Lemma 5.1. Let G be a computable Abelian p-group.

1. Gω·α is Π0
2α.

2. Gω·α+m is Σ0
2α+1.

3. Pω·α is Π0
2α.

4. Pω·α+m is Σ0
2α+1.

Proof. It is easy to see that 3 and 4 follow from 1 and 2 respectively. Toward 1
and 2, note the following:
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x ∈ Gm ⇐⇒ ∃y(pmy = x) ;

x ∈ Gω ⇐⇒
∧

m∈ω

∧
∃y(pmy = x) ;

x ∈ Gω·α+m ⇐⇒ ∃y[pmy = x & Gω·α(y)] ;

x ∈ Gω·α+ω ⇐⇒
∧

m∈ω

∧
∃y[pmy = x & Gω·α(y)] ;

x ∈ Gω·α ⇐⇒
∧

γ<α

∧
Gω·γ(x) for limit α .

Using Lemma 5.1, it is easy to write, for any computable ordinal β, a com-
putable Π0

2β+1 sentence whose models are exactly the reduced Abelian p-groups
of length ωβ.

Khisamiev gave a useful characterization of those Abelian p-groups which
have computable copies [13], [12], at least for certain lengths. For groups of
finite length, it is easy to produce computable copies. Khisamiev gave a char-
acterization for length ω, and proved an inductive lemma that allowed him to
build up to all lengths less than ω2. Here is the result for length ω.

Proposition 5.2 (Khisamiev). Let A be a reduced Abelian p-group of length ω.
Then A has a computable copy iff

1. the relation RA = {(n, k) : un(A) ≥ k} is Σ0
2, and

2. there is a computable function fA such that for each n, fA(n, s) is non-
decreasing, with limit n∗ ≥ n such that un∗(A) 6= 0.

Moreover, we can effectively determine a computable index for a copy of A from
a Σ0

2 index for RA and a computable index for a function fA.

Here is the inductive lemma.

Lemma 5.3 (Khisamiev). Let A be a reduced Abelian p-group. Suppose Aω

is ∆0
3, the relation RA is Σ0

2(X), and there is a function fA such that for all
n, fA(n, s) is non-decreasing, with limit r∗ ≥ r such that ur∗(A) 6= 0. Then A
has a computable copy, with index computed effectively from those for Aω, RA,
and fA.

The results above relativize. They yield the following two theorems, which
we shall use in what follows.

Theorem 5.4 (Khisamiev). Let A be a reduced Abelian p-group of length
ωM , where M ∈ ω. Then A has a computable copy iff for each k < M ,

1. the relation Rk
A = {(r, t)|uωk+r(A) ≥ t}} is Σ0

2k+2, and
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2. there is a ∆0
2k+1 function fk

A(r, s) such that for each n, the function
fk
A(n, s) is nondecreasing, with limit r∗ ≥ r such that uωk+r∗(A) 6= 0.

Moreover, we can pass effectively from Σ0
2k+2 indices for the relations Rk

A and
∆0

2k+1 indices for appropriate functions fk
A to a computable index for a copy of

A.

Theorem 5.5 (Khisamiev). Let A be a reduced Abelian p-group of length
≤ ωM . Suppose AωM is ∆0

2M+1, and for each k < M ,

1. the relation Rk
A = {(r, t)|uωk+r(A) ≥ t}} is Σ0

2k+2, and

2. there is a ∆0
2k+1 function fk

A(r, s) such that for each n, fk
A(n, s) is non-

decreasing, with limit r∗ ≥ r such that uωk+r∗(A) 6= 0.

Then A has a computable copy, with index computed effectively from the ∆0
2M+1

index for AωM , Σ0
2k+2 indices for Rk

A and ∆0
2k+1 indices for appropriate func-

tions fk
A.

5.2 Index Sets of Groups of Small Ulm Length

In [3], it is shown that for the countable reduced Abelian p-group of length ωM
with uniformly infinite Ulm invariants, the index set is m-complete Π0

2M+1. It
seemed that other complexities might be possible for groups of the same length.
However, it turned out that the index set for any group of length ωM is also
m-complete Π0

2m+1. The case M = 1 of the following theorem was first proved
in [4].

Proposition 5.6. Let K be the class of reduced Abelian p-groups of length ωM ,
and let A ∈ K. Then I(A) is m-complete Π0

2M+1 within K.

Proof. Let A ∈ K. First, we show that A has a computable Π2M+1 Scott
sentence. There is a computable Π2 sentence θ characterizing the Abelian
p-groups. Next, there is a computable Π2M+1 sentence λ characterizing the
groups which are reduced and have length at most ωM . For each α < ωM , we
can find a computable Σ2M sentence ϕα,k saying that uα ≥ k. The set of these
Σ2M sentences true in A is Σ0

2M . For each ϕα,k, we can find a computable Π2M

sentence equivalent to the negation, and the set of these sentences true in A is
Π0

2M . We have a computable Π2M+1 sentence υ equivalent to the conjunction
of the sentences ±ϕα,k true in A. Then we have a computable Π2M+1 Scott
sentence equivalent to θ & λ & υ. It follows that I(A) is Π0

2M+1.
For completeness, let S be a Π0

2M+1 set. We will produce a uniformly com-
putable sequence (An)n∈ω of elements of K, such that n ∈ S if and only if
An

∼= A. We will specify An by giving relations Rk
An

and functions fk
An

, for
k < M , as in Theorem 5.4. Since A is computable, there are relations Rk

A
and functions fk

A, as in the theorem. For k < M − 1, we let Rk
An

= Rk
A and

fk
An

= fk
A.
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We will define a single ∆0
2M−1 function g to serve as fM−1

An
for all n. We

then define a family of relations Rn to serve as RM−1
An

, with the feature that
if (m, k + 1) is included, so is (m, k). The relations will be uniformly Σ0

2M .
Moreover, if n ∈ S, then we will have Rn = RM−1

A , and if n /∈ S, then Rn will
include the pairs (m, 1) for m = lims g(r, s), but will omit some of the other
pairs (m, 1) in RA. Having determined g and Rn for n ∈ ω, we will be in a
position to apply Theorem 5.4.

To get the function g, we first define a ∆0
2M sequence (kn)n∈ω, where

k0 = lim
s
fM−1
A (0, s) and km+1 = lims f

M−1
A (km+1, s) .

We will define g(r, s) in such a way that lims g(r, s) = k2r+1. We have a ∆0
2M−1

approximation to the sequence (kn)n∈ω. Let km,0 = m for all m, let k0,s+1 =
fM−1
A (0, s + 1), and let km+1,s+1 be the maximum of fM−1

A (km+1,s+1, s + 1)
and km+1,s. For each m, the sequence km,s is nondecreasing in s and has limit
km. Define g(r, s) = k2r+1,s.

The relation RM−1
A is c.e. in ∆0

2M , and we have a sequence of finite approx-
imations RM−1

A,s . The set S is Π0
1 over ∆0

2M . We have a ∆0
2M approximation

(Ss)s∈ω such that if n ∈ S, then n ∈ Ss, for all s, and if n /∈ S, then there exists
s0 such that for s < s0, n ∈ Ss, and for s ≥ s0, n /∈ Ss. We define uniformly
Σ0

2M relations Rn. At stage 0, we have Rn,0 = ∅. At stage s + 1, we extend
Rn,s to Rn,s+1. We add the pair (k2s+1, 1). If n /∈ Ss, this is all, but if n ∈ Ss,
we include all pairs (r, k) in RM−1

A,s . If n ∈ S, then Rn = RM−1
A . If n /∈ S, then

Rn includes only finitely many of the pairs (k2s, 1), while RM−1
A includes all of

them.
We apply Theorem 5.4 as planned to obtain a uniformly computable se-

quence of reduced Abelian p-groups (An)n∈ω, all of length ωM , such that
An

∼= A iff n ∈ S.

We have considered groups of limit length ωM . Now, we consider groups of
successor length. There are several cases.

Proposition 5.7. Let K be the class of reduced Abelian p-groups of length
ωM +N , where N > 0. Suppose A is a computable member of K, where AωM

is finite.

1. If AωM is minimal for the prescribed length, (i.e. if it is of type ZpN ),
then I(A) is m-complete Π0

2M+1 within K. (It is m-complete d-Σ0
2M+1

within the class of groups of length ≤ N .)

2. If AωM is not minimal, then I(A) is m-complete d-Σ0
2M+1 within K.

Proof. We use the following lemma.

Lemma 5.8. Let C be a non-trivial finite Abelian p-group of length N .
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1. If C is minimal among groups of length N , of type ZpN , then it has a
finitary Π1 Scott sentence within groups of length N . For any X, and any
set S that is Π0

1(X), there is a uniformly X-computable sequence (Cn)n∈ω

consisting of groups of length N such that

Cn
∼= C iff n ∈ S .

2. If C is not minimal among groups of length N , then it has a finitary d-c.e.
Scott sentence, and for any X, and any set S that is d-c.e. relative to X,
there is a uniformly X-computable sequence (Cn)n∈ω consisting of groups
of length N such that

Cn
∼= C iff n ∈ S .

Proof. For 1, we have a finitary Π1 Scott sentence withinK saying that there are
no more than pN elements. The construction will be uniform in X, so without
loss of generality we assume that X = ∅. If S is Π0

1, we have a uniformly
computable sequence (Cn)n∈ω of Abelian p-groups, all of length N , such that if
n ∈ S, then Cn

∼= ZpN , and if n /∈ S, then Cn
∼= Z2

pN .

For 2, we have a finitary d-c.e. Scott sentence, as in the section on finite
structures. Suppose S = S1−S2, where S1 and S2 are computably enumerable.
We let C− be a proper subgroup of C, still of length N , and we let C+ be
a proper extension of C, also of length N . We get a uniformly computable
sequence (Cn)n∈ω such that Cn

∼= C− if n /∈ S1, Cn
∼= C if n ∈ S1 − S2, and

Cn
∼= C+ if n ∈ S1 ∩ S2.

Now, we can prove the proposition. Let C = AωM . For 1, we have a
computable Π2M+1 sentence characterizing the groups G such that GωM

∼= C
within the class of reduced Abelian p-groups of length ωM + N . We have a
computable Π2M+1 sentence characterizing the Abelian p-groups G such that
for all α < ωM , uα(G) = uα(A). The conjunction, equivalent to a computable
Π2M+1 sentence, is a Scott sentence for A.

For completeness, let S be Π0
2M+1. Note that S is Π0

1 over ∆0
2M+1. By

Lemma 5.8, we have a uniformly ∆0
2M+1 sequence (Cn)n∈ω of groups of length

N such that Cn
∼= C iff n ∈ S. Since A is computable, we get Σ0

2k+2 relations
Rk
A, and ∆0

2k+1 functions fk, as required in Theorem 5.5. We obtain a uniformly
computable sequence (An)n∈ω of groups of length ωM +N such that An

∼= A
iff n ∈ S.

For 2, we have a computable d-Σ2M+1 sentence characterizing the groups G
such that GωM

∼= C. We have a computable Π2M+1 sentence characterizing the
Abelian p-groups such that for all α < ωM , uα(G) = uα(A). The conjunction,
equivalent to a computable d-Σ2M+1 sentence, is a Scott sentence for A.

Toward completeness, let S be a d-Σ0
2M+1 set. Then S is d-c.e. relative to

∆0
2M+1. By Lemma 5.8, there is a uniformly ∆0

2M+1 sequence (Cn)n∈ω of groups
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of length N such that Cn
∼= C iff n ∈ S. As above, since A is computable, we

have relations Rk
A and functions fk for k < M , as required in Theorem 5.5. We

get a uniformly computable sequence (An)n∈ω of groups of length ωM+N such
that An

∼= A iff n ∈ S.

We continue with reduced Abelian p-groups A of length ωM+N , but now we
suppose that AωM is infinite. This means that for some k < N , uωM+k(A) = ∞.

Proposition 5.9. Let K be the class of reduced Abelian p-groups of length
ωM+ N . Let A be a computable member of K. If there is a unique k < N such
that uωM+k(A) = ∞, and for all m < k we have uωM+m(A) = 0, then I(A) is
m-complete Π0

2M+2 within K.

Proof. We use the following lemma.

Lemma 5.10. Suppose C is a reduced Abelian p-group of length N , where there
is a unique k < N such that uk(C) = ∞, and for all m < k, um(C) = 0.

1. The structure C has a computable Π2 Scott sentence.

2. For any set X, if S is Π0
2(X), there is a uniformly X-computable sequence

(C2)n∈ω of reduced Abelian p-groups, all of length N , such that

Cn
∼= C iff n ∈ S .

Proof. We have C ∼= H ⊕ Z∞pk+1 , where H is a finite direct sum of Zpi+1 for
k < i < N . Even part 1 requires some effort. There is a computable Π2 sentence
characterizing the Abelian p-groups. There is a computable Π1 sentence saying
that the length is at most N . There is a computable Π2 sentence saying that
um = 0 for all m < k. There is a finitary d-Σ1 sentence characterizing the
groups G of length N such that Gk+1

∼= Ck+1. Finally, there is a computable Π2

sentence saying that, for all r, there exists a substructure of type Zr
pk+1 . The

conjunction of these is equivalent to a computable Π2 sentence. We show that
it is a Scott sentence for C.

We show that if G is a model of the proposed Scott sentence, then uk(G) = ∞.
To show that uk(G) ≥ m, consider the set of statements z1x1 + . . .+ zmxm = h,
where zi ∈ Zp and h ∈ Gk+1. Say the number of these statements is r. By
Ramsey’s Theorem (the finite version), there exists M such that

M → (2m)k
r ;

that is, for any partition of k-sized subsets of a set of size M into r classes,
there is a set of size 2m which is “homogeneous” in the sense that all k-sized
subsets lie in the same class in the partition (for example, see [9]). Take a
substructure of G of type ZM

pk+1 , and from each factor Zpk+1 , take an element
bi of height k and order p. If there is no m-sized subset independent over
Gk+1, then for each m-sized subset bi1 , . . . , bim (with i1 < . . . < im), one of
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the r statements above is satisfied. We partition according to the first such
statement. Take a homogeneous set of size 2m, with all m-tuples satisfying the
statement z1x1 + . . . + znxn = h. We have disjoint m-tuples c1, . . . , cm and
d1, . . . , dm such that

z1c1 + . . .+ zmcm = z1d1 + . . .+ zmdm .

This is impossible. Therefore, we have uk(G) ≥ m.

For 2, assume without loss of generality that X = ∅. Let S be a Π0
2 set. We

can produce a uniformly computable sequence (Cn)n∈ω such that if n ∈ S, then
Cn

∼= H ⊕ Z∞pk+1 , and otherwise Cn
∼= H ⊕ Zr

pk+1 , for some finite r. We start
with a copy of H. At each stage when we believe n ∈ S, we add a new direct
summand of type Zpk+1 . Otherwise, we add nothing. The resulting sequence
has the desired properties.

Using Lemma 5.10, we can prove the proposition. Let C = AωM . We have
a computable d-c.e. Scott sentence for C. It follows that there is a computable
d-Σ2M+1 sentence describing the groups G with GωM

∼= C. We have a com-
putable Π2m+1 sentence characterizing the Abelian p-groups G such that for
α < ωM , uα(G) = uα(A). There is a computable Π2M+2 sentence equivalent to
the conjunction, and this is a Scott sentence for A.

For completeness, let C = AωM . Let S be Π0
2M+2. Then S is Π0

2 over ∆0
2M+1.

By Lemma 5.10, we get a sequence (Cn)n∈ω, uniformly ∆0
2M+1, such that for all

n, Cn has length N , and Cn
∼= C iff n ∈ S. Now, we apply Theorem 5.5. Since

A is computable, we have Σ0
2k+2 relations Rk

A and ∆0
2k+1 functions fk

A for all
k < M . From these, together with the sequence (Cn)n∈ω, we obtain a uniformly
computable sequence (An)n∈ω such that for all n, An has length ωM +N , and
An

∼= A iff n ∈ S.

Proposition 5.11. Let K be the class of reduced Abelian p-groups of length
ωM +N for some M,N ∈ ω. Let A ∈ K. If there is a unique k < N such that
uωM+k(A) = ∞, and for at least one m < k we have 0 < uωM+m(A) < ∞,
then I(A) is m-complete d-Σ0

2M+2 within K.

Proof. We use the following lemma.

Lemma 5.12. Suppose C has length N . Suppose there is a unique k < N such
that uk(C) = ∞, and for at least one m < k, 0 < um(C) <∞.

1. The structure C has a computable d-Σ2 Scott sentence.

2. For any X, if S is d-Σ0
2(X), there is a uniformly X-computable sequence

(Cn)n∈ω of reduced Abelian p-groups of length N such that

Cn
∼= C iff n ∈ S .
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For 1, the Scott sentence is the same as in Lemma 5.10, except that we must
specify um, for m < k. If um 6= 0, we need a computable d-Σ2 sentence.

For 2, assume without loss of generality that X = ∅. Let S be d-Σ0
2, say

S = S1−S2, where Si is Σ0
2. Let C− have the same Ulm sequence as C except that

um(C−) = 0. Let C+ have the same Ulm sequence as C except that um(C+) >
um(C). We produce a uniformly computable sequence (Cn)n∈ω of Abelian p-
groups of length N such that if n /∈ S1, then Cn

∼= C−, if n ∈ S1 − S2, then
Cn
∼= C, and if n ∈ S1 ∩ S2, then Cn

∼= C+.
We start with H and add further direct summands Zpi+1 . At stage s, if we

believe n /∈ S1, then we convert any direct summands of the form Zpm+1 to the
form Zpk+1 . If we believe n ∈ S1−S2, we make the number of direct summands
of the form Zpm+1 match that in C. If at stage s−1, we had none, then we create
new ones. If at stage s − 1, we had too many, then we retain those from the
greatest stage t < s where we had the right number (or too few), and convert
the extra ones to Zpk+1 . If we believe n ∈ S1 ∩ S2, we make the number of
direct summands of the form Zpm+1 match that in C+. In any case, we add a
new direct summand of the form Zpk+1 .

We turn to the proof of Proposition 5.11. Let C = AωM . By Lemma 5.12, C
has a computable d-Σ2 Scott sentence. From this, we get a computable d-Σ2M+2

sentence describing the groups G such that GωM
∼= C. We have a computable

Π2M+1 sentence characterizing Abelian p-groups with Ulm invariants matching
those of A for α < ωM . The conjunction, which is equivalent to a d-Σ2M+2

sentence, is a Scott sentence for A.
For completeness, note that if S is d-Σ0

2M+2, then S is d-Σ0
2 relative to

∆0
2M+1. Applying Lemma 5.12, we get a uniformly ∆0

2M+1 sequence (Cn)n∈ω of
groups of length N such that Cn

∼= C iff n ∈ S.
Now, we apply Theorem 5.5, with Cn, together with the Σ0

2k+2 relations
Rk
A, and the ∆0

2k+1 functions fk
A, for k < M . We get a uniformly computable

sequence of groups (An)n∈ω, all of length ωM +N , such that An
∼= A iff n ∈ S.

Proposition 5.13. Let K be the class of reduced Abelian p-groups of length
ωM + N for some M,N ∈ ω. Let A be a computable member of K. If there
exist m < k < N such that

uωM+m(A) = uωM+k(A) = ∞ ,

then I(A) is m-complete Π0
2M+3 within K.

Proof. We use the following lemma.

Lemma 5.14. Let C be a reduced Abelian p-group of length N . Suppose k is
greatest such that uk(C) = ∞, and there exists m < k such that um(C) = ∞.

1. The structure C has a computable Π3 Scott sentence.
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2. For any X, if S is Π0
3(X), then there is a uniformly X-computable se-

quence (Cn)n∈ω, consisting of groups of length N , such that

Cn
∼= C iff n ∈ S .

Proof. For 1, we have a finitary Π2 sentence describing the reduced Abelian
p-groups of length ≤ N . For each i < N , if ui(C) is finite, we have a finitary d-Σ2

sentence specifying the value. If ui(C) = ∞, we have a computable Π3 sentence
saying this. The conjunction is equivalent to a computable Π3 sentence, and it
is a Scott sentence for C.

For 2, assume without loss of generality that X = ∅. Let S be ω−Cof . We
produce a uniformly computable sequence (Cn)n∈ω of groups of length N such
that if n ∈ S, then Cn

∼= C, and if n /∈ S, say ω −Wn has cardinality r, then
um(Cn) = r. We have a sequence of computable approximations to ω−Wn. Let
P0 = ∅. Given Ps, if there is some x ∈ Wn,s+1 − Ps, then for the first such x,
we let Ps+1 consist of all y < x in Ps. If there is no such x, then take the first
y /∈ Wn,s+1 such that y /∈ Ps, and let Ps+1 be the result of adding y to Ps. We
have x ∈ ω −Wn iff for all sufficiently large s, x ∈ Ps. Moreover, if ω −Wn is
finite, then infinitely often Ps = Wn.

We may suppose that

C = H ⊕ Z∞pm+1 ⊕ Z∞pk+1 .

We construct Cn as follows. We start with a copy of H. At stage s, say Ps has
cardinality r, where at stage s − 1 the cardinality was r′. If r′ < r, we add
direct summands of the form Zpm+1 to bring the number up to r. If r′ > r, we
keep the direct summands of the form Zpm+1 that we had at the greatest stage
t < s, where the number was at most r, and we give the remaining ones the
form Zpk+1 . In any case, we add at least one new direct summand of the form
Zpk+1 .

Now, we turn to the proof of Proposition 5.13. Let C = AωM . By Lemma 5.14,
C has a computable Π3 Scott sentence. It follows that there is a computable
Π2M+3 sentence characterizing the groups G such that GωM

∼= C. We have a
computable Π2M+1 sentence characterizing the Abelian p-groups G such that
for α < ωM , uα(G) = uα(A). There is a computable Π2M+3 sentence equivalent
to the conjunction, and this is a Scott sentence for A.

For completeness, let S be Π0
2M+3. Then S is Π0

3 over ∆0
2M+1. By Lemma

5.14, we have a uniformly ∆0
2M+1 sequence (Cn)n∈ω of groups of length N such

that Cn
∼= C iff n ∈ S. Since A is computable, we have relations Rk

A and
functions fk

A, for k < M , as required in Theorem 5.5. We get a uniformly
computable sequence (An)n∈ω of groups of length ωM +N , such that An

∼= A
iff n ∈ S.
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We can now summarize the results for groups A where λ(A) < ω2.

Theorem 5.15. Let K be the class of reduced Abelian p-groups of length ωM+ N
for some M,N ∈ ω. Let A ∈ K.

1. If AωM is minimal for the given length (of the form ZpN ), then I(A) is
m-complete Π0

2M+1 within K.

2. If AωM is finite but not minimal for the given length, then I(A) is m-
complete d-Σ0

2M+1 within K.

3. If there is a unique k < N such that uωM+k(A) = ∞, and for all m < k,
uωM+m(A) = 0, then I(A) is m-complete Π0

2M+2 within K.

4. If there is a unique k < N such that uωM+k(A) = ∞ and for some
m < k we have 0 < uωM+m(A) < ∞, then I(A) is m-complete d-Σ0

2M+2

within K.

5. If there exist m < k < N such that uωM+m(A) = uωM+k(A) = ∞, then
I(A) is m-complete Π0

2M+3 within K.

5.3 Groups of Greater Ulm Length

Theorem 5.15 leaves open the possibility, counterintuitive though it may be,
that there is an Abelian p-group of length at least ω2 with an arithmetical
index set. The following result rules out this possibility.

Theorem 5.16. Let A be a computable reduced Abelian p-group of length greater
than ωM . Then for any ∆0

2M+1 set S, there is a uniformly computable sequence
(An)n∈ω such that

An
∼= A iff n ∈ S .

That is, I(A) is ∆0
2M+1-hard.

Proof. Let C = AωM , and let C′ be a finite reduced Abelian p-group, not iso-
morphic to C. Let S be ∆0

2M+1. We have a uniformly ∆0
2M+1 sequence (Cn)n∈ω

such that Cn
∼= C if n ∈ S, and Cn

∼= C′ otherwise. Since A is computable, we
have relations Rk

A and functions fk
A as in Theorem 5.5. Then we get a uniformly

computable sequence (An)n∈ω such that An
∼= A iff n ∈ S.

The following corollary is immediate.

Corollary 5.17. Let A be an Abelian p-group of length at least ω2. Then I(A)
is not arithmetical.
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6 Models of the original Ehrenfeucht theory

An Ehrenfeucht theory, is a complete theory T having exactly n non-isomorphic
countable models for some finite n > 1. A well-known result of Vaught shows
that n cannot equal 2 [19]. Ehrenfeucht gave an example for n = 3. Ehrenfeucht
told Vaught about his example, and it is described in [19]. The language of the
theory has a binary relation symbol < and constants cn for n ∈ ω. The axioms
say that < is a dense linear ordering without endpoints, and the constants
are strictly increasing. The theory T has the following three non-isomorphic
countable models. There is the prime model, in which there is no upper bound
for the constants. There is the saturated model, in which the constants have an
upper bound but no least upper bound. There is the middle model, in which
there is a least upper bound for the constants.

Proposition 6.1. Let K be the class of models of the original Ehrenfeucht
theory T . Let A1 be the prime model, let A2 be the middle model, and A3 be
the saturated model.

1. I(A1) is m-complete Π0
2 within K.

2. I(A2) is m-complete Σ0
3 within K.

3. I(A3) is m-complete Π0
3 within K.

Proof. For 1, first note that there is a computable Π2 sentence characterizing
the models of T such that

(∀x)
∨
n∈ω

∨
x < cn .

This is a Scott sentence for A1. Therefore, I(A1) is Π0
2.

Toward completeness, let S be a Π0
2 set. We will build a uniformly com-

putable sequence (An)n∈ω such that

An
∼=

{
A1 if n ∈ S ,
A2 otherwise .

We have a computable approximation (Ss)s∈ω for S such that

n ∈ S iff n ∈ Ss for infinitely many s .

For fixed n, when n /∈ S, we build the middle model by creating a least upper
bound for the constants we have placed so far and preserving it until/unless
our approximation changes. When n ∈ Ss, we destroy the current least upper
bound and place the next constant at the end of the ordering. If n really is in S,
then the sequence of constants is cofinal, and we get a copy of the prime model.
If n is not in S, then for some stage s0, for all s ≥ s0, we have n /∈ Ss, and we
will preserve the least upper bound created at stage s0, so we get a copy of the
middle model.
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We turn to 2. First, note that there is a computable Σ3 Scott sentence for
A2, describing a model of T such that

(∃x) [
∧
n∈ω

∧
x > cn & (∀y) [(

∧
n∈ω

∧
y > cn) → y ≥ x]].

It follows that I(A2) is Σ0
3.

Toward completeness, let S be a Σ0
3 set. We build a uniformly computable

sequence (An)n∈ω such that

An
∼=

{
A2 if n ∈ S ,
A3 otherwise .

Note that S is Σ0
2 over ∆0

2. We have a ∆0
2 approximation (Sk)k∈ω, such that

n ∈ S iff for all sufficiently large k, n ∈ Sk. Fix n. Then there is a ∆0
2 sequence

of instructions (ik)k∈ω. We start with an upper bound for the constants. If
n /∈ Sk, then ik says to destroy the current least upper bound for the constants,
moving left, closer to the constants. If n ∈ Sk, then ik says to preserve the
current least upper bound for the constants.

Now, we build the computable model An based on approximations of the
sequence of instructions. There are mistakes of two kinds. We may wrongly
guess that ik said to preserve the current least upper bound for the constants.
The result is a delay. We may wrongly guess that ik said to destroy the current
least upper bound for the constants. Having introduced a new upper bound
to the left of this one, we correct our mistake by putting the next constant to
the right of any added elements, so as to preserve the upper bound as in the
instruction.

Again, if n is in S, ∆0
2 will eventually think so, and we will eventually

preserve a particular least upper bound for the constants, building the middle
model. Otherwise, infinitely often we will create a new upper bound for the
constants, moving to the left, closer to the constants. The result is the saturated
model.

Finally, we turn to 3. We have a Π0
3 Scott sentence for A3, describing a

model of T such that

(∃x) [
∧
n∈ω

∧
x > cn] & (∀y) [

∧
n∈ω

∧
y > cn =⇒ ∃z[

∧
n∈ω

∧
z > cn&z < y]] .

It follows that I(A3) is Π0
3.

For completeness, we notice that the proof is the symmetric case of the proof
in part 2.
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